Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = monocultivar

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1259 KiB  
Article
Usefulness of the 1H NMR Multisuppression Approach for the Global Characterization of Monovarietal Extra-Virgin Olive Oils
by Encarnacion Goicoechea-Oses and Ainhoa Ruiz-Aracama
Foods 2024, 13(14), 2298; https://doi.org/10.3390/foods13142298 - 22 Jul 2024
Cited by 1 | Viewed by 1665
Abstract
Extra-virgin olive oil (EVOO) is one of the most appreciated vegetable oils worldwide, but its high price makes it prone to suffer adulteration with lower quality oils. Therefore, it is important to have methodologies able to study EVOO composition as a whole in [...] Read more.
Extra-virgin olive oil (EVOO) is one of the most appreciated vegetable oils worldwide, but its high price makes it prone to suffer adulteration with lower quality oils. Therefore, it is important to have methodologies able to study EVOO composition as a whole in a simple and fast way, in order to guarantee its quality and safety. For this purpose, in this study, commercial samples of five Spanish olive cultivars (Arbequina, Arroniz, Cornicabra, Hojiblanca, Picual) were studied by Proton Nuclear Magnetic Resonance (1H NMR) spectroscopy, using standard and multisuppression pulses. The aim was to explore the possibility of 1H NMR use to characterize in a single run and in a global way the composition of these monocultivar oils, regarding not only their main components (fatty acids supported on triglycerides) but also minor ones (squalene, sterols, diterpenic wax esters of phytol and geranylgeraniol, phenolic and secoiridoid derivatives, like tyrosol, hydroxytyrosol, oleacein, oleocanthal, and lignans, among others, and aldehydes). The use of univariate and multivariate statistical analyses confirmed the presence of compositional features that were specific to some olive varieties. The Arbequina and Arroniz oils showed the most characteristic features that allowed for clearly differentiating them from the others. In contrast, the discrimination between the Cornicabra, Hojiblanca and Picual oils was not so easily achieved. Full article
(This article belongs to the Special Issue Edible Oils: Composition, Processing and Nutritional Properties)
Show Figures

Figure 1

16 pages, 2847 KiB  
Article
Morphological and Molecular Characterization of a New Self-Compatible Almond Variety
by Niki Mougiou, Persefoni Maletsika, Aristarhos Konstantinidis, Katerina Grigoriadou, George Nanos and Anagnostis Argiriou
Agriculture 2023, 13(7), 1362; https://doi.org/10.3390/agriculture13071362 - 7 Jul 2023
Cited by 3 | Viewed by 2649
Abstract
Almonds are one of the most popular nuts, cultivated in countries with Mediterranean climates. In an almond orchard of the self-incompatible cultivar ‘Ferragnes’ in Greece, a tree with different morphological characteristics and signs of self-compatibility was observed. The aim of this study was [...] Read more.
Almonds are one of the most popular nuts, cultivated in countries with Mediterranean climates. In an almond orchard of the self-incompatible cultivar ‘Ferragnes’ in Greece, a tree with different morphological characteristics and signs of self-compatibility was observed. The aim of this study was to study the phenotype, investigate the self-compatibility trait, and elucidate the phylogenetic background of this tree, named ‘Mars’. Morphological traits and kernel and nut characteristics were measured in ‘Mars’, ‘Ferragnes’, ‘Tuono’, and ‘Lauranne’ cultivars. The self-compatibility trait of almonds is attributed to the Sf allele; thus, its existence was investigated in ‘Mars’ by PCR amplification. Moreover, the S-RNase genes of all the cultivars were sequenced. The genetic profile of ‘Mars’ was identified using eight SSR molecular markers and compared with the ‘Ferragnes’, ‘Ferraduel’, ‘Texas’, ‘Tuono’, and ‘Lauranne’ cultivars. The morphological traits suggest that ‘Mars’ is more similar to the ‘Ferragnes’ cultivar, while it bears the Sf allele. S-RNases sequencing revealed that ‘Mars’ has the genotype S1Sf, and the SSR markers showed that it is differentiated genetic material, suggesting it is a cross between ‘Ferragnes’ and ‘Tuono’. Therefore, ‘Mars’ is evaluated as a self-compatible variety with interesting agronomic traits for use in new mono-cultivar almond plantations. Full article
(This article belongs to the Special Issue Plant Breeding through Conventional and Biotechnological Methods)
Show Figures

Figure 1

21 pages, 5024 KiB  
Article
AGS Gastric Cells: Antioxidant Activity and Metabolic Effects of Phenolic Extracts from Different Monocultivar Virgin Olive Oils
by Paola Faraoni, Maria Bellumori, Lorenzo Cecchi, Beatrice Zonfrillo, Marzia Innocenti, Alessio Gnerucci, Nadia Mulinacci and Francesco Ranaldi
Antioxidants 2023, 12(7), 1347; https://doi.org/10.3390/antiox12071347 - 27 Jun 2023
Cited by 2 | Viewed by 2020
Abstract
The effects of the phenolic compounds of extra virgin olive oil (EVOO) on AGS cells have never been studied so far, which is the aim of this study. The profiles of the main phenolic components in EVOOs, mainly secoiridoid compounds derived from the [...] Read more.
The effects of the phenolic compounds of extra virgin olive oil (EVOO) on AGS cells have never been studied so far, which is the aim of this study. The profiles of the main phenolic components in EVOOs, mainly secoiridoid compounds derived from the transformation of oleuropein during the olive milling process, were evaluated and compared. Oils of different origins were evaluated aiming at verifying whether chemical differences in the phenolic composition of the dry extracts played a role in the metabolism and in maintaining the cellular redox state of AGS cells. The following key enzymes of some metabolic pathways were studied: lactate dehydrogenase, enolase, pyruvate kinase, glucose 6-phosphate dehydrogenase, citrate synthase, 3-Hydroxyacyl-CoA dehydrogenase and hexokinase. As confirmed through PCA analysis, pretreatments with the dry extracts of EVOOs at different concentrations appeared to be able to counteract the enzymatic activity alterations due to oxidative stress induced by H2O2 1 mM and 2 mM. The studied phytocomplexes showed the ability to protect AGS cells from oxidative damage and the secoiridoid derivatives from both oleuropein and ligstroside contributed to the observed effects. The results suggested that EVOOs with medium to high concentrations of phenols can exert this protection. Full article
(This article belongs to the Special Issue Reactive Oxygen Species (ROS) in Gastrointestinal Diseases)
Show Figures

Figure 1

18 pages, 4141 KiB  
Article
NMR-Based Metabolite Profiling and the Application of STOCSY toward the Quality and Authentication Assessment of European EVOOs
by Stavros Beteinakis, Anastasia Papachristodoulou, Peter Kolb, Paul Rösch, Stephan Schwarzinger, Emmanuel Mikros and Maria Halabalaki
Molecules 2023, 28(4), 1738; https://doi.org/10.3390/molecules28041738 - 11 Feb 2023
Cited by 12 | Viewed by 2896
Abstract
Extra virgin olive oil (EVOO) possesses a high-value rank in the food industry, thus making it a common target for adulteration. Hence, several methods have been essentially made available over the years. However, the issue of authentication remains unresolved with national and food [...] Read more.
Extra virgin olive oil (EVOO) possesses a high-value rank in the food industry, thus making it a common target for adulteration. Hence, several methods have been essentially made available over the years. However, the issue of authentication remains unresolved with national and food safety organizations globally struggling to regulate and control its market. Over the course of this study, the aim was to determine the origin of EVOOs suggesting a high-throughput, state-of-the-art method that could be easily adopted. A rapid, NMR-based untargeted metabolite profiling method was applied and complemented by multivariate analysis (MVA) and statistical total correlation spectroscopy (STOCSY). STOCSY is a valuable statistical tool contributing to the biomarker identification process and was employed for the first time in EVOO analysis. Market samples from three Mediterranean countries of Spain, Italy, and Greece, blended samples from these countries, as well as monocultivar samples from Greece were analyzed. The NMR spectra were collected, with the help of chemometrics acting as “fingerprints” leading to the discovery of certain chemical classes and single biomarkers that were related to the classification of the samples into groups based on their origin. Full article
(This article belongs to the Special Issue Advances in Computer Assisted Structure Elucidation (CASE))
Show Figures

Graphical abstract

19 pages, 902 KiB  
Article
Quantitatively Unraveling Hierarchy of Factors Impacting Virgin Olive Oil Phenolic Profile and Oxidative Stability
by Maja Jukić Špika, Zlatko Liber, Cinzia Montemurro, Monica Marilena Miazzi, Ivica Ljubenkov, Barbara Soldo, Mirella Žanetić, Elda Vitanović, Olivera Politeo and Dubravka Škevin
Antioxidants 2022, 11(3), 594; https://doi.org/10.3390/antiox11030594 - 20 Mar 2022
Cited by 14 | Viewed by 3448
Abstract
A single phenolic group and even a compound play different roles in the sensory properties and stability of virgin olive oil (VOO), which in turn are strongly influenced by several factors. Understanding the causes of differences in phenolic compound composition and oxidative stability [...] Read more.
A single phenolic group and even a compound play different roles in the sensory properties and stability of virgin olive oil (VOO), which in turn are strongly influenced by several factors. Understanding the causes of differences in phenolic compound composition and oxidative stability (OS) in VOOs is essential for targeted and timely harvest and processing while maintaining desired oil quality. The phenolic profile and OS of two monocultivar VOOs (Oblica and Leccino) grown in two geographical sites of different altitudes (coastal plain and hilly hinterland) were analyzed throughout the ripening period over two years. Concentration of secoiridoids was 30% higher in the Oblica than in the Leccino VOOs, which in turn had significantly higher values of OS. Both cultivars had more than twice as high concentrations of the two most abundant phenolic compounds, the dialdehyde form of decarboxymethyl oleuropein aglycone and the dialdehyde form of decarboxymethyl ligstroside aglycone, and OS values in a colder growing site of higher altitude. Among the studied monocultivar VOOs, the secoiridoid group did not behave equally during ripening. The hierarchy of different influencing factors was investigated using multivariate statistics and revealed: cultivar > geographical site > harvest period > growing season. In addition, the possibility of traceability of VOO using molecular markers was investigated by establishing SSR profiles of oils of the studied cultivars and comparing them with SSR profiles of leaves. Full article
(This article belongs to the Special Issue Phenolics as Antioxidant Agents)
Show Figures

Figure 1

16 pages, 751 KiB  
Article
Microbiological and Enzymatic Activity Modulates the Bitter Taste Reduction in Decanted Coratina Olive Oil
by Gino Ciafardini and Biagi Angelo Zullo
Foods 2022, 11(6), 867; https://doi.org/10.3390/foods11060867 - 18 Mar 2022
Cited by 3 | Viewed by 2428
Abstract
Coratina monocultivar extra virgin olive oil (EVOO) is known for its level of bitterness, which, if too high, can cause consumer acceptance problems. The aim of this study was to modulate the bitter taste of freshly produced olive oil through endogenous enzymatic activity [...] Read more.
Coratina monocultivar extra virgin olive oil (EVOO) is known for its level of bitterness, which, if too high, can cause consumer acceptance problems. The aim of this study was to modulate the bitter taste of freshly produced olive oil through endogenous enzymatic activity and microbiota during the decantation phase. The opalescent appearance of the newly produced EVOO was substantially reduced during the first three months of decantation due to the deposition of more than 90% of suspended material, consisting of vegetation water and suspended solid particles. The high content of biophenols and the reduction in water concentration in the oil samples negatively affected the survival of yeasts, which were absent in the oil samples at the end of the third month of decantation. The oleuropeinolytic activity was very intense during the first month of decantation, whereas the reduction in the bitter taste associated with the aglycons was consistent only in the second and third months of decantation. At the end of decantation, the sensory notes of bitterness in the Coratina EVOO were reduced by 33%, lowering the position on the value scale without altering the other qualitative parameters whose values fell within the limits of the commercial EVOO class. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

19 pages, 6495 KiB  
Article
Tyrosol, at the Concentration Found in Maltese Extra Virgin Olive Oil, Induces HL-60 Differentiation towards the Monocyte lineage
by Lucienne Gatt, David G. Saliba, Pierre Schembri-Wismayer and Marion Zammit-Mangion
Appl. Sci. 2021, 11(21), 10199; https://doi.org/10.3390/app112110199 - 30 Oct 2021
Cited by 5 | Viewed by 3429
Abstract
Tyrosol is a phenolic found in extra virgin olive oil (EVOO). In a Maltese monocultivar EVOO, it was present at a concentration of 9.23 ppm. The HL-60 acute myeloid leukaemia cell line, which can be differentiated to both monocytes and neutrophils, was exposed [...] Read more.
Tyrosol is a phenolic found in extra virgin olive oil (EVOO). In a Maltese monocultivar EVOO, it was present at a concentration of 9.23 ppm. The HL-60 acute myeloid leukaemia cell line, which can be differentiated to both monocytes and neutrophils, was exposed to tyrosol at this concentration and analysed for evidence of differentiation and effects of cytotoxicity. The polyphenol induced a 1.93-fold increase in cellular oxidative activity (p-value 0.044) and enhanced surface expression of CD11b and CD14. This indicates that tyrosol induces monocytic-like differentiation. An RNA-seq analysis confirmed the upregulation of monocyte genes and the loss of neutrophil genes concomitant with the bi-potential promyelocyte precursor moving down the monocytic pathway. A cell cycle analysis showed an accumulation of cells in the Sub G0/G1 phase following tyrosol exposure for 5 days, which coincided with an increase in apoptotic and necrotic markers. This indicates differentiation followed by cell death, unlike the positive monocyte differentiation control PMA. This selective cytotoxic effect following differentiation indicates therapeutic potential against leukaemia. Full article
Show Figures

Figure 1

25 pages, 4264 KiB  
Article
Study of the Evolution of Pigments from Freshly Pressed to ‘On-the-Shelf’ Extra-Virgin Olive Oils by Means of Near-UV Visible Spectroscopy
by Eleonora Borello, Daniele Roncucci and Valentina Domenici
Foods 2021, 10(8), 1891; https://doi.org/10.3390/foods10081891 - 15 Aug 2021
Cited by 17 | Viewed by 5413
Abstract
Spectroscopic non-destructive methods have high potentialities as fast, cheap and easy-to-be-used approaches to address olive oil quality and authenticity. Based on previous research where near-UV Visible spectroscopy was used to investigate extra-virgin olive oils (EVOOs) and their main pigments’ content (i.e., β-carotene, lutein, [...] Read more.
Spectroscopic non-destructive methods have high potentialities as fast, cheap and easy-to-be-used approaches to address olive oil quality and authenticity. Based on previous research where near-UV Visible spectroscopy was used to investigate extra-virgin olive oils (EVOOs) and their main pigments’ content (i.e., β-carotene, lutein, pheophytin a and pheophytin b), we have implemented the spectral deconvolution method in order to follow the EVOO’s life, from ‘freshly pressed’ to ‘on-the-shelf’ EVOO samples at different storage time. In the first part of the manuscript, the new implemented deconvolution spectroscopic method aimed to quantify two additional pigments, namely chlorophyll a and chlorophyll b, is described and tested on ‘ad hoc’ samples with known concentrations of chlorophylls. The effect of light exposure and acidification was investigated to test the reliability and robustness of the spectral deconvolution. In the second part of the work, this approach was used to study the kinetic of pigments’ degradation in several monocultivar fresh EVOO samples under optimal storage’s conditions. The results here reported show that this spectroscopic deconvolution approach is a good method to study fresh EVOOs too; moreover, the proposed method revealed to be sensitive to detect eventual stresses of olive oil samples stored in not-good conditions. Full article
Show Figures

Figure 1

14 pages, 430 KiB  
Article
Effects of the Filtration on the Biotic Fraction of Extra Virgin Olive Oil
by Biagi Angelo Zullo, Giulia Venditti and Gino Ciafardini
Foods 2021, 10(8), 1677; https://doi.org/10.3390/foods10081677 - 21 Jul 2021
Cited by 5 | Viewed by 3413
Abstract
Filtration is a widely used process in the production of extra virgin olive oil. We studied the influence of filtration performed with cotton filters and cellulose filter press on the biotic components of the oily mass containing probiotic traits in two freshly produced [...] Read more.
Filtration is a widely used process in the production of extra virgin olive oil. We studied the influence of filtration performed with cotton filters and cellulose filter press on the biotic components of the oily mass containing probiotic traits in two freshly produced monocultivar extra virgin olive oils. The concentration of bacteria was reduced from 100% to 28%, while that of fungi was reduced from 100% to 44% after filtration, according to the filtration system and the initial contamination of the original monocultivar extra virgin olive oil. Compared with the control, the yeast content in the oil samples filtered with cotton filters was reduced from 37% to 11% depending on the cultivar. In the oil filtered with cellulose filter press, the yeast content reduced from 42% to 16%. The viable yeast that passed through the oily mass during the filtration process with cellulose filter press, unlike all the other samples, were unable to survive in the oil after a month of storage. The possible health benefits of compounds from both the biotic and abiotic fraction of the oil, compared to the control, were significantly low when filtered with the cellulose filter press. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

21 pages, 2673 KiB  
Article
Virgin Olive Oil Phenols, Fatty Acid Composition and Sensory Profile: Can Cultivar Overpower Environmental and Ripening Effect?
by Maja Jukić Špika, Slavko Perica, Mirella Žanetić and Dubravka Škevin
Antioxidants 2021, 10(5), 689; https://doi.org/10.3390/antiox10050689 - 27 Apr 2021
Cited by 48 | Viewed by 4961
Abstract
The authenticity and typicity of monocultivar oils and knowledge of the changes that environmental olive growing conditions bring to naturally present antioxidants and sensory attributes of virgin olive oils (VOO) are important for quality and safety improvement. This study delivers a comprehensive evaluation [...] Read more.
The authenticity and typicity of monocultivar oils and knowledge of the changes that environmental olive growing conditions bring to naturally present antioxidants and sensory attributes of virgin olive oils (VOO) are important for quality and safety improvement. This study delivers a comprehensive evaluation of the factors affecting phenolics, fatty acid composition and sensory characteristics of cultivars Oblica and Leccino VOOs throughout ripening season at two distinct olive growing environments during three consecutive crop years, and ranks the importance of each factor. Specified parameters were significantly influenced by olive growing environmental conditions. At the colder location of higher altitude, both cultivars gained higher amount of stearic, linoleic and linolenic fatty acids, as well as a higher proportion of phenolic compounds, but lower amounts of oleic fatty acid. At the warmer location of lower altitude, both cultivars had oils with lower level of fruitiness, bitterness and pungency. Analysis of the main components showed that VOOs were primarily differentiated by the cultivar, then main groups were divided with regard to the growing site, while harvest period affected the biosynthesis of natural VOOs antioxidants but had the least impact. These results reveal that the composition of fatty acids, phenolic content and sensory profile are predominantly characteristics of a cultivar. Full article
(This article belongs to the Special Issue Phenolics as Antioxidant Agents)
Show Figures

Figure 1

15 pages, 3899 KiB  
Article
1H-NMR Profiling Shows as Specific Constituents Strongly Affect the International EVOO Blends Characteristics: The Case of the Italian Oil
by Francesca Calò, Chiara Roberta Girelli, Federica Angilè, Laura Del Coco, Lucia Mazzi, Daniele Barbini and Francesco Paolo Fanizzi
Molecules 2021, 26(8), 2233; https://doi.org/10.3390/molecules26082233 - 13 Apr 2021
Cited by 8 | Viewed by 2440
Abstract
Considering the growing number of extra virgin olive oil (EVOO) producers in the world, knowing the influence of olive oils with different geographical origins on the characteristics of the final blend becomes an interesting goal. The present work is focused on commercial organic [...] Read more.
Considering the growing number of extra virgin olive oil (EVOO) producers in the world, knowing the influence of olive oils with different geographical origins on the characteristics of the final blend becomes an interesting goal. The present work is focused on commercial organic EVOO blends obtained by mixing multiple oils from different geographical origins. These blends have been studied by 1H-NMR spectroscopy supported by multivariate statistical analysis. Specific characteristics of commercial organic EVOO blends originated by mixing oils from Italy, Tunisia, Portugal, Spain, and Greece were found to be associated with the increasing content of the Italian component. A linear progression of the metabolic profile defined characteristics for the analysed samples—up to a plateau level—was found in relation to the content of the main constituent of the Italian oil, the monocultivar Coratina. The Italian constituent percentage appears to be correlated with the fatty acids (oleic) and the polyphenols (tyrosol, hydroxytyrosol, and derivatives) content as major and minor components respectively. These results, which highlight important economic aspects, also show the utility of 1H-NMR associated with chemometric analysis as a powerful tool in this field. Mixing oils of different national origins, to obtain blends with specific characteristics, could be profitably controlled by this methodology. Full article
Show Figures

Graphical abstract

22 pages, 4496 KiB  
Article
Oleocanthal Quantification Using 1H NMR Spectroscopy and Polyphenols HPLC Analysis of Olive Oil from the Bianchera/Belica Cultivar
by Martina Starec, Antonella Calabretti, Federico Berti and Cristina Forzato
Molecules 2021, 26(1), 242; https://doi.org/10.3390/molecules26010242 - 5 Jan 2021
Cited by 17 | Viewed by 5168
Abstract
The cultivar Bianchera is an autochthonous variety from the eastern part of northern Italy, but it is also cultivated in the Slovenian and Croatian peninsula of Istria where it is named Belica (Slovenia) and Bjelica (Croatia). The properties of oleocanthal, a natural anti-inflammatory [...] Read more.
The cultivar Bianchera is an autochthonous variety from the eastern part of northern Italy, but it is also cultivated in the Slovenian and Croatian peninsula of Istria where it is named Belica (Slovenia) and Bjelica (Croatia). The properties of oleocanthal, a natural anti-inflammatory ibuprofen-like compound found in commercial monocultivar extra virgin olive oils, were determined by means of both quantitative 1H NMR (qNMR) and HPLC analyses, where qNMR was identified as a rapid and reliable method for determining the oleocanthal content. The total phenolic content (TPC) was determined by means of the Folin–Ciocalteau method and the major phenols present in the olive oils were also quantified by means of HPLC analyses. All these analyses confirmed that the cultivar Bianchera was very rich in polyphenols and satisfied the health claim provided by the EU Commission Regulation on the polyphenols content of olive oils and their beneficial effects on human health. Full article
Show Figures

Figure 1

11 pages, 280 KiB  
Article
Influence of Olive Pomace Blending on Antioxidant Activity: Additive, Synergistic, and Antagonistic Effects
by M. Antónia Nunes, Filip Reszczyński, Ricardo N. M. J. Páscoa, Anabela S. G. Costa, Rita C. Alves and Maria Beatriz P. P. Oliveira
Molecules 2021, 26(1), 169; https://doi.org/10.3390/molecules26010169 - 31 Dec 2020
Cited by 12 | Viewed by 2832
Abstract
Food innovation is moving rapidly and comprises new categories of food products and/or ingredients with a natural and ecological origin. Monocultivar olive pomaces, individually or combined, can be a source of natural bioactive compounds suitable for food or cosmetic applications. This work aimed [...] Read more.
Food innovation is moving rapidly and comprises new categories of food products and/or ingredients with a natural and ecological origin. Monocultivar olive pomaces, individually or combined, can be a source of natural bioactive compounds suitable for food or cosmetic applications. This work aimed to assess the phenolics content and antioxidant activity of four monocultivar olive pomaces (Arbosana, Koroneiki, Oliana, and Arbequina) and forty-nine blends prepared with different proportions of each. Additive, synergistic, and antagonistic effects were studied. Among the monocultivar pomaces, Koroneiki and Arbosana were the richest in total phenolics (~15 mg gallic acid eq./g). Most of the interactions found in the blends were additive or synergistic, while very few antagonistic effects were observed. The best results were obtained for those blends where the Koroneiki variety predominated: (i) 90% Koroneiki, 4.75% Oliana, 3.75% Arbequina, 1.5% Arbosana; (ii) 65% Koroneiki, 29% Oliana, 3.25% Arbequina, 2.75% Arbosana; and (iii) 85% Koroneiki, 8.75% Arbequina, 3.5% Arbosana, 2.75% Oliana. In sum, these combinations can be advantageous in comparison to the individual use of monocultivar pomaces, presenting a higher potential to be used as functional ingredients or for bioactive compounds extraction, having in view the obtention of natural preservatives or food/cosmetic formula enhancers. Full article
(This article belongs to the Special Issue Food Sustainability: Promising By-Products for Valorization)
15 pages, 2189 KiB  
Article
1H NMR Spectroscopy to Characterize Italian Extra Virgin Olive Oil Blends, Using Statistical Models and Databases Based on Monocultivar Reference Oils
by Chiara Roberta Girelli, Francesca Calò, Federica Angilè, Lucia Mazzi, Daniele Barbini and Francesco Paolo Fanizzi
Foods 2020, 9(12), 1797; https://doi.org/10.3390/foods9121797 - 3 Dec 2020
Cited by 23 | Viewed by 4723
Abstract
During the last few years, the global demand for extra virgin olive oil (EVOO) is increased. Olive oil represents a significant percentage of world fat consumption determining an important development of its market. In this context, the problems related to counterfeiting and product [...] Read more.
During the last few years, the global demand for extra virgin olive oil (EVOO) is increased. Olive oil represents a significant percentage of world fat consumption determining an important development of its market. In this context, the problems related to counterfeiting and product fraud is becoming extremely relevant. Thus, the quality and authenticity control of EVOOs is nowadays mandatory. In this study we focused on the use of 1H NMR technique associated with multivariate statistical analysis to characterize Italian EVOOs commercial blends. In particular, a specific database including 126 monocultivar EVOOs reference samples, was used to characterize a total of 241 Italian EVOOs blends over four consecutive harvesting years. Moreover, the effect of the minor components (phenolic compounds) on the qualitative characterization of blended EVOOs was also evaluated. The correlation analysis of classification scores obtained using two pairwise orthogonal partial least square-discriminant analysis models (built with major and combined major–minor components NMR data) revealed that both could be profitably used to generally classify the studied Coratina containing blends. Full article
Show Figures

Figure 1

13 pages, 3156 KiB  
Article
Phenolic Compounds Characterization and Antioxidant Properties of Monocultivar Olive Oils from Northeast Algeria
by Soulef Boussahel, Vita Di Stefano, Claudia Muscarà, Mariateresa Cristani and Maria Grazia Melilli
Agriculture 2020, 10(11), 494; https://doi.org/10.3390/agriculture10110494 - 23 Oct 2020
Cited by 16 | Viewed by 3938
Abstract
In Algeria, the olive tree is one of the main fruit species and plays a very important socioeconomic role. The objective of this study was firstly, to identify and quantify the phenolics of some Algerian olive oils, and secondly, to assess the antioxidant [...] Read more.
In Algeria, the olive tree is one of the main fruit species and plays a very important socioeconomic role. The objective of this study was firstly, to identify and quantify the phenolics of some Algerian olive oils, and secondly, to assess the antioxidant activity of the samples. The olive oils used in this study were derived from Algerian cultivars, including Tefahi, Gelb Elfarroudj, Chemlal, and imported cultivar Manzanilla and Zebboudj. For this purpose, gas chromatography—mass spectrometry (GC-MS) was used to identify olive oil fatty acids profile, while the individual phenolic compounds were assessed by ultra-high-performance liquid chromatography–electrospray ionization–high-resolution mass spectrometry (UHPLC-HESI-MS). To verify the antioxidant capacity, five in vitro free radical assays were used. Questionable values of particular physico-chemical parameters, such as the high value of free acidity and the low concentration of monounsaturated fatty acids in oil from the Zebboudj cultivar, indicate that improvements in olive cultivation and oil production practices are needed. Gelb Elfarroudj, Tefahi, and Manzanilla oils contain quantities of monounsaturated fatty acids in accordance with EU regulations. The oil obtained from the Zebboudj cultivar is not usable for food purposes due to the high value in free acidity and the low concentration of monounsaturated fatty acids. Tefahi and Manzanilla cultivars have given oils with the best antioxidant activity as compared to other studied cultivars; this is attributable to their composition in bioactive phenolic compounds, such as secoiridoids, which play an important role in human health as scavengers of free radicals. The results are interesting for producers and consumers to promote the culture of olive oils derived in particular from the Tefahi cultivar. However, in order to improve the health qualities of this oil, the agronomic techniques essentially linked to the time of harvesting of the olives destined for oil production must be improved. Full article
(This article belongs to the Special Issue New Traits of Agriculture/Food Quality Interface)
Show Figures

Figure 1

Back to TopTop