Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (38)

Search Parameters:
Keywords = monogenic obesity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 261 KiB  
Article
Investigation of the P1104A/TYK2 Genetic Variant in a COVID-19 Patient Cohort from Southern Brazil
by Giulianna Sonnenstrahl, Eduarda Sgarioni, Mayara Jorgens Prado, Marilea Furtado Feira, Renan Cezar Sbruzzi, Bibiana S. O. Fam, Alessandra Helena Da Silva Hellwig, Nathan Araujo Cadore, Osvaldo Artigalás, Alexandre da Costa Pereira, Lygia V. Pereira, Tábita Hünemeier and Fernanda Sales Luiz Vianna
COVID 2025, 5(8), 126; https://doi.org/10.3390/covid5080126 - 5 Aug 2025
Viewed by 38
Abstract
The P1104A variant in the TYK2 gene is recognized as the first common monogenic cause of tuberculosis, and recent studies also suggest a potential role in COVID-19 severity. However, its frequency and impact in admixed Latin American populations remain underexplored. Therefore, we investigated [...] Read more.
The P1104A variant in the TYK2 gene is recognized as the first common monogenic cause of tuberculosis, and recent studies also suggest a potential role in COVID-19 severity. However, its frequency and impact in admixed Latin American populations remain underexplored. Therefore, we investigated the P1104A/TYK2 variant in a cohort comprising 1826 RT-PCR-confirmed COVID-19 patients from Southern Brazil. Cases were stratified by severity into non-severe (n = 1190) and severe (n = 636). Three homozygous individuals were identified—one non-severe and two severe cases—although no statistically significant association with disease severity was observed. The frequency of the C allele in the COVID-19 cohort (2.85%) was significantly higher than in Brazilian population databases, including “DNA do Brasil” (1.81%, p < 0.001) and ABraOM (2.34%, p = 0.03), but lower than in the multi-ancestry gnomAD database (3.71%, p = 0.01), possibly reflecting ancestry bias. We also observed associations between COVID-19 severity and sex (p = 0.003), age (p < 0.001), obesity (p < 0.001), diabetes (p < 0.001), and hypertension (p < 0.001). Future studies in larger and more diverse cohorts are needed to characterize the prevalence of the variant in admixed populations and assess its contribution to COVID-19 susceptibility. Full article
(This article belongs to the Section Host Genetics and Susceptibility/Resistance)
21 pages, 1738 KiB  
Review
Unraveling the Genetic Architecture of Obesity: A Path to Personalized Medicine
by Faisal Kunnathodi, Amr A. Arafat, Waleed Alhazzani, Mohammad Mustafa, Sarfuddin Azmi, Ishtiaque Ahmad, Jamala Saleh Selan, Riyasdeen Anvarbatcha and Haifa F. Alotaibi
Diagnostics 2025, 15(12), 1482; https://doi.org/10.3390/diagnostics15121482 - 11 Jun 2025
Viewed by 872
Abstract
Obesity is a global health challenge characterized by significant heterogeneity in causes and treatment responses, complicating sustainable management. This narrative review explores the genomic architecture of obesity and its implications for personalized interventions, focusing on how genetic variations influence key biological pathways and [...] Read more.
Obesity is a global health challenge characterized by significant heterogeneity in causes and treatment responses, complicating sustainable management. This narrative review explores the genomic architecture of obesity and its implications for personalized interventions, focusing on how genetic variations influence key biological pathways and treatment outcomes. A comprehensive literature search, guided by the authors’ expertise, was conducted to identify key publications on the genomics of obesity and personalized approaches. The selection of articles prioritized those that provided direct insights into the genomic basis of obesity and its potential for informing tailored strategies. Genomic studies reveal both monogenic and polygenic influences on obesity, identifying numerous susceptibility loci. Genome-wide association studies (GWASs) have linked common variants in genes like FTO and MC4R to increased BMI and appetite dysregulation, respectively. Epigenetic research highlights the role of DNA methylation and other modifications in gene–environment interactions. Genetic and polygenic risk scores (GRSs and PRSs) show potential for refining risk stratification and predicting treatment response. The gut microbiome and metabolome also contribute to obesity pathogenesis, offering novel targets for intervention. Personalized medicine offers significant potential for improving obesity management through tailored interventions based on an individual’s genetic and ‘omics’ profile. Future research should focus on elucidating the functional consequences of identified variants, exploring gene–environment interactions, and developing strategies to overcome current limitations in clinical translation. With continued advancements, precision medicine can enhance treatment efficacy, increase sustainability, and help reduce the global burden of obesity-related diseases. Full article
(This article belongs to the Special Issue Metabolic Diseases: Diagnosis, Management, and Pathogenesis)
Show Figures

Figure 1

19 pages, 7605 KiB  
Case Report
Genetic Insights into Severe Obesity: A Case Study of MC4R Variant Identification and Clinical Implications
by Altynay Imangaliyeva, Nurgul Sikhayeva, Aidos Bolatov, Talgat Utupov, Aliya Romanova, Ilyas Akhmetollayev and Elena Zholdybayeva
Genes 2025, 16(5), 508; https://doi.org/10.3390/genes16050508 - 28 Apr 2025
Viewed by 1288
Abstract
Background/Objectives: Severe early-onset obesity is a complex condition shaped by genetic and metabolic influences. The melanocortin 4 receptor (MC4R) gene plays a crucial role in energy balance, and pathogenic variants are associated with monogenic forms of obesity. This study aims [...] Read more.
Background/Objectives: Severe early-onset obesity is a complex condition shaped by genetic and metabolic influences. The melanocortin 4 receptor (MC4R) gene plays a crucial role in energy balance, and pathogenic variants are associated with monogenic forms of obesity. This study aims to examine the clinical, metabolic, and genetic characteristics of a patient with severe early-onset obesity and his family, to assess the contribution of an MC4R variant to the observed phenotype. Methods: A 22-year-old male with severe obesity, first recognized at age 3, underwent detailed clinical, metabolic, and genetic evaluations. Laboratory assessments included insulin, lipid profile, uric acid, and IGF-1 levels. Whole-exome sequencing (WES) was performed on the patient and selected family members to identify potential pathogenic variants associated with obesity. Results: Clinical assessment revealed a body mass index (BMI) of 44.68 kg/m2, hyperinsulinemia (98.2 µIU/mL), prediabetes (HbA1c: 5.85%), dyslipidemia, hyperuricemia (421.0 µmol/L), and elevated IGF-1 levels (646.7 ng/mL). WES identified a heterozygous MC4R:c.216C>G (p.Asn72Lys) variant present in the patient, his mother, and maternal relatives. This variant, with a population frequency of 0.0004%, is predicted as likely pathogenic by SIFT, MutationTaster, and PrimateAI. However, its segregation pattern suggests a complex inheritance mechanism rather than classical autosomal dominant or recessive inheritance. Conclusions: Early genetic testing in individuals with severe obesity is essential for guiding personalized treatment strategies. Although the MC4R:c.216C>G variant may contribute to the patient’s metabolic profile, further functional studies are required to confirm its pathogenicity and elucidate its role in obesity pathogenesis. Full article
(This article belongs to the Special Issue Genetics of Multifactorial Diseases: 2nd Edition)
Show Figures

Figure 1

22 pages, 4130 KiB  
Article
gnas Knockdown Induces Obesity and AHO Features in Early Zebrafish Larvae
by Alaa Abbas, Ayat S Hammad, Zain Z. Zakaria, Maha Al-Asmakh, Khalid Hussain and Mashael Al-Shafai
Int. J. Mol. Sci. 2024, 25(23), 12674; https://doi.org/10.3390/ijms252312674 - 26 Nov 2024
Viewed by 1093
Abstract
GNAS (Guanine Nucleotide-Binding Protein, Alpha Stimulating) is a complex gene that encodes the alpha subunit of the stimulatory G protein (Gsα), critical for signaling through various G protein-coupled receptors. Inactivating genetic and epigenetic changes in GNAS, resulting in Gs [...] Read more.
GNAS (Guanine Nucleotide-Binding Protein, Alpha Stimulating) is a complex gene that encodes the alpha subunit of the stimulatory G protein (Gsα), critical for signaling through various G protein-coupled receptors. Inactivating genetic and epigenetic changes in GNAS, resulting in Gsα deficiency, cause different variants of pseudohypoparathyroidism, which may manifest features of Albright hereditary osteodystrophy (AHO, a syndrome characterized by early-onset obesity and other developmental defects). Recent findings have linked Gsα deficiency with isolated, severe, early-onset obesity, suggesting it as a potential, underrecognized cause of monogenic, non-syndromic obesity. This study was prompted by identifying several GNAS variants of uncertain significance (VUSs) in pediatric patients presenting with unexplained, severe, early-onset obesity at Sidra Medicine in Qatar. To functionally characterize these variants, we developed the first zebrafish model of Gsα deficiency, offering numerous advantages over other model systems. This was achieved by knockdown of the ortholog through microinjection of translation-blocking Morpholino antisense oligonucleotides into the yolks of 1-8-cell-stage zebrafish embryos. The morphant larvae displayed an obese phenotype, marked by significantly enlarged yolk sacs, increased neutral lipid accumulation, and reduced metabolic rates, among other developmental abnormalities resembling those in AHO. This zebrafish model lays the foundation for efficient functional characterization of GNAS VUSs and paves the way for enhancing our understanding of Gsα deficiency-associated early-onset obesity. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

10 pages, 1213 KiB  
Article
Functional Evaluation of a Novel Homozygous ADCY3 Variant Causing Childhood Obesity
by Idris Mohammed, Senthil Selvaraj, Wesam S. Ahmed, Tara Al-Barazenji, Hajar Dauleh, Donald R. Love, Luis R. Saraiva and Khalid Hussain
Int. J. Mol. Sci. 2024, 25(21), 11815; https://doi.org/10.3390/ijms252111815 - 3 Nov 2024
Viewed by 2021
Abstract
Adenylate cyclase 3 (ADCY3) is a transmembrane protein predominantly expressed in the primary cilia of neurons. It plays a vital role in converting ATP to cAMP, a secondary messenger that regulates various downstream signaling pathways such as carbohydrates and lipids metabolism. [...] Read more.
Adenylate cyclase 3 (ADCY3) is a transmembrane protein predominantly expressed in the primary cilia of neurons. It plays a vital role in converting ATP to cAMP, a secondary messenger that regulates various downstream signaling pathways such as carbohydrates and lipids metabolism. Homozygous loss-of-function variants in the ADCY3 gene lead to severe early-onset obesity and insulin resistance whereas gain-of-function variants protect against obesity. To describe a novel pathogenic ADCY3 variant implicated in early-onset obesity and functionally characterize this variant via in vitro and in silico validation, we identified a novel homozygous nonsense variant c.2520C>G, p.Thr840X in the ADCY3 gene using gene panel sequencing in a four-year-old girl. She was born to first-cousin consanguineous parents. The patient presented with severe obesity, and exhibited hepatomegaly and insulin resistance, with other biochemical and hormonal tests being normal. In vitro and in silico functional analyses showed downregulation and impaired activation of the ADCY3 protein. Our findings contribute to existing research that supports the role of ADCY3 in the genetic pathogenesis of early-onset obesity. In vitro and in silico functional characterization of the novel p.Thr840X variant showed impaired enzymatic activity leading to receptor loss of function, consistent with the patient’s phenotype. Genetic testing is essential in severe early-onset obesity and early diagnosis could benefit patients with personalized treatment strategies. Full article
Show Figures

Figure 1

17 pages, 1754 KiB  
Article
Sexual Dimorphism in Impairment of Acetylcholine-Mediated Vasorelaxation in Zucker Diabetic Fatty (ZDF) Rat Aorta: A Monogenic Model of Obesity-Induced Type 2 Diabetes
by Rifat Ara Islam, Xiaoyuan Han, Sonali Shaligram, Mitra Esfandiarei, John N. Stallone and Roshanak Rahimian
Int. J. Mol. Sci. 2024, 25(20), 11328; https://doi.org/10.3390/ijms252011328 - 21 Oct 2024
Viewed by 1426
Abstract
Several reports, including our previous studies, indicate that hyperglycemia and diabetes mellitus exert differential effects on vascular function in males and females. This study examines sex differences in the vascular effects of type 2 diabetes (T2D) in an established monogenic model of obesity-induced [...] Read more.
Several reports, including our previous studies, indicate that hyperglycemia and diabetes mellitus exert differential effects on vascular function in males and females. This study examines sex differences in the vascular effects of type 2 diabetes (T2D) in an established monogenic model of obesity-induced T2D, Zucker Diabetic Fatty (ZDF) rats. Acetylcholine (ACh) responses were assessed in phenylephrine pre-contracted rings before and after apocynin, a NADPH oxidase (NOX) inhibitor. The mRNA expressions of aortic endothelial NOS (eNOS), and key NOX isoforms were also measured. We demonstrated the following: (1) diabetes had contrasting effects on aortic vasorelaxation in ZDF rats, impairing relaxation to ACh in females while enhancing it in male ZDF rats; (2) inhibition of NOX, a major source of superoxide in vasculature, restored aortic vasorelaxation in female ZDF rats; and (3) eNOS and NOX4 mRNA expressions were elevated in female (but not male) ZDF rat aortas compared to their respective leans. This study highlights sexual dimorphism in ACh-mediated vasorelaxation in the aorta of ZDF rats, suggesting that superoxide may play a role in the impaired vasorelaxation observed in female ZDF rats. Full article
(This article belongs to the Special Issue The Impact of Vascular Dysfunction in Obesity and Diabetes)
Show Figures

Figure 1

13 pages, 2073 KiB  
Review
Evidence on Hidradenitis Suppurativa as an Autoinflammatory Skin Disease
by Martina D’Onghia, Dalma Malvaso, Giulia Galluccio, Flaminia Antonelli, Giulia Coscarella, Pietro Rubegni, Ketty Peris and Laura Calabrese
J. Clin. Med. 2024, 13(17), 5211; https://doi.org/10.3390/jcm13175211 - 2 Sep 2024
Cited by 6 | Viewed by 3273
Abstract
Hidradenitis suppurativa (HS) is a chronic and debilitating inflammatory skin disease that often exhibits heterogeneity in its clinical presentation, especially in the context of its rare syndromic forms. The pathogenesis of HS results from a complex interplay of genetic predisposition, innate and adaptive [...] Read more.
Hidradenitis suppurativa (HS) is a chronic and debilitating inflammatory skin disease that often exhibits heterogeneity in its clinical presentation, especially in the context of its rare syndromic forms. The pathogenesis of HS results from a complex interplay of genetic predisposition, innate and adaptive immunity dysregulation, smoking, obesity and environmental factors. In the early phase of the disease, the innate immune system is hyperactivated, contributing to tissue damage and triggering the activation and amplification of the adaptive immune response, which plays a pivotal role in the chronic stages of the disease. Recent studies focused on elucidating the importance of innate immunity impairment and autoinflammation in HS and increasing evidence has emerged on the occurrence of the disease in the context of well-known monogenic and polygenic autoinflammatory syndromes (AIDs). This review provides a comprehensive examination of the current scientific background supporting the contribution of autoinflammation to HS etiology, including genetic data, molecular studies and clinical evidence, as well as the association between HS and AIDs. However, further research is needed to shed light on the pathogenic mechanism of this challenging condition and to identify potential perspectives for future therapeutic approaches. Full article
(This article belongs to the Section Dermatology)
Show Figures

Figure 1

16 pages, 2542 KiB  
Case Report
Identification of KSR2 Variants in Pediatric Patients with Severe Early-Onset Obesity from Qatar
by Lubna I. Abu-Rub, Tara Al-Barazenji, Sumaya Abiib, Ayat S Hammad, Alaa Abbas, Khalid Hussain and Mashael Al-Shafai
Genes 2024, 15(8), 966; https://doi.org/10.3390/genes15080966 - 23 Jul 2024
Cited by 1 | Viewed by 1577
Abstract
The kinase suppressor of Ras 2 (KSR2) gene is associated with monogenic obesity, and loss-of-function variants in KSR2 have been identified in individuals with severe early-onset obesity. This study investigated KSR2 variants in 9 pediatric patients with severe early-onset obesity in [...] Read more.
The kinase suppressor of Ras 2 (KSR2) gene is associated with monogenic obesity, and loss-of-function variants in KSR2 have been identified in individuals with severe early-onset obesity. This study investigated KSR2 variants in 9 pediatric patients with severe early-onset obesity in Qatar using whole genome sequencing among a cohort of 240 individuals. We focused on KSR2 variants with a minor allele frequency (MAF) below 1% and a Combined Annotation Dependent Depletion (CADD) score above 13 to identify potential causative variants. Our analysis identified four KSR2 variants: one intronic (c.1765-8G>A) and three missense variants (c.1057G>A, c.1673G>A, and c.923T>C) in nine patients. The intronic variant c.1765-8G>A was the most frequent (seen in six individuals) and had a CADD score of 21.10, suggesting possible pathogenicity. This variant showed a significantly higher allele frequency in the Qatari population compared to the Genome Aggregation Database (gnomAD), indicating a possible founder effect. Molecular modeling of the missense variants revealed structural changes in the protein structure. The study concludes that these four KSR2 variants are associated with monogenic obesity, with an autosomal dominant inheritance pattern. The c.1765-8G>A variant’s prevalence in Qatar underscores its importance in genetic screening for severe obesity. This research advances the understanding of genetic factors in severe early-onset obesity and may inform better management strategies. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Graphical abstract

33 pages, 3010 KiB  
Review
Physiological Appetite Regulation and Bariatric Surgery
by Indra Ramasamy
J. Clin. Med. 2024, 13(5), 1347; https://doi.org/10.3390/jcm13051347 - 27 Feb 2024
Cited by 4 | Viewed by 5860
Abstract
Obesity remains a common metabolic disorder and a threat to health as it is associated with numerous complications. Lifestyle modifications and caloric restriction can achieve limited weight loss. Bariatric surgery is an effective way of achieving substantial weight loss as well as glycemic [...] Read more.
Obesity remains a common metabolic disorder and a threat to health as it is associated with numerous complications. Lifestyle modifications and caloric restriction can achieve limited weight loss. Bariatric surgery is an effective way of achieving substantial weight loss as well as glycemic control secondary to weight-related type 2 diabetes mellitus. It has been suggested that an anorexigenic gut hormone response following bariatric surgery contributes to weight loss. Understanding the changes in gut hormones and their contribution to weight loss physiology can lead to new therapeutic treatments for weight loss. Two distinct types of neurons in the arcuate hypothalamic nuclei control food intake: proopiomelanocortin neurons activated by the anorexigenic (satiety) hormones and neurons activated by the orexigenic peptides that release neuropeptide Y and agouti-related peptide (hunger centre). The arcuate nucleus of the hypothalamus integrates hormonal inputs from the gut and adipose tissue (the anorexigenic hormones cholecystokinin, polypeptide YY, glucagon-like peptide-1, oxyntomodulin, leptin, and others) and orexigeneic peptides (ghrelin). Replicating the endocrine response to bariatric surgery through pharmacological mimicry holds promise for medical treatment. Obesity has genetic and environmental factors. New advances in genetic testing have identified both monogenic and polygenic obesity-related genes. Understanding the function of genes contributing to obesity will increase insights into the biology of obesity. This review includes the physiology of appetite control, the influence of genetics on obesity, and the changes that occur following bariatric surgery. This has the potential to lead to the development of more subtle, individualised, treatments for obesity. Full article
(This article belongs to the Section Endocrinology & Metabolism)
Show Figures

Figure 1

26 pages, 858 KiB  
Review
Understanding Hypertriglyceridemia: Integrating Genetic Insights
by Mara Alves, Francisco Laranjeira and Georgina Correia-da-Silva
Genes 2024, 15(2), 190; https://doi.org/10.3390/genes15020190 - 30 Jan 2024
Cited by 13 | Viewed by 7563
Abstract
Hypertriglyceridemia is an exceptionally complex metabolic disorder characterized by elevated plasma triglycerides associated with an increased risk of acute pancreatitis and cardiovascular diseases such as coronary artery disease. Its phenotype expression is widely heterogeneous and heavily influenced by conditions as obesity, alcohol consumption, [...] Read more.
Hypertriglyceridemia is an exceptionally complex metabolic disorder characterized by elevated plasma triglycerides associated with an increased risk of acute pancreatitis and cardiovascular diseases such as coronary artery disease. Its phenotype expression is widely heterogeneous and heavily influenced by conditions as obesity, alcohol consumption, or metabolic syndromes. Looking into the genetic underpinnings of hypertriglyceridemia, this review focuses on the genetic variants in LPL, APOA5, APOC2, GPIHBP1 and LMF1 triglyceride-regulating genes reportedly associated with abnormal genetic transcription and the translation of proteins participating in triglyceride-rich lipoprotein metabolism. Hypertriglyceridemia resulting from such genetic abnormalities can be categorized as monogenic or polygenic. Monogenic hypertriglyceridemia, also known as familial chylomicronemia syndrome, is caused by homozygous or compound heterozygous pathogenic variants in the five canonical genes. Polygenic hypertriglyceridemia, also known as multifactorial chylomicronemia syndrome in extreme cases of hypertriglyceridemia, is caused by heterozygous pathogenic genetic variants with variable penetrance affecting the canonical genes, and a set of common non-pathogenic genetic variants (polymorphisms, using the former nomenclature) with well-established association with elevated triglyceride levels. We further address recent progress in triglyceride-lowering treatments. Understanding the genetic basis of hypertriglyceridemia opens new translational opportunities in the scope of genetic screening and the development of novel therapies. Full article
(This article belongs to the Special Issue Genetics and Genomics of Inherited Metabolic Diseases)
Show Figures

Figure 1

14 pages, 506 KiB  
Review
Syndromic and Monogenic Obesity: New Opportunities Due to Genetic-Based Pharmacological Treatment
by Kallirhoe Kalinderi, Vasiliki Goula, Evdoxia Sapountzi, Vasiliki Rengina Tsinopoulou and Liana Fidani
Children 2024, 11(2), 153; https://doi.org/10.3390/children11020153 - 25 Jan 2024
Cited by 4 | Viewed by 9491
Abstract
Obesity is a significant health problem with a continuously increasing prevalence among children and adolescents that has become a modern pandemic during the last decades. Nowadays, the genetic contribution to obesity is well-established. For this narrative review article, we searched PubMed and Scopus [...] Read more.
Obesity is a significant health problem with a continuously increasing prevalence among children and adolescents that has become a modern pandemic during the last decades. Nowadays, the genetic contribution to obesity is well-established. For this narrative review article, we searched PubMed and Scopus databases for peer-reviewed research, review articles, and meta-analyses regarding the genetics of obesity and current pharmacological treatment, published in the English language with no time restrictions. We also screened the references of the selected articles for possible additional articles in order to include most of the key recent evidence. Our research was conducted between December 2022 and December 2023. We used the terms “obesity”, “genetics”, “monogenic”, “syndromic”, “drugs”, “autosomal dominant”, “autosomal recessive”, “leptin-melanocortin pathway”, and “children” in different combinations. Recognizing the genetic background in obesity can enhance the effectiveness of treatment. During the last years, intense research in the field of obesity treatment has increased the number of available drugs. This review analyzes the main categories of syndromic and monogenic obesity discussing current data on genetic-based pharmacological treatment of genetic obesity and highlighting the necessity that cases of genetic obesity should follow specific, pharmacological treatment based on their genetic background. Full article
(This article belongs to the Special Issue Adolescent Weight Management: Advances and Future Challenges)
Show Figures

Graphical abstract

16 pages, 3822 KiB  
Article
Functional Characterization of Novel MC4R Variants Identified in Two Unrelated Patients with Morbid Obesity in Qatar
by Idris Mohammed, Senthil Selvaraj, Wesam S. Ahmed, Tara Al-Barazenji, Ayat S Hammad, Hajar Dauleh, Luis R. Saraiva, Mashael Al-Shafai and Khalid Hussain
Int. J. Mol. Sci. 2023, 24(22), 16361; https://doi.org/10.3390/ijms242216361 - 15 Nov 2023
Cited by 4 | Viewed by 2709
Abstract
The leptin–melanocortin pathway is pivotal in appetite and energy homeostasis. Pathogenic variants in genes involved in this pathway lead to severe early-onset monogenic obesity (MO). The MC4R gene plays a central role in leptin–melanocortin signaling, and heterozygous variants in this gene are the [...] Read more.
The leptin–melanocortin pathway is pivotal in appetite and energy homeostasis. Pathogenic variants in genes involved in this pathway lead to severe early-onset monogenic obesity (MO). The MC4R gene plays a central role in leptin–melanocortin signaling, and heterozygous variants in this gene are the most common cause of MO. A targeted gene panel consisting of 52 obesity-related genes was used to screen for variants associated with obesity. Variants were analyzed and filtered to identify potential disease-causing activity and validated using Sanger sequencing. We identified two novel heterozygous variants, c.253A>G p.Ser85Gly and c.802T>C p.Tyr268His, in the MC4R gene in two unrelated patients with morbid obesity and evaluated the functional impact of these variants. The impact of the variants on the MC4R gene was assessed using in silico prediction tools and molecular dynamics simulation. To further study the pathogenicity of the identified variants, GT1-7 cells were transfected with plasmid DNA encoding either wild-type or mutant MC4R variants. The effects of allelic variations in the MC4R gene on cAMP synthesis, MC4R protein level, and activation of PKA, ERB, and CREB signaling pathways in both stimulated and unstimulated ɑ-MSH paradigms were determined for their functional implications. In silico analysis suggested that the variants destabilized the MC4R structure and affected the overall dynamics of the MC4R protein, possibly leading to intracellular receptor retention. In vitro analysis of the functional impact of these variants showed a significant reduction in cell surface receptor expression and impaired extracellular ligand binding activity, leading to reduced cAMP production. Our analysis shows that the variants do not affect total protein expression; however, they are predicted to affect the post-translational localization of the MC4R protein to the cell surface and impair downstream signaling cascades such as PKA, ERK, and CREB signaling pathways. This finding might help our patients to benefit from the novel therapeutic advances for monogenic forms of obesity. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

22 pages, 1470 KiB  
Review
Adipose Tissue Hyperplasia and Hypertrophy in Common and Syndromic Obesity—The Case of BBS Obesity
by Avital Horwitz and Ruth Birk
Nutrients 2023, 15(15), 3445; https://doi.org/10.3390/nu15153445 - 4 Aug 2023
Cited by 59 | Viewed by 12186
Abstract
Obesity is a metabolic state generated by the expansion of adipose tissue. Adipose tissue expansion depends on the interplay between hyperplasia and hypertrophy, and is mainly regulated by a complex interaction between genetics and excess energy intake. However, the genetic regulation of adipose [...] Read more.
Obesity is a metabolic state generated by the expansion of adipose tissue. Adipose tissue expansion depends on the interplay between hyperplasia and hypertrophy, and is mainly regulated by a complex interaction between genetics and excess energy intake. However, the genetic regulation of adipose tissue expansion is yet to be fully understood. Obesity can be divided into common multifactorial/polygenic obesity and monogenic obesity, non-syndromic and syndromic. Several genes related to obesity were found through studies of monogenic non-syndromic obesity models. However, syndromic obesity, characterized by additional features other than obesity, suggesting a more global role of the mutant genes related to the syndrome and, thus, an additional peripheral influence on the development of obesity, were hardly studied to date in this regard. This review summarizes present knowledge regarding the hyperplasia and hypertrophy of adipocytes in common obesity. Additionally, we highlight the scarce research on syndromic obesity as a model for studying adipocyte hyperplasia and hypertrophy, focusing on Bardet–Biedl syndrome (BBS). BBS obesity involves central and peripheral mechanisms, with molecular and mechanistic alternation in adipocyte hyperplasia and hypertrophy. Thus, we argue that using syndromic obesity models, such as BBS, can further advance our knowledge regarding peripheral adipocyte regulation in obesity. Full article
(This article belongs to the Section Nutrigenetics and Nutrigenomics)
Show Figures

Scheme 1

18 pages, 655 KiB  
Review
Pediatric Obesity: Complications and Current Day Management
by Mary Ellen Vajravelu, Emir Tas and Silva Arslanian
Life 2023, 13(7), 1591; https://doi.org/10.3390/life13071591 - 20 Jul 2023
Cited by 27 | Viewed by 10287
Abstract
Obesity affects approximately 1 in 5 youth globally and increases the risk of complications during adolescence and young adulthood, including type 2 diabetes, dyslipidemia, hypertension, non-alcoholic fatty liver disease, obstructive sleep apnea, and polycystic ovary syndrome. Children and adolescents with obesity frequently experience [...] Read more.
Obesity affects approximately 1 in 5 youth globally and increases the risk of complications during adolescence and young adulthood, including type 2 diabetes, dyslipidemia, hypertension, non-alcoholic fatty liver disease, obstructive sleep apnea, and polycystic ovary syndrome. Children and adolescents with obesity frequently experience weight stigma and have an impaired quality of life, which may exacerbate weight gain. Pediatric obesity is typically defined using sex-, age-, and population-specific body mass index percentiles. Once identified, pediatric obesity should always be managed with lifestyle modification. However, adolescents with obesity may also benefit from anti-obesity medications (AOM), several of which have been approved for use in adolescents by the US Food and Drug Administration, including liraglutide, phentermine/topiramate, and semaglutide. For children with specific, rare monogenic obesity disorders, setmelanotide is available and may lead to significant weight loss. Metabolic and bariatric surgery may be used for the management of severe obesity in youth; though highly effective, it is limited to specialized centers and has had relatively low pediatric uptake. In this narrative review using pediatric-focused data from original research, reviews, clinical practice guidelines, governmental agencies, and pharmaceutical companies, we review obesity-related metabolic complications in youth and management strategies, including AOM and bariatric surgery. Full article
Show Figures

Figure 1

36 pages, 1370 KiB  
Review
Current Data and New Insights into the Genetic Factors of Atherogenic Dyslipidemia Associated with Metabolic Syndrome
by Lăcramioara Ionela Butnariu, Eusebiu Vlad Gorduza, Elena Țarcă, Monica-Cristina Pânzaru, Setalia Popa, Simona Stoleriu, Vasile Valeriu Lupu, Ancuta Lupu, Elena Cojocaru, Laura Mihaela Trandafir, Ștefana Maria Moisă, Andreea Florea, Laura Stătescu and Minerva Codruța Bădescu
Diagnostics 2023, 13(14), 2348; https://doi.org/10.3390/diagnostics13142348 - 12 Jul 2023
Cited by 11 | Viewed by 4319
Abstract
Atherogenic dyslipidemia plays a critical role in the development of metabolic syndrome (MetS), being one of its major components, along with central obesity, insulin resistance, and hypertension. In recent years, the development of molecular genetics techniques and extended analysis at the genome or [...] Read more.
Atherogenic dyslipidemia plays a critical role in the development of metabolic syndrome (MetS), being one of its major components, along with central obesity, insulin resistance, and hypertension. In recent years, the development of molecular genetics techniques and extended analysis at the genome or exome level has led to important progress in the identification of genetic factors (heritability) involved in lipid metabolism disorders associated with MetS. In this review, we have proposed to present the current knowledge related to the genetic etiology of atherogenic dyslipidemia, but also possible challenges for future studies. Data from the literature provided by candidate gene-based association studies or extended studies, such as genome-wide association studies (GWAS) and whole exome sequencing (WES,) have revealed that atherogenic dyslipidemia presents a marked genetic heterogeneity (monogenic or complex, multifactorial). Despite sustained efforts, many of the genetic factors still remain unidentified (missing heritability). In the future, the identification of new genes and the molecular mechanisms by which they intervene in lipid disorders will allow the development of innovative therapies that act on specific targets. In addition, the use of polygenic risk scores (PRS) or specific biomarkers to identify individuals at increased risk of atherogenic dyslipidemia and/or other components of MetS will allow effective preventive measures and personalized therapy. Full article
(This article belongs to the Section Pathology and Molecular Diagnostics)
Show Figures

Figure 1

Back to TopTop