Adipose Tissue Hyperplasia and Hypertrophy in Common and Syndromic Obesity—The Case of BBS Obesity
Abstract
:1. Introduction
2. Adipose tissue Hyperplasia and Hypertrophy
3. Adipocyte Hyperplasia
4. Adipocyte Hyperplasia in Obesity
5. Adipocyte Hypertrophy in Obesity
6. Molecular Mechanism for Adipocyte Hypertrophy in Obesity
7. Adipose Tissue Hyperplasia and Hypertrophy—Genetic Factors
8. The Genetic Contribution to Obesity
- Common polygenic obesity—a common form of obesity, resulting from hundreds of genetic variations in or near many genes, each having a small effect on the risk of obesity development. Polygenic obesity is characterized by late-onset obesity, with a profound environmental influence [173].
- Genetic obesity—a rare form of obesity, usually inherited in a Mendelian pattern. Genetic obesity is characterized by severe and early-onset obesity, resulting from mutation in a single gene and with small or no environmental influence [174].
9. Syndromic Obesity
BBS Effect on Hyperplasia—Reinforcing the Role in Cell Proliferation
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Seong, J.; Kang, J.Y.; Sun, J.S.; Kim, K.W. Hypothalamic Inflammation and Obesity: A Mechanistic Review. Arch. Pharm. Res. 2019, 42, 383–392. [Google Scholar] [CrossRef]
- Hill, J.O.; Wyatt, H.R.; Peters, J.C. Energy Balance and Obesity. Circulation 2012, 126, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Apovian, C.M. Obesity: Definition, Comorbidities, Causes, and Burden. Am. J. Manag. Care 2016, 22, s176–s185. [Google Scholar] [PubMed]
- Cnop, M.; Foufelle, F.; Velloso, L.A. Endoplasmic Reticulum Stress, Obesity and Diabetes. Trends Mol. Med. 2012, 18, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Jung, U.; Choi, M.-S. Obesity and Its Metabolic Complications: The Role of Adipokines and the Relationship between Obesity, Inflammation, Insulin Resistance, Dyslipidemia and Nonalcoholic Fatty Liver Disease. Int. J. Mol. Sci. 2014, 15, 6184–6223. [Google Scholar] [CrossRef] [Green Version]
- Haczeyni, F.; Wang, H.; Barn, V.; Mridha, A.R.; Yeh, M.M.; Haigh, G.W.; Ioannou, G.N.; Choi, Y.-J.; McWherter, C.A.; Teoh, N.C.-H.; et al. The Selective Peroxisome Proliferator–Activated Receptor-Delta Agonist Seladelpar Reverses Nonalcoholic Steatohepatitis Pathology by Abrogating Lipotoxicity in Diabetic Obese Mice. Hepatol. Commun. 2017, 1, 663–674. [Google Scholar] [CrossRef] [PubMed]
- Bhaskaran, K.; Douglas, I.; Forbes, H.; dos-Santos-Silva, I.; Leon, D.A.; Smeeth, L. Body-Mass Index and Risk of 22 Specific Cancers: A Population-Based Cohort Study of 5·24 Million UK Adults. Lancet 2014, 384, 755–765. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Lee, M.-J.; Ido, Y.; Fried, S.K. High-Fat Diet-Induced Obesity Regulates MMP3 to Modulate Depot- and Sex-Dependent Adipose Expansion in C57BL/6J Mice. Am. J. Physiol.-Endocrinol. Metab. 2017, 312, E58–E71. [Google Scholar] [CrossRef]
- Tchernof, A.; Després, J.-P. Pathophysiology of Human Visceral Obesity: An Update. Physiol. Rev. 2013, 93, 359–404. [Google Scholar] [CrossRef] [Green Version]
- Fried, S.K.; Bunkin, D.A.; Greenberg, A.S. Omental and Subcutaneous Adipose Tissues of Obese Subjects Release Interleukin-6: Depot Difference and Regulation by Glucocorticoid. J. Clin. Endocrinol. Metab. 1998, 83, 847–850. [Google Scholar] [CrossRef] [PubMed]
- Mittelman, S.D.; Van Citters, G.W.; Kirkman, E.L.; Bergman, R.N. Extreme Insulin Resistance of the Central Adipose Depot In Vivo. Diabetes 2002, 51, 755–761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gyllenhammer, L.E.; Lam, J.; Alderete, T.L.; Allayee, H.; Akbari, O.; Katkhouda, N.; Goran, M.I. Lower Omental T-Regulatory Cell Count Is Associated with Higher Fasting Glucose and Lower β-Cell Function in Adults with Obesity: Lower Omental Tregs and Type 2 Diabetes Risk. Obesity 2016, 24, 1274–1282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arner, E.; Westermark, P.O.; Spalding, K.L.; Britton, T.; Rydén, M.; Frisén, J.; Bernard, S.; Arner, P. Adipocyte Turnover: Relevance to Human Adipose Tissue Morphology. Diabetes 2010, 59, 105–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spalding, K.L.; Arner, E.; Westermark, P.O.; Bernard, S.; Buchholz, B.A.; Bergmann, O.; Blomqvist, L.; Hoffstedt, J.; Näslund, E.; Britton, T.; et al. Dynamics of Fat Cell Turnover in Humans. Nature 2008, 453, 783–787. [Google Scholar] [CrossRef]
- Kiess, W.; Petzold, S.; Töpfer, M.; Garten, A.; Blüher, S.; Kapellen, T.; Körner, A.; Kratzsch, J. Adipocytes and Adipose Tissue. Best Pract. Res. Clin. Endocrinol. Metab. 2008, 22, 135–153. [Google Scholar] [CrossRef]
- Poissonnet, C.M.; Burdi, A.R.; Bookstein, F.L. Growth and Development of Human Adipose Tissue during Early Gestation. Early Hum. Dev. 1983, 8, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Votino, C.; Verhoye, M.; Segers, V.; Cannie, M.; Bessieres, B.; Cos, T.; Lipombi, D.; Jani, J. Fetal Organ Weight Estimation by Postmortem High-Field Magnetic Resonance Imaging before 20 Weeks’ Gestation. Ultrasound Obstet. Gynecol. 2012, 39, 673–678. [Google Scholar] [CrossRef]
- Ali, A.T.; Hochfeld, W.E.; Myburgh, R.; Pepper, M.S. Adipocyte and Adipogenesis. Eur. J. Cell Biol. 2013, 92, 229–236. [Google Scholar] [CrossRef]
- Scheidl, T.B.; Brightwell, A.L.; Easson, S.H.; Thompson, J.A. Maternal Obesity and Programming of Metabolic Syndrome in the Offspring: Searching for Mechanisms in the Adipocyte Progenitor Pool. BMC Med. 2023, 21, 50. [Google Scholar] [CrossRef]
- Knittle, J.L.; Timmers, K.; Ginsberg-Fellner, F.; Brown, R.E.; Katz, D.P. The Growth of Adipose Tissue in Children and Adolescents. Cross-Sectional and Longitudinal Studies of Adipose Cell Number and Size. J. Clin. Investig. 1979, 63, 239–246. [Google Scholar] [CrossRef] [Green Version]
- Sakers, A.; De Siqueira, M.K.; Seale, P.; Villanueva, C.J. Adipose-Tissue Plasticity in Health and Disease. Cell 2022, 185, 419–446. [Google Scholar] [CrossRef] [PubMed]
- Meln, I.; Wolff, G.; Gajek, T.; Koddebusch, J.; Lerch, S.; Harbrecht, L.; Hong, W.; Bayindir-Buchhalter, I.; Krunic, D.; Augustin, H.G.; et al. Dietary Calories and Lipids Synergistically Shape Adipose Tissue Cellularity during Postnatal Growth. Mol. Metab. 2019, 24, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Landgraf, K.; Rockstroh, D.; Wagner, I.V.; Weise, S.; Tauscher, R.; Schwartze, J.T.; Löffler, D.; Bühligen, U.; Wojan, M.; Till, H.; et al. Evidence of Early Alterations in Adipose Tissue Biology and Function and Its Association with Obesity-Related Inflammation and Insulin Resistance in Children. Diabetes 2015, 64, 1249–1261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Efrat, M.; Tepper, S.; Birk, R.Z. From Fat Cell Biology to Public Health Preventive Strategies—Pinpointing the Critical Period for Obesity Prevention. J. Pediatr. Endocrinol. Metab. 2013, 26, 197–209. [Google Scholar] [CrossRef] [PubMed]
- Salans, L.B.; Horton, E.S.; Sims, E.A.H. Experimental Obesity in Man: Cellular Character of the Adipose Tissue. J. Clin. Investig. 1971, 50, 1005–1011. [Google Scholar] [CrossRef]
- Björntorp, P.; Sjöström, L. Number and Size of Adipose Tissue Fat Cells in Relation to Metabolism in Human Obesity. Metabolism 1971, 20, 703–713. [Google Scholar] [CrossRef]
- Vishvanath, L.; MacPherson, K.A.; Hepler, C.; Wang, Q.A.; Shao, M.; Spurgin, S.B.; Wang, M.Y.; Kusminski, C.M.; Morley, T.S.; Gupta, R.K. Pdgfrβ+ Mural Preadipocytes Contribute to Adipocyte Hyperplasia Induced by High-Fat-Diet Feeding and Prolonged Cold Exposure in Adult Mice. Cell Metab. 2016, 23, 350–359. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.A.; Tao, C.; Gupta, R.K.; Scherer, P.E. Tracking Adipogenesis during White Adipose Tissue Development, Expansion and Regeneration. Nat. Med. 2013, 19, 1338–1344. [Google Scholar] [CrossRef]
- Trayhurn, P. Hypoxia and Adipose Tissue Function and Dysfunction in Obesity. Physiol. Rev. 2013, 93, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Palmer, B.F.; Clegg, D.J. The Sexual Dimorphism of Obesity. Mol. Cell. Endocrinol. 2015, 402, 113–119. [Google Scholar] [CrossRef] [Green Version]
- Goossens, G.H.; Jocken, J.W.E.; Blaak, E.E. Sexual Dimorphism in Cardiometabolic Health: The Role of Adipose Tissue, Muscle and Liver. Nat. Rev. Endocrinol. 2021, 17, 47–66. [Google Scholar] [CrossRef] [PubMed]
- Schreiner, P.J.; Terry, J.G.; Evans, G.W.; Hinson, W.H.; Crouse, J.R.; Heiss, G. Sex-Specific Associations of Magnetic Resonance Imaging-Derived Intra-Abdominal and Subcutaneous Fat Areas with Conventional Anthropometric Indices: The Atherosclerosis Risk in Communities Study. Am. J. Epidemiol. 1996, 144, 335–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lissner, L.; Stevens, J.; Levitsky, D.; Rasmussen, K.; Strupp, B. Variation in Energy Intake during the Menstrual Cycle: Implications for Food-Intake Research. Am. J. Clin. Nutr. 1988, 48, 956–962. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Nedungadi, T.P.; Zhu, L.; Sobhani, N.; Irani, B.G.; Davis, K.E.; Zhang, X.; Zou, F.; Gent, L.M.; Hahner, L.D.; et al. Distinct Hypothalamic Neurons Mediate Estrogenic Effects on Energy Homeostasis and Reproduction. Cell Metab. 2011, 14, 453–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Musatov, S.; Chen, W.; Pfaff, D.W.; Mobbs, C.V.; Yang, X.-J.; Clegg, D.J.; Kaplitt, M.G.; Ogawa, S. Silencing of Estrogen Receptor α in the Ventromedial Nucleus of Hypothalamus Leads to Metabolic Syndrome. Proc. Natl. Acad. Sci. USA 2007, 104, 2501–2506. [Google Scholar] [CrossRef]
- Andersson, D.P.; Arner, E.; Hogling, D.E.; Rydén, M.; Arner, P. Abdominal Subcutaneous Adipose Tissue Cellularity in Men and Women. Int. J. Obes. 2017, 41, 1564–1569. [Google Scholar] [CrossRef]
- Ramirez, M.E.; McMurry, M.P.; Wiebke, G.A.; Felten, K.J.; Ren, K.; Meikle, A.W.; Iverius, P.-H. Evidence for Sex Steroid Inhibition of Lipoprotein Lipase in Men: Comparison of Abdominal and Femoral Adipose Tissue. Metabolism 1997, 46, 179–185. [Google Scholar] [CrossRef]
- Joe, A.W.B.; Yi, L.; Even, Y.; Vogl, A.W.; Rossi, F.M.V. Depot-Specific Differences in Adipogenic Progenitor Abundance and Proliferative Response to High-Fat Diet. Stem Cells 2009, 27, 2563–2570. [Google Scholar] [CrossRef]
- Hammarstedt, A.; Gogg, S.; Hedjazifar, S.; Nerstedt, A.; Smith, U. Impaired Adipogenesis and Dysfunctional Adipose Tissue in Human Hypertrophic Obesity. Physiol. Rev. 2018, 98, 1911–1941. [Google Scholar] [CrossRef] [Green Version]
- Kirkland, J.L.; Dobson, D.E. Preadipocyte Function and Aging: Links between Age-Related Changes in Cell Dynamics and Altered Fat Tissue Function. J. Am. Geriatr. Soc. 1997, 45, 959–967. [Google Scholar] [CrossRef]
- Karagiannides, I.; Tchkonia, T.; Dobson, D.E.; Steppan, C.M.; Cummins, P.; Chan, G.; Salvatori, K.; Hadzopoulou-Cladaras, M.; Kirkland, J.L. Altered Expression of C/EBP Family Members Results in Decreased Adipogenesis with Aging. Am. J. Physiol. -Regul. Integr. Comp. Physiol. 2001, 280, R1772–R1780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tchkonia, T.; Pirtskhalava, T.; Thomou, T.; Cartwright, M.J.; Wise, B.; Karagiannides, I.; Shpilman, A.; Lash, T.L.; Becherer, J.D.; Kirkland, J.L. Increased TNFα and CCAAT/Enhancer-Binding Protein Homologous Protein with Aging Predispose Preadipocytes to Resist Adipogenesis. Am. J. Physiol.-Endocrinol. Metab. 2007, 293, E1810–E1819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, L.; Ma, X.; Verma, N.K.; Wang, D.; Gavrilova, O.; Proia, R.L.; Finkel, T.; Mueller, E. Ablation of PPARγ in Subcutaneous Fat Exacerbates Age-Associated Obesity and Metabolic Decline. Aging Cell 2018, 17, e12721. [Google Scholar] [CrossRef] [PubMed]
- Ou, M.-Y.; Zhang, H.; Tan, P.-C.; Zhou, S.-B.; Li, Q.-F. Adipose Tissue Aging: Mechanisms and Therapeutic Implications. Cell Death Dis. 2022, 13, 300. [Google Scholar] [CrossRef]
- Hepler, C.; Shan, B.; Zhang, Q.; Henry, G.H.; Shao, M.; Vishvanath, L.; Ghaben, A.L.; Mobley, A.B.; Strand, D.; Hon, G.C.; et al. Identification of Functionally Distinct Fibro-Inflammatory and Adipogenic Stromal Subpopulations in Visceral Adipose Tissue of Adult Mice. eLife 2018, 7, e39636. [Google Scholar] [CrossRef] [PubMed]
- Iwayama, T.; Steele, C.; Yao, L.; Dozmorov, M.G.; Karamichos, D.; Wren, J.D.; Olson, L.E. PDGFRα Signaling Drives Adipose Tissue Fibrosis by Targeting Progenitor Cell Plasticity. Genes Dev. 2015, 29, 1106–1119. [Google Scholar] [CrossRef] [Green Version]
- Sun, K.; Gao, Z.; Kolonin, M.G. Transient Inflammatory Signaling Promotes Beige Adipogenesis. Sci. Signal. 2018, 11, eaat3192. [Google Scholar] [CrossRef]
- Sun, K.; Kusminski, C.M.; Scherer, P.E. Adipose Tissue Remodeling and Obesity. J. Clin. Investig. 2011, 121, 2094–2101. [Google Scholar] [CrossRef] [Green Version]
- Sepe, A.; Tchkonia, T.; Thomou, T.; Zamboni, M.; Kirkland, J.L. Aging and Regional Differences in Fat Cell Progenitors—A Mini-Review. Gerontology 2011, 57, 66–75. [Google Scholar] [CrossRef] [Green Version]
- Prins, J.B.; O’Rahilly, S. Regulation of Adipose Cell Number in Man. Clin. Sci. 1997, 92, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Berry, R.; Jeffery, E.; Rodeheffer, M.S. Weighing in on Adipocyte Precursors. Cell Metab. 2014, 19, 8–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sengenès, C.; Lolmède, K.; Zakaroff-Girard, A.; Busse, R.; Bouloumié, A. Preadipocytes in the Human Subcutaneous Adipose Tissue Display Distinct Features from the Adult Mesenchymal and Hematopoietic Stem Cells. J. Cell. Physiol. 2005, 205, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Rodeheffer, M.S.; Birsoy, K.; Friedman, J.M. Identification of White Adipocyte Progenitor Cells in Vivo. Cell 2008, 135, 240–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berry, R.; Rodeheffer, M.S. Characterization of the Adipocyte Cellular Lineage in Vivo. Nat. Cell Biol. 2013, 15, 302–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macdougald, O.A. Methods of Adipose Tissue Biology. In Methods in Enzymology, 1st ed.; Academic Press: Amsterdam, The Netherlands, 2014; ISBN 978-0-12-411619-1. [Google Scholar]
- Zenić, L.; Polančec, D.; Hudetz, D.; Jeleč, Z.; Rod, E.; Vidović, D.; Starešinić, M.; Sabalić, S.; Vrdoljak, T.; Petrović, T.; et al. Medicinal Signaling Cells Niche in Stromal Vascular Fraction from Lipoaspirate and Microfragmented Counterpart. Croat. Med. J. 2022, 63, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Frias, F.; Matos, B.; Jarnalo, M.; Freitas-Ribeiro, S.; Reis, R.L.; Pirraco, R.P.; Horta, R. Stromal Vascular Fraction Obtained from Subcutaneous Adipose Tissue: Ex-Obese and Older Population as Main Clinical Targets. J. Surg. Res. 2023, 283, 632–639. [Google Scholar] [CrossRef] [PubMed]
- Arner, P.; Spalding, K.L. Fat Cell Turnover in Humans. Biochem. Biophys. Res. Commun. 2010, 396, 101–104. [Google Scholar] [CrossRef]
- White, U.; Ravussin, E. Dynamics of Adipose Tissue Turnover in Human Metabolic Health and Disease. Diabetologia 2019, 62, 17–23. [Google Scholar] [CrossRef] [Green Version]
- Hauner, H.; Entenmann, G. Regional Variation of Adipose Differentiation in Cultured Stromal-Vascular Cells from the Abdominal and Femoral Adipose Tissue of Obese Women. Int. J. Obes. 1991, 15, 121–126. [Google Scholar]
- Tchoukalova, Y.D.; Koutsari, C.; Votruba, S.B.; Tchkonia, T.; Giorgadze, N.; Thomou, T.; Kirkland, J.L.; Jensen, M.D. Sex- and Depot-Dependent Differences in Adipogenesis in Normal-Weight Humans. Obesity 2010, 18, 1875–1880. [Google Scholar] [CrossRef]
- Tchkonia, T.; Giorgadze, N.; Pirtskhalava, T.; Tchoukalova, Y.; Karagiannides, I.; Forse, R.A.; DePonte, M.; Stevenson, M.; Guo, W.; Han, J.; et al. Fat Depot Origin Affects Adipogenesis in Primary Cultured and Cloned Human Preadipocytes. Am. J. Physiol. -Regul. Integr. Comp. Physiol. 2002, 282, R1286–R1296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duque, A.P.; Rodrigues Junior, L.F.; Mediano, M.F.F.; Tibiriça, E.; De Lorenzo, A. Emerging Concepts in Metabolically Healthy Obesity. Am. J. Cardiovasc. Dis. 2020, 10, 48–61. [Google Scholar] [PubMed]
- Manolopoulos, K.N.; Karpe, F.; Frayn, K.N. Gluteofemoral Body Fat as a Determinant of Metabolic Health. Int. J. Obes. 2010, 34, 949–959. [Google Scholar] [CrossRef] [Green Version]
- Johnson, P.R.; Hirsch, J. Cellularity of Adipose Depots in Six Strains of Genetically Obese Mice. J. Lipid Res. 1972, 13, 2–11. [Google Scholar] [CrossRef]
- Johnson, P.R.; Zucker, L.M.; Cruce, J.A.F.; Hirsch, J. Cellularity of Adipose Depots in the Genetically Obese Zucker Rat. J. Lipid Res. 1971, 12, 706–714. [Google Scholar] [CrossRef]
- Hirsch, J.; Batchelor, B. Adipose Tissue Cellularity in Human Obesity. Clin. Endocrinol. Metab. 1976, 5, 299–311. [Google Scholar] [CrossRef]
- Szabadfi, K.; Pinter, E.; Reglodi, D.; Gabriel, R. Neuropeptides, Trophic Factors, and Other Substances Providing Morphofunctional and Metabolic Protection in Experimental Models of Diabetic Retinopathy. In International Review of Cell and Molecular Biology; Elsevier: Amsterdam, The Netherlands, 2014; Volume 311, pp. 1–121. ISBN 978-0-12-800179-0. [Google Scholar]
- Jo, J.; Gavrilova, O.; Pack, S.; Jou, W.; Mullen, S.; Sumner, A.E.; Cushman, S.W.; Periwal, V. Hypertrophy and/or Hyperplasia: Dynamics of Adipose Tissue Growth. PLoS Comput. Biol. 2009, 5, e1000324. [Google Scholar] [CrossRef] [PubMed]
- Eckel-Mahan, K.; Ribas Latre, A.; Kolonin, M.G. Adipose Stromal Cell Expansion and Exhaustion: Mechanisms and Consequences. Cells 2020, 9, 863. [Google Scholar] [CrossRef]
- Cinti, S. Between Brown and White: Novel Aspects of Adipocyte Differentiation. Ann. Med. 2011, 43, 104–115. [Google Scholar] [CrossRef]
- Eto, H.; Suga, H.; Inoue, K.; Aoi, N.; Kato, H.; Araki, J.; Doi, K.; Higashino, T.; Yoshimura, K. Adipose Injury-Associated Factors Mitigate Hypoxia in Ischemic Tissues through Activation of Adipose-Derived Stem/Progenitor/Stromal Cells and Induction of Angiogenesis. Am. J. Pathol. 2011, 178, 2322–2332. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y. Adipose Tissue-Derived Progenitor Cells and Cancer. World J. Stem Cells 2010, 2, 103. [Google Scholar] [CrossRef]
- Strissel, K.J.; Stancheva, Z.; Miyoshi, H.; Perfield, J.W.; DeFuria, J.; Jick, Z.; Greenberg, A.S.; Obin, M.S. Adipocyte Death, Adipose Tissue Remodeling, and Obesity Complications. Diabetes 2007, 56, 2910–2918. [Google Scholar] [CrossRef] [Green Version]
- Nishimura, S.; Manabe, I.; Nagasaki, M.; Seo, K.; Yamashita, H.; Hosoya, Y.; Ohsugi, M.; Tobe, K.; Kadowaki, T.; Nagai, R.; et al. In Vivo Imaging in Mice Reveals Local Cell Dynamics and Inflammation in Obese Adipose Tissue. J. Clin. Investig. 2008, 118, JCI33328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weyer, C.; Foley, J.E.; Bogardus, C.; Tataranni, P.A.; Pratley, R.E. Enlarged Subcutaneous Abdominal Adipocyte Size, but Not Obesity Itself, Predicts Type II Diabetes Independent of Insulin Resistance. Diabetologia 2000, 43, 1498–1506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gustafson, B.; Hedjazifar, S.; Gogg, S.; Hammarstedt, A.; Smith, U. Insulin Resistance and Impaired Adipogenesis. Trends Endocrinol. Metab. 2015, 26, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Hardy, O.T.; Perugini, R.A.; Nicoloro, S.M.; Gallagher-Dorval, K.; Puri, V.; Straubhaar, J.; Czech, M.P. Body Mass Index-Independent Inflammation in Omental Adipose Tissue Associated with Insulin Resistance in Morbid Obesity. Surg. Obes. Relat. Dis. 2011, 7, 60–67. [Google Scholar] [CrossRef] [Green Version]
- Klöting, N.; Fasshauer, M.; Dietrich, A.; Kovacs, P.; Schön, M.R.; Kern, M.; Stumvoll, M.; Blüher, M. Insulin-Sensitive Obesity. Am. J. Physiol. Endocrinol. Metab. 2010, 299, E506–E515. [Google Scholar] [CrossRef]
- Shepherd, P.R.; Gnudi, L.; Tozzo, E.; Yang, H.; Leach, F.; Kahn, B.B. Adipose Cell Hyperplasia and Enhanced Glucose Disposal in Transgenic Mice Overexpressing GLUT4 Selectively in Adipose Tissue. J. Biol. Chem. 1993, 268, 22243–22246. [Google Scholar] [CrossRef]
- Khan, T.; Muise, E.S.; Iyengar, P.; Wang, Z.V.; Chandalia, M.; Abate, N.; Zhang, B.B.; Bonaldo, P.; Chua, S.; Scherer, P.E. Metabolic Dysregulation and Adipose Tissue Fibrosis: Role of Collagen VI. Mol. Cell Biol. 2009, 29, 1575–1591. [Google Scholar] [CrossRef] [Green Version]
- Gao, Z.; Daquinag, A.C.; Su, F.; Snyder, B.; Kolonin, M.G. PDGFRα/PDGFRβ Signaling Balance Modulates Progenitor Cell Differentiation into White and Beige Adipocytes. Development 2017, 145, dev155861. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.M.; Lun, M.; Wang, M.; Senyo, S.E.; Guillermier, C.; Patwari, P.; Steinhauser, M.L. Loss of White Adipose Hyperplastic Potential Is Associated with Enhanced Susceptibility to Insulin Resistance. Cell Metab. 2014, 20, 1049–1058. [Google Scholar] [CrossRef] [Green Version]
- Jeffery, E.; Wing, A.; Holtrup, B.; Sebo, Z.; Kaplan, J.L.; Saavedra-Peña, R.; Church, C.D.; Colman, L.; Berry, R.; Rodeheffer, M.S. The Adipose Tissue Microenvironment Regulates Depot-Specific Adipogenesis in Obesity. Cell Metab. 2016, 24, 142–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konieczny, S.F.; Emerson, C.P. 5-Azacytidine Induction of Stable Mesodermal Stem Cell Lineages from 10T1/2 Cells: Evidence for Regulatory Genes Controlling Determination. Cell 1984, 38, 791–800. [Google Scholar] [CrossRef] [PubMed]
- Bowers, R.R.; Kim, J.W.; Otto, T.C.; Lane, M.D. Stable Stem Cell Commitment to the Adipocyte Lineage by Inhibition of DNA Methylation: Role of the BMP-4 Gene. Proc. Natl. Acad. Sci. USA 2006, 103, 13022–13027. [Google Scholar] [CrossRef]
- Huang, H.; Song, T.-J.; Li, X.; Hu, L.; He, Q.; Liu, M.; Lane, M.D.; Tang, Q.-Q. BMP Signaling Pathway Is Required for Commitment of C3H10T1/2 Pluripotent Stem Cells to the Adipocyte Lineage. Proc. Natl. Acad. Sci. USA 2009, 106, 12670–12675. [Google Scholar] [CrossRef]
- Farmer, S.R. Transcriptional Control of Adipocyte Formation. Cell Metab. 2006, 4, 263–273. [Google Scholar] [CrossRef] [Green Version]
- Cawthorn, W.P.; Scheller, E.L.; MacDougald, O.A. Adipose Tissue Stem Cells Meet Preadipocyte Commitment: Going Back to the Future. J. Lipid Res. 2012, 53, 227–246. [Google Scholar] [CrossRef] [Green Version]
- Li, S.-N.; Wu, J.-F. TGF-β/SMAD Signaling Regulation of Mesenchymal Stem Cells in Adipocyte Commitment. Stem Cell Res. Ther. 2020, 11, 41. [Google Scholar] [CrossRef] [Green Version]
- Karastergiou, K.; Fried, S.K. Cellular Mechanisms Driving Sex Differences in Adipose Tissue Biology and Body Shape in Humans and Mouse Models. In Sex and Gender Factors Affecting Metabolic Homeostasis, Diabetes and Obesity; Mauvais-Jarvis, F., Ed.; Advances in Experimental Medicine and Biology; Springer International Publishing: Cham, Switzerland, 2017; Volume 1043, pp. 29–51. ISBN 978-3-319-70177-6. [Google Scholar]
- Jakab, J.; Miškić, B.; Mikšić, Š.; Juranić, B.; Ćosić, V.; Schwarz, D.; Včev, A. Adipogenesis as a Potential Anti-Obesity Target: A Review of Pharmacological Treatment and Natural Products. Diabetes Metab. Syndr. Obes. 2021, 14, 67–83. [Google Scholar] [CrossRef] [PubMed]
- Ghaben, A.L.; Scherer, P.E. Adipogenesis and Metabolic Health. Nat. Rev. Mol. Cell Biol. 2019, 20, 242–258. [Google Scholar] [CrossRef] [PubMed]
- Barilla, S.; Treuter, E.; Venteclef, N. Transcriptional and Epigenetic Control of Adipocyte Remodeling during Obesity. Obesity 2021, 29, 2013–2025. [Google Scholar] [CrossRef]
- Lefterova, M.I.; Lazar, M.A. New Developments in Adipogenesis. Trends Endocrinol. Metab. 2009, 20, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Rosen, E.D.; Walkey, C.J.; Puigserver, P.; Spiegelman, B.M. Transcriptional Regulation of Adipogenesis. Genes Dev. 2000, 14, 1293–1307. [Google Scholar] [CrossRef] [PubMed]
- Sarjeant, K.; Stephens, J.M. Adipogenesis. Cold Spring Harb. Perspect. Biol. 2012, 4, a008417. [Google Scholar] [CrossRef] [Green Version]
- Cifuentes, L.; Acosta, A. Homeostatic Regulation of Food Intake. Clin. Res. Hepatol. Gastroenterol. 2022, 46, 101794. [Google Scholar] [CrossRef] [PubMed]
- González-Casanova, J.E.; Pertuz-Cruz, S.L.; Caicedo-Ortega, N.H.; Rojas-Gomez, D.M. Adipogenesis Regulation and Endocrine Disruptors: Emerging Insights in Obesity. BioMed Res. Int. 2020, 2020, 7453786. [Google Scholar] [CrossRef] [PubMed]
- Feinle-Bisset, C.; Horowitz, M. Appetite and Satiety Control—Contribution of Gut Mechanisms. Nutrients 2021, 13, 3635. [Google Scholar] [CrossRef]
- Lee, Y.-H.; Petkova, A.P.; Mottillo, E.P.; Granneman, J.G. In Vivo Identification of Bipotential Adipocyte Progenitors Recruited by Β3-Adrenoceptor Activation and High-Fat Feeding. Cell Metab. 2012, 15, 480–491. [Google Scholar] [CrossRef] [Green Version]
- Khan, F.; Khan, H.; Khan, A.; Yamasaki, M.; Moustaid-Moussa, N.; Al-Harrasi, A.; Rahman, S.M. Autophagy in Adipogenesis: Molecular Mechanisms and Regulation by Bioactive Compounds. Biomed. Pharmacother. 2022, 155, 113715. [Google Scholar] [CrossRef]
- Newsholme, P.; Cruzat, V.; Arfuso, F.; Keane, K. Nutrient Regulation of Insulin Secretion and Action. J. Endocrinol. 2014, 221, R105–R120. [Google Scholar] [CrossRef]
- Nahum, N.; Forti, E.; Aksanov, O.; Birk, R. Insulin Regulates Bbs4 during Adipogenesis: Insulin Regulates BBS Genes Transcripts. IUBMB Life 2017, 69, 489–499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, H.J.; Park, J.; Lee, H.W.; Lee, Y.S.; Kim, J.B. Regulation of Adipocyte Differentiation and Insulin Action with Rapamycin. Biochem. Biophys. Res. Commun. 2004, 321, 942–948. [Google Scholar] [CrossRef] [PubMed]
- Christoffersen, C.T.; Tornqvist, H.; Vlahos, C.J.; Bucchini, D.; Jami, J.; De Meyts, P.; Joshi, R.L. Insulin and Insulin-like Growth Factor-I Receptor Mediated Differentiation of 3T3-F442A Cells into Adipocytes: Effect of PI 3-Kinase Inhibition. Biochem. Biophys. Res. Commun. 1998, 246, 426–430. [Google Scholar] [CrossRef] [PubMed]
- Sakaguchi, M.; Fujisaka, S.; Cai, W.; Winnay, J.N.; Konishi, M.; O’Neill, B.T.; Li, M.; García-Martín, R.; Takahashi, H.; Hu, J.; et al. Adipocyte Dynamics and Reversible Metabolic Syndrome in Mice with an Inducible Adipocyte-Specific Deletion of the Insulin Receptor. Cell Metab. 2017, 25, 448–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manna, P.; Jain, S.K. Obesity, Oxidative Stress, Adipose Tissue Dysfunction, and the Associated Health Risks: Causes and Therapeutic Strategies. Metab. Syndr. Relat. Disord. 2015, 13, 423–444. [Google Scholar] [CrossRef] [Green Version]
- Grohmann, M.; Sabin, M.; Holly, J.; Shield, J.; Crowne, E.; Stewart, C. Characterization of Differentiated Subcutaneous and Visceral Adipose Tissue from Children. J. Lipid Res. 2005, 46, 93–103. [Google Scholar] [CrossRef] [Green Version]
- Klöting, N.; Koch, L.; Wunderlich, T.; Kern, M.; Ruschke, K.; Krone, W.; Brüning, J.C.; Blüher, M. Autocrine IGF-1 Action in Adipocytes Controls Systemic IGF-1 Concentrations and Growth. Diabetes 2008, 57, 2074–2082. [Google Scholar] [CrossRef] [Green Version]
- Salvatori, R. Growth Hormone Deficiency in Patients with Obesity. Endocrine 2015, 49, 304–306. [Google Scholar] [CrossRef] [Green Version]
- Belfiore, A.; Frasca, F.; Pandini, G.; Sciacca, L.; Vigneri, R. Insulin Receptor Isoforms and Insulin Receptor/Insulin-like Growth Factor Receptor Hybrids in Physiology and Disease. Endocr. Rev. 2009, 30, 586–623. [Google Scholar] [CrossRef] [Green Version]
- Sherlala, R.A.; Kammerer, C.M.; Kuipers, A.L.; Wojczynski, M.K.; Ukraintseva, S.V.; Feitosa, M.F.; Mengel-From, J.; Zmuda, J.M.; Minster, R.L. Relationship Between Serum IGF-1 and BMI Differs by Age. J. Gerontol. Ser. A 2021, 76, 1303–1308. [Google Scholar] [CrossRef]
- Yamamoto, H.; Kato, Y. Relationship between Plasma Insulin-like Growth Factor I(IGF-I) Levels and Body Mass Index (BMI) in Adults. Endocr. J. 1993, 40, 41–45. [Google Scholar] [CrossRef] [Green Version]
- Hjelholt, A.; Høgild, M.; Bak, A.M.; Arlien-Søborg, M.C.; Bæk, A.; Jessen, N.; Richelsen, B.; Pedersen, S.B.; Møller, N.; Lunde Jørgensen, J.O. Growth Hormone and Obesity. Endocrinol. Metab. Clin. N. Am. 2020, 49, 239–250. [Google Scholar] [CrossRef] [PubMed]
- Serra, M.C.; Ryan, A.S.; Sorkin, J.D.; Favor, K.H.; Goldberg, A.P. High Adipose LPL Activity and Adipocyte Hypertrophy Reduce Visceral Fat and Metabolic Risk in Obese, Older Women: Adipocyte Hypertrophy and Metabolism. Obesity 2015, 23, 602–607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rambold, A.S.; Cohen, S.; Lippincott-Schwartz, J. Fatty Acid Trafficking in Starved Cells: Regulation by Lipid Droplet Lipolysis, Autophagy, and Mitochondrial Fusion Dynamics. Dev. Cell 2015, 32, 678–692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gustafson, B.; Gogg, S.; Hedjazifar, S.; Jenndahl, L.; Hammarstedt, A.; Smith, U. Inflammation and Impaired Adipogenesis in Hypertrophic Obesity in Man. Am. J. Physiol.-Endocrinol. Metab. 2009, 297, E999–E1003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laurencikiene, J.; Skurk, T.; Kulyté, A.; Hedén, P.; Åström, G.; Sjölin, E.; Rydén, M.; Hauner, H.; Arner, P. Regulation of Lipolysis in Small and Large Fat Cells of the Same Subject. J. Clin. Endocrinol. Metab. 2011, 96, E2045–E2049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyer, L.K.; Ciaraldi, T.P.; Henry, R.R.; Wittgrove, A.C.; Phillips, S.A. Adipose Tissue Depot and Cell Size Dependency of Adiponectin Synthesis and Secretion in Human Obesity. Adipocyte 2013, 2, 217–226. [Google Scholar] [CrossRef] [Green Version]
- Rydén, M.; Andersson, D.P.; Bergström, I.B.; Arner, P. Adipose Tissue and Metabolic Alterations: Regional Differences in Fat Cell Size and Number Matter, But Differently: A Cross-Sectional Study. J. Clin. Endocrinol. Metab. 2014, 99, E1870–E1876. [Google Scholar] [CrossRef] [Green Version]
- Tandon, P.; Wafer, R.; Minchin, J.E.N. Adipose Morphology and Metabolic Disease. J. Exp. Biol. 2018, 221, jeb164970. [Google Scholar] [CrossRef] [Green Version]
- Klöting, N.; Blüher, M. Adipocyte Dysfunction, Inflammation and Metabolic Syndrome. Rev. Endocr. Metab. Disord. 2014, 15, 277–287. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Hofker, M.; Wijmenga, C. Apple or Pear: Size and Shape Matter. Cell Metab. 2015, 21, 507–508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, P.-C.; Hsieh, P.-S. The Role of Adipocyte Hypertrophy and Hypoxia in the Development of Obesity-Associated Adipose Tissue Inflammation and Insulin Resistance. In Adiposity–Omics and Molecular Understanding; Gordeladze, J.O., Ed.; InTech: London, UK, 2017; ISBN 978-953-51-2997-4. [Google Scholar]
- Sakai, N.S.; Taylor, S.A.; Chouhan, M.D. Obesity, Metabolic Disease and the Pancreas—Quantitative Imaging of Pancreatic Fat. Br. J. Radiol. 2018, 91, 20180267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajjo, T.I.; Harteneck, D.A.; Jensen, M.D. Direct Free Fatty Acid Storage in Different Sized Adipocytes from the Same Depot: FFA Storage in Different Size Fat Cells. Obesity 2014, 22, 1275–1279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boden, G. Obesity, Insulin Resistance and Free Fatty Acids. Curr. Opin. Endocrinol. Diabetes Obes. 2011, 18, 139–143. [Google Scholar] [CrossRef] [Green Version]
- Symons, J.D.; Abel, E.D. Lipotoxicity Contributes to Endothelial Dysfunction: A Focus on the Contribution from Ceramide. Rev. Endocr. Metab. Disord. 2013, 14, 59–68. [Google Scholar] [CrossRef] [Green Version]
- van Herpen, N.A.; Schrauwen-Hinderling, V.B. Lipid Accumulation in Non-Adipose Tissue and Lipotoxicity. Physiol. Behav. 2008, 94, 231–241. [Google Scholar] [CrossRef]
- Crandall, D.L.; Busler, D.E.; Novak, T.J.; Weber, R.V.; Kral, J.G. Identification of Estrogen Receptor β RNA in Human Breast and Abdominal Subcutaneous Adipose Tissue. Biochem. Biophys. Res. Commun. 1998, 248, 523–526. [Google Scholar] [CrossRef]
- Tchernof, A.; Bélanger, C.; Morisset, A.-S.; Richard, C.; Mailloux, J.; Laberge, P.; Dupont, P. Regional Differences in Adipose Tissue Metabolism in Women. Diabetes 2006, 55, 1353–1360. [Google Scholar] [CrossRef]
- Boivin, A.; Brochu, G.; Marceau, S.; Marceau, P.; Hould, F.-S.; Tchernof, A. Regional Differences in Adipose Tissue Metabolism in Obese Men. Metabolism 2007, 56, 533–540. [Google Scholar] [CrossRef]
- Laforest, S.; Labrecque, J.; Michaud, A.; Cianflone, K.; Tchernof, A. Adipocyte Size as a Determinant of Metabolic Disease and Adipose Tissue Dysfunction. Crit. Rev. Clin. Lab. Sci. 2015, 52, 301–313. [Google Scholar] [CrossRef]
- Stubbins, R.E.; Najjar, K.; Holcomb, V.B.; Hong, J.; Núñez, N.P. Oestrogen Alters Adipocyte Biology and Protects Female Mice from Adipocyte Inflammation and Insulin Resistance. Diabetes Obes. Metab. 2012, 14, 58–66. [Google Scholar] [CrossRef] [Green Version]
- Tontonoz, P.; Hu, E.; Graves, R.A.; Budavari, A.I.; Spiegelman, B.M. MPPAR Gamma 2: Tissue-Specific Regulator of an Adipocyte Enhancer. Genes Dev. 1994, 8, 1224–1234. [Google Scholar] [CrossRef] [Green Version]
- Rosen, E.D.; Spiegelman, B.M. What We Talk About When We Talk About Fat. Cell 2014, 156, 20–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmadian, M.; Suh, J.M.; Hah, N.; Liddle, C.; Atkins, A.R.; Downes, M.; Evans, R.M. PPARγ Signaling and Metabolism: The Good, the Bad and the Future. Nat. Med. 2013, 19, 557–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubota, N.; Terauchi, Y.; Miki, H.; Tamemoto, H.; Yamauchi, T.; Komeda, K.; Satoh, S.; Nakano, R.; Ishii, C.; Sugiyama, T.; et al. PPARγ Mediates High-Fat Diet–Induced Adipocyte Hypertrophy and Insulin Resistance. Mol. Cell 1999, 4, 597–609. [Google Scholar] [CrossRef]
- Yano, M.; Matsumura, T.; Senokuchi, T.; Ishii, N.; Murata, Y.; Taketa, K.; Motoshima, H.; Taguchi, T.; Sonoda, K.; Kukidome, D.; et al. Statins Activate Peroxisome Proliferator-Activated Receptor γ Through Extracellular Signal-Regulated Kinase 1/2 and P38 Mitogen-Activated Protein Kinase–Dependent Cyclooxygenase-2 Expression in Macrophages. Circ. Res. 2007, 100, 1442–1451. [Google Scholar] [CrossRef]
- Yki-Järvinen, H. Thiazolidinediones. N. Engl. J. Med. 2004, 351, 1106–1118. [Google Scholar] [CrossRef] [PubMed]
- Machinal-Quélin, F.; Dieudonné, M.N.; Leneveu, M.C.; Pecquery, R.; Giudicelli, Y. Proadipogenic Effect of Leptin on Rat Preadipocytes in Vitro: Activation of MAPK and STAT3 Signaling Pathways. Am. J. Physiol. -Cell Physiol. 2002, 282, C853–C863. [Google Scholar] [CrossRef] [Green Version]
- Palhinha, L.; Liechocki, S.; Hottz, E.D.; Pereira, J.A.S.; de Almeida, C.J.; Moraes-Vieira, P.M.M.; Bozza, P.T.; Maya-Monteiro, C.M. Leptin Induces Proadipogenic and Proinflammatory Signaling in Adipocytes. Front. Endocrinol. 2019, 10, 841. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Sánchez, N. There and Back Again: Leptin Actions in White Adipose Tissue. Int. J. Mol. Sci. 2020, 21, 6039. [Google Scholar] [CrossRef]
- Wagoner, B.; Hausman, D.B.; Harris, R.B.S. Direct and Indirect Effects of Leptin on Preadipocyte Proliferation and Differentiation. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2006, 290, R1557–R1564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbasi, A.; Moghadam, A.A.; Kahrarian, Z.; Abbsavaran, R.; Yari, K.; Alizadeh, E. Molecular Effects of Leptin on Peroxisome Proliferator Activated Receptor Gamma (PPAR-Î3) MRNA Expression in Rat’s Adipose and Liver Tissue. Cell Mol. Biol. 2017, 63, 89–93. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Jia, X.; Qin, J.; Lu, C.; Zhu, H.; Li, X.; Han, X.; Sun, X. Leptin Inhibits PPARγ Gene Expression in Hepatic Stellate Cells in the Mouse Model of Liver Damage. Mol. Cell. Endocrinol. 2010, 323, 193–200. [Google Scholar] [CrossRef]
- Buettner, C.; Muse, E.D.; Cheng, A.; Chen, L.; Scherer, T.; Pocai, A.; Su, K.; Cheng, B.; Li, X.; Harvey-White, J.; et al. Leptin Controls Adipose Tissue Lipogenesis via Central, STAT3–Independent Mechanisms. Nat. Med. 2008, 14, 667–675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loos, R.J.F.; Yeo, G.S.H. The Genetics of Obesity: From Discovery to Biology. Nat. Rev. Genet. 2022, 23, 120–133. [Google Scholar] [CrossRef]
- Golden, A.; Kessler, C. Obesity and Genetics. J. Am. Assoc. Nurse Pract. 2020, 32, 493–496. [Google Scholar] [CrossRef] [PubMed]
- Bouchard, C. Genetics of Obesity: What We Have Learned Over Decades of Research. Obesity 2021, 29, 802–820. [Google Scholar] [CrossRef]
- Bouchard, C.; Tremblay, A.; Després, J.-P.; Nadeau, A.; Lupien, P.J.; Thériault, G.; Dussault, J.; Moorjani, S.; Pinault, S.; Fournier, G. The Response to Long-Term Overfeeding in Identical Twins. N. Engl. J. Med. 1990, 322, 1477–1482. [Google Scholar] [CrossRef]
- Sun, C.; Kovacs, P.; Guiu-Jurado, E. Genetics of Body Fat Distribution: Comparative Analyses in Populations with European, Asian and African Ancestries. Genes 2021, 12, 841. [Google Scholar] [CrossRef] [PubMed]
- Heinonen, S.; Saarinen, L.; Naukkarinen, J.; Rodríguez, A.; Frühbeck, G.; Hakkarainen, A.; Lundbom, J.; Lundbom, N.; Vuolteenaho, K.; Moilanen, E.; et al. Adipocyte Morphology and Implications for Metabolic Derangements in Acquired Obesity. Int. J. Obes. 2014, 38, 1423–1431. [Google Scholar] [CrossRef] [PubMed]
- Schleinitz, D.; Böttcher, Y.; Blüher, M.; Kovacs, P. The Genetics of Fat Distribution. Diabetologia 2014, 57, 1276–1286. [Google Scholar] [CrossRef]
- Wang, J.; Thornton, J.C.; Russell, M.; Burastero, S.; Heymsfield, S.; Pierson, R.N. Asians Have Lower Body Mass Index (BMI) but Higher Percent Body Fat than Do Whites: Comparisons of Anthropometric Measurements. Am. J. Clin. Nutr. 1994, 60, 23–28. [Google Scholar] [CrossRef]
- Deurenberg-Yap, M.; Schmidt, G.; van Staveren, W.A.; Deurenberg, P. The Paradox of Low Body Mass Index and High Body Fat Percentage among Chinese, Malays and Indians in Singapore. Int. J. Obes. Relat. Metab. Disord. 2000, 24, 1011–1017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deurenberg, P.; Yap, M.; van Staveren, W. Body Mass Index and Percent Body Fat: A Meta Analysis among Different Ethnic Groups. Int. J. Obes. 1998, 22, 1164–1171. [Google Scholar] [CrossRef] [Green Version]
- Yoon, K.-H.; Lee, J.-H.; Kim, J.-W.; Cho, J.H.; Choi, Y.-H.; Ko, S.-H.; Zimmet, P.; Son, H.-Y. Epidemic Obesity and Type 2 Diabetes in Asia. Lancet 2006, 368, 1681–1688. [Google Scholar] [CrossRef]
- Pulit, S.L.; Stoneman, C.; Morris, A.P.; Wood, A.R.; Glastonbury, C.A.; Tyrrell, J.; Yengo, L.; Ferreira, T.; Marouli, E.; Ji, Y.; et al. Meta-Analysis of Genome-Wide Association Studies for Body Fat Distribution in 694 649 Individuals of European Ancestry. Hum. Mol. Genet. 2019, 28, 166–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rask-Andersen, M.; Karlsson, T.; Ek, W.E.; Johansson, Å. Genome-Wide Association Study of Body Fat Distribution Identifies Adiposity Loci and Sex-Specific Genetic Effects. Nat. Commun. 2019, 10, 339. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Qi, L. Gene–Environment Interactions on Body Fat Distribution. Int. J. Mol. Sci. 2019, 20, 3690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malis, C.; Rasmussen, E.L.; Poulsen, P.; Petersen, I.; Christensen, K.; Beck-Nielsen, H.; Astrup, A.; Vaag, A.A. Total and Regional Fat Distribution Is Strongly Influenced by Genetic Factors in Young and Elderly Twins. Obes. Res. 2005, 13, 2139–2145. [Google Scholar] [CrossRef]
- Bouchard, C.; Tremblay, A. Genetic Influences on the Response of Body Fat and Fat Distribution to Positive and Negative Energy Balances in Human Identical Twins. J. Nutr. 1997, 127, 943S–947S. [Google Scholar] [CrossRef] [Green Version]
- Parikh, H.; Groop, L. Candidate Genes for Type 2 Diabetes. Rev. Endocr. Metab. Disord. 2004, 5, 151–176. [Google Scholar] [CrossRef]
- Ek, J.; Urhammer, S.A.; Sørensen, T.I.A.; Andersen, T.; Auwerx, J.; Pedersen, O. Homozygosity of the Pro12Ala Variant of the Peroxisome Proliferation-Activated Receptor-Γ2 (PPAR-Γ2): Divergent Modulating Effects on Body Mass Index in Obese and Lean Caucasian Men. Diabetologia 1999, 42, 892–895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, K.S.; Choi, S.M.; Shin, S.U.; Yang, H.S.; Yoon, Y. Effects of Peroxisome Proliferator-Activated Receptor-Γ2 Pro12Ala Polymorphism on Body Fat Distribution in Female Korean Subjects. Metabolism 2004, 53, 1538–1543. [Google Scholar] [CrossRef] [PubMed]
- Ristow, M.; Müller-Wieland, D.; Pfeiffer, A.; Krone, W.; Kahn, C.R. Obesity Associated with a Mutation in a Genetic Regulator of Adipocyte Differentiation. N. Engl. J. Med. 1998, 339, 953–959. [Google Scholar] [CrossRef]
- Clement, K.; Hercberg, S.; Passinge, B.; Galan, P.; Varroud-Vial, M.; Shuldiner, A.; Beamer, B.; Charpentier, G.; Guy-Grand, B.; Froguel, P.; et al. The Pro115Gln and Pro12Ala PPAR Gamma Gene Mutations in Obesity and Type 2 Diabetes. Int. J. Obes. 2000, 24, 391–393. [Google Scholar] [CrossRef] [Green Version]
- Hamer, O.; Forstner, D.; Ottinger, I.; Ristow, M.; Bollheimer, L.; Schölmerich, J.; Palitzsch, K. The Pro115Gln Polymorphism within the PPAR Γ2 Gene Has No Epidemiological Impact on Morbid Obesity. Exp. Clin. Endocrinol. Diabetes 2002, 110, 230–234. [Google Scholar] [CrossRef] [PubMed]
- Meirhaeghe, A. A Genetic Polymorphism of the Peroxisome Proliferator-Activated Receptor Gamma Gene Influences Plasma Leptin Levels in Obese Humans. Hum. Mol. Genet. 1998, 7, 435–440. [Google Scholar] [CrossRef] [Green Version]
- Valve, R.; Sivenius, K.; Miettinen, R.; Pihlajamäki, J.; Rissanen, A.; Deeb, S.S.; Auwerx, J.; Uusitupa, M.; Laakso, M. Two Polymorphisms in the Peroxisome Proliferator-Activated Receptor-γ Gene Are Associated with Severe Overweight among Obese Women. J. Clin. Endocrinol. Metab. 1999, 84, 3708–3712. [Google Scholar] [CrossRef]
- Hinney, A.; Giuranna, J. Polygenic Obesity. In Pediatric Obesity; Freemark, M.S., Ed.; Contemporary Endocrinology; Springer International Publishing: Cham, Switzerland, 2018; pp. 183–202. ISBN 978-3-319-68191-7. [Google Scholar]
- Baxter, J.; Armijo, P.R.; Flores, L.; Krause, C.; Samreen, S.; Tanner, T. Updates on Monogenic Obesity in a Multifactorial Disease. Obes. Surg. 2019, 29, 4077–4083. [Google Scholar] [CrossRef]
- Duis, J.; Butler, M.G. Monogenic and Syndromic Causes of Obesity. In Management of Prader-Willi Syndrome; Butler, M.G., Lee, P.D.K., Whitman, B.Y., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 93–120. ISBN 978-3-030-98170-9. [Google Scholar]
- Ramachandrappa, S.; Raimondo, A.; Cali, A.M.G.; Keogh, J.M.; Henning, E.; Saeed, S.; Thompson, A.; Garg, S.; Bochukova, E.G.; Brage, S.; et al. Rare Variants in Single-Minded 1 (SIM1) Are Associated with Severe Obesity. J. Clin. Investig. 2013, 123, 3042–3050. [Google Scholar] [CrossRef] [Green Version]
- Saeed, S.; Bonnefond, A.; Tamanini, F.; Mirza, M.U.; Manzoor, J.; Janjua, Q.M.; Din, S.M.; Gaitan, J.; Milochau, A.; Durand, E.; et al. Loss-of-Function Mutations in ADCY3 Cause Monogenic Severe Obesity. Nat. Genet. 2018, 50, 175–179. [Google Scholar] [CrossRef]
- Maes, H.H.; Neale, M.C.; Eaves, L.J. Genetic and Environmental Factors in Relative Body Weight and Human Adiposity. Behav. Genet. 1997, 27, 325–351. [Google Scholar] [CrossRef] [PubMed]
- Elks, C.E.; den Hoed, M.; Zhao, J.H.; Sharp, S.J.; Wareham, N.J.; Loos, R.J.F.; Ong, K.K. Variability in the Heritability of Body Mass Index: A Systematic Review and Meta-Regression. Front. Endocrin. 2012, 3, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koeppen-Schomerus, G.; Wardle, J.; Plomin, R. A Genetic Analysis of Weight and Overweight in 4-Year-Old Twin Pairs. Int. J. Obes. 2001, 25, 838–844. [Google Scholar] [CrossRef] [Green Version]
- Stunkard, A.J.; Harris, J.R.; Pedersen, N.L.; McClearn, G.E. The Body-Mass Index of Twins Who Have Been Reared Apart. N. Engl. J. Med. 1990, 322, 1483–1487. [Google Scholar] [CrossRef] [PubMed]
- Lyon, H.N.; Hirschhorn, J.N. Genetics of Common Forms of Obesity: A Brief Overview. Am. J. Clin. Nutr. 2005, 82, 215S–217S. [Google Scholar] [CrossRef]
- Chami, N.; Preuss, M.; Walker, R.W.; Moscati, A.; Loos, R.J.F. The Role of Polygenic Susceptibility to Obesity among Carriers of Pathogenic Mutations in MC4R in the UK Biobank Population. PLoS Med. 2020, 17, e1003196. [Google Scholar] [CrossRef]
- Goodarzi, M.O. Genetics of Obesity: What Genetic Association Studies Have Taught Us about the Biology of Obesity and Its Complications. Lancet Diabetes Endocrinol. 2018, 6, 223–236. [Google Scholar] [CrossRef] [PubMed]
- Yengo, L.; Sidorenko, J.; Kemper, K.E.; Zheng, Z.; Wood, A.R.; Weedon, M.N.; Frayling, T.M.; Hirschhorn, J.; Yang, J.; Visscher, P.M.; et al. Meta-Analysis of Genome-Wide Association Studies for Height and Body Mass Index in ∼700000 Individuals of European Ancestry. Hum. Mol. Genet. 2018, 27, 3641–3649. [Google Scholar] [CrossRef]
- Locke, A.E.; Kahali, B.; Berndt, S.I.; Justice, A.E.; Pers, T.H.; Day, F.R.; Powell, C.; Vedantam, S.; Buchkovich, M.L.; Yang, J.; et al. Genetic Studies of Body Mass Index Yield New Insights for Obesity Biology. Nature 2015, 518, 197–206. [Google Scholar] [CrossRef] [Green Version]
- Kaur, Y.; de Souza, R.J.; Gibson, W.T.; Meyre, D. A Systematic Review of Genetic Syndromes with Obesity: Genetic Syndromes with Obesity. Obes. Rev. 2017, 18, 603–634. [Google Scholar] [CrossRef]
- Serra-Juhé, C.; Martos-Moreno, G.Á.; Bou de Pieri, F.; Flores, R.; Chowen, J.A.; Pérez-Jurado, L.A.; Argente, J. Heterozygous Rare Genetic Variants in Non-Syndromic Early-Onset Obesity. Int. J. Obes. 2020, 44, 830–841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Z.; Tao, Y.-X. Mutations in Melanocortin-3 Receptor Gene and Human Obesity. In Progress in Molecular Biology and Translational Science; Elsevier: Amsterdam, The Netherlands, 2016; Volume 140, pp. 97–129. ISBN 978-0-12-804615-9. [Google Scholar]
- Baldini, G.; Phelan, K.D. The Melanocortin Pathway and Control of Appetite-Progress and Therapeutic Implications. J. Endocrinol. 2019, 241, R1–R33. [Google Scholar] [CrossRef] [PubMed]
- Farooqi, I.S.; O’Rahilly, S. Monogenic Obesity in Humans. Annu. Rev. Med. 2005, 56, 443–458. [Google Scholar] [CrossRef] [PubMed]
- van der Klaauw, A.A.; Farooqi, I.S. The Hunger Genes: Pathways to Obesity. Cell 2015, 161, 119–132. [Google Scholar] [CrossRef] [Green Version]
- Clément, K.; Mosbah, H.; Poitou, C. Rare Genetic Forms of Obesity: From Gene to Therapy. Physiol. Behav. 2020, 227, 113134. [Google Scholar] [CrossRef]
- Lubrano-Berthelier, C.; Dubern, B.; Lacorte, J.-M.; Picard, F.; Shapiro, A.; Zhang, S.; Bertrais, S.; Hercberg, S.; Basdevant, A.; Clement, K.; et al. Melanocortin 4 Receptor Mutations in a Large Cohort of Severely Obese Adults: Prevalence, Functional Classification, Genotype-Phenotype Relationship, and Lack of Association with Binge Eating. J. Clin. Endocrinol. Metab. 2006, 91, 1811–1818. [Google Scholar] [CrossRef] [Green Version]
- Vaisse, C.; Clement, K.; Durand, E.; Hercberg, S.; Guy-Grand, B.; Froguel, P. Melanocortin-4 Receptor Mutations Are a Frequent and Heterogeneous Cause of Morbid Obesity. J. Clin. Investig. 2000, 106, 253–262. [Google Scholar] [CrossRef] [Green Version]
- Vaisse, C.; Clement, K.; Guy-Grand, B.; Froguel, P. A Frameshift Mutation in Human MC4R Is Associated with a Dominant Form of Obesity. Nat. Genet. 1998, 20, 113–114. [Google Scholar] [CrossRef]
- Gantz, I.; Miwa, H.; Konda, Y.; Shimoto, Y.; Tashiro, T.; Watson, S.J.; DelValle, J.; Yamada, T. Molecular Cloning, Expression, and Gene Localization of a Fourth Melanocortin Receptor. J. Biol. Chem. 1993, 268, 15174–15179. [Google Scholar] [CrossRef]
- Butler, A.A.; Marks, D.L.; Fan, W.; Kuhn, C.M.; Bartolome, M.; Cone, R.D. Melanocortin-4 Receptor Is Required for Acute Homeostatic Responses to Increased Dietary Fat. Nat. Neurosci. 2001, 4, 605–611. [Google Scholar] [CrossRef] [PubMed]
- Krashes, M.J.; Lowell, B.B.; Garfield, A.S. Melanocortin-4 Receptor–Regulated Energy Homeostasis. Nat. Neurosci. 2016, 19, 206–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huszar, D.; Lynch, C.A.; Fairchild-Huntress, V.; Dunmore, J.H.; Fang, Q.; Berkemeier, L.R.; Gu, W.; Kesterson, R.A.; Boston, B.A.; Cone, R.D.; et al. Targeted Disruption of the Melanocortin-4 Receptor Results in Obesity in Mice. Cell 1997, 88, 131–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, B.P.; Vong, L.; Olson, D.P.; Koda, S.; Krashes, M.J.; Ye, C.; Yang, Z.; Fuller, P.M.; Elmquist, J.K.; Lowell, B.B. MC4R-Expressing Glutamatergic Neurons in the Paraventricular Hypothalamus Regulate Feeding and Are Synaptically Connected to the Parabrachial Nucleus. Proc. Natl. Acad. Sci. USA 2014, 111, 13193–13198. [Google Scholar] [CrossRef]
- Bihan, J.L.B.-L.; Poitou-Bernert, C.; Karsenty, A.; Pelloux, V.; Lacorte, J.M.; Tounian, P.; Oppert, J.M.; Clement, K.; Dubern, B. Variants in Genes of the Leptin / Melanocortin Pathway Are Involved in 3% of Cases of Early-Onset Severe Obesity. Endocr. Abstr. 2019, 62, GP132. [Google Scholar] [CrossRef]
- Markham, A. Setmelanotide: First Approval. Drugs 2021, 81, 397–403. [Google Scholar] [CrossRef]
- Hammad, M.M.; Abu-Farha, M.; Hebbar, P.; Cherian, P.; Al Khairi, I.; Melhem, M.; Alkayal, F.; Alsmadi, O.; Thanaraj, T.A.; Al-Mulla, F.; et al. MC4R Variant Rs17782313 Associates with Increased Levels of DNAJC27, Ghrelin, and Visfatin and Correlates with Obesity and Hypertension in a Kuwaiti Cohort. Front. Endocrinol. 2020, 11, 437. [Google Scholar] [CrossRef]
- Rahati, S.; Qorbani, M.; Naghavi, A.; Pishva, H. Association and Interaction of the MC4R Rs17782313 Polymorphism with Plasma Ghrelin, GLP-1, Cortisol, Food Intake and Eating Behaviors in Overweight/Obese Iranian Adults. BMC Endocr. Disord. 2022, 22, 234. [Google Scholar] [CrossRef]
- Farooqi, I.S. Monogenic Human Obesity Syndromes. Handb. Clin. Neurol. 2021, 181, 301–310. [Google Scholar] [CrossRef]
- López-Rodríguez, G.; Estrada-Neria, A.; Suárez-Diéguez, T.; Tejero, M.E.; Fernández, J.C.; Galván, M. Common Polymorphisms in MC4R and FTO Genes Are Associated with BMI and Metabolic Indicators in Mexican Children: Differences by Sex and Genetic Ancestry. Gene 2020, 754, 144840. [Google Scholar] [CrossRef]
- Maculewicz, E.; Leońska-Duniec, A.; Mastalerz, A.; Szarska, E.; Garbacz, A.; Lepionka, T.; Łakomy, R.; Anyżewska, A.; Bertrandt, J. The Influence of FTO, FABP2, LEP, LEPR, and MC4R Genes on Obesity Parameters in Physically Active Caucasian Men. Int. J. Environ. Res. Public Health 2022, 19, 6030. [Google Scholar] [CrossRef] [PubMed]
- Moazzam-Jazi, M.; Sadat Zahedi, A.; Akbarzadeh, M.; Azizi, F.; Daneshpour, M.S. Diverse Effect of MC4R Risk Alleles on Obesity-Related Traits over a Lifetime: Evidence from a Well-Designed Cohort Study. Gene 2022, 807, 145950. [Google Scholar] [CrossRef] [PubMed]
- Wei, B.-L.; Yin, R.-X.; Liu, C.-X.; Deng, G.-X.; Guan, Y.-Z.; Zheng, P.-F. The MC4R SNPs, Their Haplotypes and Gene-Environment Interactions on the Risk of Obesity. Mol. Med. 2020, 26, 77. [Google Scholar] [CrossRef]
- Kring, S.I.I.; Holst, C.; Toubro, S.; Astrup, A.; Hansen, T.; Pedersen, O.; Sørensen, T.I.A. Common Variants near MC4R in Relation to Body Fat, Body Fat Distribution, Metabolic Traits and Energy Expenditure. Int. J. Obes. 2010, 34, 182–189. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.H.A. The Common Gene MC4R Rs17782313 Polymorphism Associated with Obesity: A Meta-Analysis. Hum. Gene 2022, 33, 201035. [Google Scholar] [CrossRef]
- Xi, B.; Chandak, G.R.; Shen, Y.; Wang, Q.; Zhou, D. Association between Common Polymorphism near the MC4R Gene and Obesity Risk: A Systematic Review and Meta-Analysis. PLoS ONE 2012, 7, e45731. [Google Scholar] [CrossRef]
- AGEN-T2D Consortium; Xi, B.; Takeuchi, F.; Chandak, G.R.; Kato, N.; Pan, H.W.; Zhou, D.H.; Pan, H.Y.; Mi, J. Common Polymorphism near the MC4R Gene Is Associated with Type 2 Diabetes: Data from a Meta-Analysis of 123,373 Individuals. Diabetologia 2012, 55, 2660–2666. [Google Scholar] [CrossRef]
- Qi, L.; Kraft, P.; Hunter, D.J.; Hu, F.B. The Common Obesity Variant near MC4R Gene Is Associated with Higher Intakes of Total Energy and Dietary Fat, Weight Change and Diabetes Risk in Women. Hum. Mol. Genet. 2008, 17, 3502–3508. [Google Scholar] [CrossRef] [Green Version]
- Khalilitehrani, A.; Qorbani, M.; Hosseini, S.; Pishva, H. The Association of MC4R Rs17782313 Polymorphism with Dietary Intake in Iranian Adults. Gene 2015, 563, 125–129. [Google Scholar] [CrossRef]
- Walley, A.J.; Asher, J.E.; Froguel, P. The Genetic Contribution to Non-Syndromic Human Obesity. Nat. Rev. Genet. 2009, 10, 431–442. [Google Scholar] [CrossRef]
- Sohn, Y.B. Genetic Obesity: An Update with Emerging Therapeutic Approaches. Ann. Pediatr. Endocrinol. Metab. 2022, 27, 169–175. [Google Scholar] [CrossRef]
- Goldstone, A.P. Prader-Willi Syndrome: Advances in Genetics, Pathophysiology and Treatment. Trends Endocrinol. Metab. 2004, 15, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Lloret-Linares, C.; Faucher, P.; Coupaye, M.; Alili, R.; Green, A.; Basdevant, A.; Clément, K.; Poitou, C. Comparison of Body Composition, Basal Metabolic Rate and Metabolic Outcomes of Adults with Prader Willi Syndrome or Lesional Hypothalamic Disease, with Primary Obesity. Int. J. Obes. 2013, 37, 1198–1203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cassidy, S.B.; Schwartz, S.; Miller, J.L.; Driscoll, D.J. Prader-Willi Syndrome. Genet. Med. 2012, 14, 10–26. [Google Scholar] [CrossRef] [Green Version]
- Whittington, J.E. Population Prevalence and Estimated Birth Incidence and Mortality Rate for People with Prader-Willi Syndrome in One UK Health Region. J. Med. Genet. 2001, 38, 792–798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butler, M.G.; Hartin, S.N.; Hossain, W.A.; Manzardo, A.M.; Kimonis, V.; Dykens, E.; Gold, J.A.; Kim, S.-J.; Weisensel, N.; Tamura, R.; et al. Molecular Genetic Classification in Prader-Willi Syndrome: A Multisite Cohort Study. J. Med. Genet. 2019, 56, 149–153. [Google Scholar] [CrossRef]
- Butler, M.G. Prader–Willi Syndrome and Chromosome 15q11.2 BP1-BP2 Region: A Review. Int. J. Mol. Sci. 2023, 24, 4271. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.J.; Gerasimidis, K.; Edwards, C.A.; Shaikh, M.G. Mechanisms of Obesity in Prader-Willi Syndrome: Obesity in Prader-Willi Syndrome. Pediatr. Obes. 2018, 13, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Haqq, A.M.; Farooqi, I.S.; O’Rahilly, S.; Stadler, D.D.; Rosenfeld, R.G.; Pratt, K.L.; LaFranchi, S.H.; Purnell, J.Q. Serum Ghrelin Levels Are Inversely Correlated with Body Mass Index, Age, and Insulin Concentrations in Normal Children and Are Markedly Increased in Prader-Willi Syndrome. J. Clin. Endocrinol. Metab. 2003, 88, 174–178. [Google Scholar] [CrossRef]
- Cummings, D.E.; Clement, K.; Purnell, J.Q.; Vaisse, C.; Foster, K.E.; Frayo, R.S.; Schwartz, M.W.; Basdevant, A.; Weigle, D.S. Elevated Plasma Ghrelin Levels in Prader Willi Syndrome. Nat. Med. 2002, 8, 643–644. [Google Scholar] [CrossRef]
- Erdie-Lalena, C.R.; Holm, V.A.; Kelly, P.C.; Frayo, R.S.; Cummings, D.E. Ghrelin Levels in Young Children with Prader-Willi Syndrome. J. Pediatr. 2006, 149, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Miegueu, P.; St Pierre, D.; Broglio, F.; Cianflone, K. Effect of Desacyl Ghrelin, Obestatin and Related Peptides on Triglyceride Storage, Metabolism and GHSR Signaling in 3T3-L1 Adipocytes. J. Cell. Biochem. 2011, 112, 704–714. [Google Scholar] [CrossRef]
- Choi, K.; Roh, S.-G.; Hong, Y.-H.; Shrestha, Y.B.; Hishikawa, D.; Chen, C.; Kojima, M.; Kangawa, K.; Sasaki, S.-I. The Role of Ghrelin and Growth Hormone Secretagogues Receptor on Rat Adipogenesis. Endocrinology 2003, 144, 754–759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.; Zhao, L.; Lin, T.R.; Chai, B.; Fan, Y.; Gantz, I.; Mulholland, M.W. Inhibition of Adipogenesis by Ghrelin. Mol. Biol. Cell 2004, 15, 2484–2491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chao, Y.; Gao, L.; Wang, X.; Cai, Y.; Shu, Y.; Zou, X.; Qin, Y.; Hu, C.; Dai, Y.; Zhu, M.; et al. Dysregulated Adipose Tissue Expansion and Impaired Adipogenesis in Prader-Willi Syndrome Children before Obesity-Onset. Metabolism 2022, 136, 155295. [Google Scholar] [CrossRef]
- Cadoudal, T.; Buléon, M.; Sengenès, C.; Diene, G.; Desneulin, F.; Molinas, C.; Eddiry, S.; Conte-Auriol, F.; Daviaud, D.; Martin, P.G.P.; et al. Impairment of Adipose Tissue in Prader–Willi Syndrome Rescued by Growth Hormone Treatment. Int. J. Obes. 2014, 38, 1234–1240. [Google Scholar] [CrossRef]
- Bush, J.R.; Wevrick, R. Loss of the Prader–Willi Obesity Syndrome Protein Necdin Promotes Adipogenesis. Gene 2012, 497, 45–51. [Google Scholar] [CrossRef]
- Forsythe, E.; Beales, P.L. Bardet–Biedl Syndrome. Eur. J. Hum. Genet. 2013, 21, 8–13. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.; Rahman, P.; Peddle, L.; Hefferton, D.; Gladney, N.; Moore, S.J.; Green, J.S.; Parfrey, P.S.; Davidson, W.S. Bardet-Biedl Syndrome 1 Genotype and Obesity in the Newfoundland Population. Int. J. Obes. Relat. Metab. Disord. 2004, 28, 680–684. [Google Scholar] [CrossRef] [Green Version]
- Farag, T.I.; Teebi, A.S. High Incidence of Bardet Biedl Syndrome among the Bedouin. Clin. Genet. 2008, 36, 463–464. [Google Scholar] [CrossRef]
- Moore, S.J.; Green, J.S.; Fan, Y.; Bhogal, A.K.; Dicks, E.; Fernandez, B.A.; Stefanelli, M.; Murphy, C.; Cramer, B.C.; Dean, J.C.S.; et al. Clinical and Genetic Epidemiology of Bardet-Biedl Syndrome in Newfoundland: A 22-Year Prospective, Population-Based, Cohort Study. Am. J. Med. Genet. 2005, 132, 352–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Z.; Qiu, H.; Castro-Araya, R.-F.; Takei, R.; Nakayama, K.; Katoh, Y. Impaired Cooperation between IFT74/BBS22–IFT81 and IFT25–IFT27/BBS19 Causes Bardet-Biedl Syndrome. Hum. Mol. Genet. 2022, 31, 1681–1693. [Google Scholar] [CrossRef]
- Florea, L.; Caba, L.; Gorduza, E.V. Bardet–Biedl Syndrome—Multiple Kaleidoscope Images: Insight into Mechanisms of Genotype–Phenotype Correlations. Genes 2021, 12, 1353. [Google Scholar] [CrossRef] [PubMed]
- Suspitsin, E.N.; Imyanitov, E.N. Bardet-Biedl Syndrome. Mol. Syndromol. 2016, 7, 62–71. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Lechtreck, K.F. The Bardet–Biedl Syndrome Protein Complex Is an Adapter Expanding the Cargo Range of Intraflagellar Transport Trains for Ciliary Export. Proc. Natl. Acad. Sci. USA 2018, 115, E934–E943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seo, S.; Guo, D.-F.; Bugge, K.; Morgan, D.A.; Rahmouni, K.; Sheffield, V.C. Requirement of Bardet-Biedl Syndrome Proteins for Leptin Receptor Signaling. Hum. Mol. Genet. 2009, 18, 1323–1331. [Google Scholar] [CrossRef] [Green Version]
- Feuillan, P.P.; Ng, D.; Han, J.C.; Sapp, J.C.; Wetsch, K.; Spaulding, E.; Zheng, Y.C.; Caruso, R.C.; Brooks, B.P.; Johnston, J.J.; et al. Patients with Bardet-Biedl Syndrome Have Hyperleptinemia Suggestive of Leptin Resistance. J. Clin. Endocrinol. Metab. 2011, 96, E528–E535. [Google Scholar] [CrossRef]
- FDA. FDA Approves Treatment for Weight Management in Patients with Bardet-Biedl Syndrome Aged 6 or Older; FDA: Silver Spring, MD, USA, 2022. [Google Scholar]
- Haqq, A.M.; Chung, W.K.; Dollfus, H.; Haws, R.M.; Martos-Moreno, G.Á.; Poitou, C.; Yanovski, J.A.; Mittleman, R.S.; Yuan, G.; Forsythe, E.; et al. Efficacy and Safety of Setmelanotide, a Melanocortin-4 Receptor Agonist, in Patients with Bardet-Biedl Syndrome and Alström Syndrome: A Multicentre, Randomised, Double-Blind, Placebo-Controlled, Phase 3 Trial with an Open-Label Period. Lancet Diabetes Endocrinol. 2022, 10, 859–868. [Google Scholar] [CrossRef]
- Clément, K.; Biebermann, H.; Farooqi, I.S.; Van der Ploeg, L.; Wolters, B.; Poitou, C.; Puder, L.; Fiedorek, F.; Gottesdiener, K.; Kleinau, G.; et al. MC4R Agonism Promotes Durable Weight Loss in Patients with Leptin Receptor Deficiency. Nat. Med. 2018, 24, 551–555. [Google Scholar] [CrossRef]
- Tobin, J.L.; Beales, P.L. Bardet–Biedl Syndrome: Beyond the Cilium. Pediatr Nephrol 2007, 22, 926–936. [Google Scholar] [CrossRef] [Green Version]
- Rahmouni, K.; Fath, M.A.; Seo, S.; Thedens, D.R.; Berry, C.J.; Weiss, R.; Nishimura, D.Y.; Sheffield, V.C. Leptin Resistance Contributes to Obesity and Hypertension in Mouse Models of Bardet-Biedl Syndrome. J. Clin. Investig. 2008, 118, 1458–1467. [Google Scholar] [CrossRef] [PubMed]
- Forti, E.; Aksanov, O.; Birk, R.Z. Temporal Expression Pattern of Bardet-Biedl Syndrome Genes in Adipogenesis. Int. J. Biochem. Cell Biol. 2007, 39, 1055–1062. [Google Scholar] [CrossRef] [PubMed]
- Aksanov, O.; Green, P.; Birk, R.Z. BBS4 Directly Affects Proliferation and Differentiation of Adipocytes. Cell. Mol. Life Sci. 2014, 71, 3381–3392. [Google Scholar] [CrossRef] [PubMed]
- Horwitz, A.; Birk, R. BBS4 Is Essential for Nuclear Transport of Transcription Factors Mediating Neuronal ER Stress Response. Mol. Neurobiol. 2020, 58, 78–91. [Google Scholar] [CrossRef]
- Anosov, M.; Birk, R. Bardet-Biedl Syndrome Obesity: BBS4 Regulates Cellular ER Stress in Early Adipogenesis. Mol. Genet. Metab. 2019, 126, 495–503. [Google Scholar] [CrossRef] [PubMed]
- Croft, J.B.; Morrell, D.; Chase, C.L.; Swift, M. Obesity in Heterozygous Carriers of the Gene for the Bardet-Biedl Syndrome. Am. J. Med. Genet. 1995, 55, 12–15. [Google Scholar] [CrossRef]
- Birk, R.Z.; Ermakov, S.; Livshits, G. Common FSNP Variants of Fourteen Bardet-Biedl Syndrome Genes and Adult Body Mass: 14 BBS Gene Variants Association with Weight. Obesity 2013, 21, 1684–1689. [Google Scholar] [CrossRef]
- Benzinou, M.; Walley, A.; Lobbens, S.; Charles, M.-A.; Jouret, B.; Fumeron, F.; Balkau, B.; Meyre, D.; Froguel, P. Bardet-Biedl Syndrome Gene Variants Are Associated with Both Childhood and Adult Common Obesity in French Caucasians. Diabetes 2006, 55, 2876–2882. [Google Scholar] [CrossRef] [Green Version]
- Stryjecki, C.; Alyass, A.; Meyre, D. Ethnic and Population Differences in the Genetic Predisposition to Human Obesity: Ethnicity and Predisposition to Obesity. Obes. Rev. 2018, 19, 62–80. [Google Scholar] [CrossRef]
- Day, S.E.; Muller, Y.L.; Koroglu, C.; Kobes, S.; Wiedrich, K.; Mahkee, D.; Kim, H.I.; Van Hout, C.; Gosalia, N.; Ye, B.; et al. Exome Sequencing of 21 Bardet-Biedl Syndrome (BBS) Genes to Identify Obesity Variants in 6,851 American Indians. Obesity 2021, 29, 748–754. [Google Scholar] [CrossRef]
- Lodh, S.; Hostelley, T.L.; Leitch, C.C.; O’Hare, E.A.; Zaghloul, N.A. Differential Effects on β-Cell Mass by Disruption of Bardet–Biedl Syndrome or Alstrom Syndrome Genes. Hum. Mol. Genet. 2016, 25, 57–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marchese, E.; Caterino, M.; Fedele, R.; Pirozzi, F.; Cevenini, A.; Gupta, N.; Ingrosso, D.; Perna, A.; Capasso, G.; Ruoppolo, M.; et al. Multi-Omics Studies Unveil Extraciliary Functions of BBS10 and Show Metabolic Aberrations Underlying Renal Disease in Bardet–Biedl Syndrome. Int. J. Mol. Sci. 2022, 23, 9420. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horwitz, A.; Birk, R. Adipose Tissue Hyperplasia and Hypertrophy in Common and Syndromic Obesity—The Case of BBS Obesity. Nutrients 2023, 15, 3445. https://doi.org/10.3390/nu15153445
Horwitz A, Birk R. Adipose Tissue Hyperplasia and Hypertrophy in Common and Syndromic Obesity—The Case of BBS Obesity. Nutrients. 2023; 15(15):3445. https://doi.org/10.3390/nu15153445
Chicago/Turabian StyleHorwitz, Avital, and Ruth Birk. 2023. "Adipose Tissue Hyperplasia and Hypertrophy in Common and Syndromic Obesity—The Case of BBS Obesity" Nutrients 15, no. 15: 3445. https://doi.org/10.3390/nu15153445
APA StyleHorwitz, A., & Birk, R. (2023). Adipose Tissue Hyperplasia and Hypertrophy in Common and Syndromic Obesity—The Case of BBS Obesity. Nutrients, 15(15), 3445. https://doi.org/10.3390/nu15153445