Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (59)

Search Parameters:
Keywords = monocrystalline Si

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
45 pages, 4358 KiB  
Article
Parameter Extraction of Photovoltaic Cells and Panels Using a PID-Based Metaheuristic Algorithm
by Aseel Bennagi, Obaida AlHousrya, Daniel T. Cotfas and Petru A. Cotfas
Appl. Sci. 2025, 15(13), 7403; https://doi.org/10.3390/app15137403 - 1 Jul 2025
Viewed by 356
Abstract
In the world of solar technology, precisely extracting photovoltaic cell and panel parameters is key to efficient energy production. This paper presents a new metaheuristic algorithm for extracting parameters from photovoltaic cells using the functionality of the PID-based search algorithm (PSA). The research [...] Read more.
In the world of solar technology, precisely extracting photovoltaic cell and panel parameters is key to efficient energy production. This paper presents a new metaheuristic algorithm for extracting parameters from photovoltaic cells using the functionality of the PID-based search algorithm (PSA). The research includes single-diode (SDM) and double-diode (DDM) models applied to RTC France, amorphous silicon (aSi), monocrystalline silicon (mSi), PVM 752 GaAs, and STM6-40 panels. Datasets from multijunction solar cells at three temperatures (41.5 °C, 51.3 °C, and 61.6 °C) were used. PSA performance was assessed using root mean square error (RMSE), mean bias error (MBE), and absolute error (AE). A strategy was introduced by refining PID parameters and relocating error calculations outside the main loop to enhance exploration and exploitation. A Lévy flight-based zero-output mechanism was integrated, enabling shorter extraction times and requiring a smaller population, while enhancing search diversity and mitigating local optima entrapment. PSA was compared against 26 top-performing algorithms. RTC France showed RMSE improvements of 0.67–2.10% in 3.35 s, while for the mSi model, PSA achieved up to 40.9% improvement in 5.57 s and 22.18% for PVM 752 in 8.52 s. PSA’s accuracy and efficiency make it a valuable tool for advancing renewable energy technologies. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

22 pages, 8548 KiB  
Article
Study on the Motion Trajectory of Abrasives and Surface Improvement Mechanism in Ultrasonic-Assisted Diamond Wire Sawing Monocrystalline Silicon
by Honghao Li, Yufei Gao, Shengtan Hu and Zhipu Huo
Micromachines 2025, 16(6), 708; https://doi.org/10.3390/mi16060708 - 13 Jun 2025
Viewed by 417
Abstract
The surface quality of diamond wire sawing (DWS) wafers directly affects the efficiency and yield of subsequent processing steps. This paper investigates the motion trajectory of abrasives in ultrasonic-assisted diamond wire sawing (UADWS) and its mechanism for improving surface quality. The influence of [...] Read more.
The surface quality of diamond wire sawing (DWS) wafers directly affects the efficiency and yield of subsequent processing steps. This paper investigates the motion trajectory of abrasives in ultrasonic-assisted diamond wire sawing (UADWS) and its mechanism for improving surface quality. The influence of ultrasonic vibration on the cutting arc length, cutting depth, and interference of multi-abrasive trajectories was analyzed through the establishment of an abrasive motion trajectory model. The ultrasonic vibration transforms the abrasive trajectory from linear to sinusoidal, thereby increasing the cutting arc length while reducing the cutting depth. A lower wire speed was found to be more conducive to exploiting the advantages of ultrasonic vibration. Furthermore, the intersecting interference of multi-abrasive trajectories contributes to enhanced surface quality. Experimental studies were conducted on monocrystalline silicon (mono-Si) to verify the effectiveness of ultrasonic vibration in improving surface morphology and reducing wire marks during the sawing process. The experimental results demonstrate that, compared with DWS, UADWS achieves a significantly lower surface roughness Ra and generates micro-pits. The ultrasonic vibration induces a micro-grinding effect on both peaks and valleys of wire marks, effectively reducing their peak–valley (PV) height. This study provides a theoretical basis for optimizing UADWS process parameters and holds significant implications for improving surface quality in mono-Si wafer slicing. Full article
(This article belongs to the Section D:Materials and Processing)
Show Figures

Figure 1

13 pages, 2253 KiB  
Article
Organic Acid-Assisted Hydrothermal Leaching of Silver from End-of-Life Photovoltaic Panels
by Eleni Kastanaki, Rafaela Athanasiadou, Anastasia Katsifou and Apostolos Giannis
Appl. Sci. 2025, 15(12), 6383; https://doi.org/10.3390/app15126383 - 6 Jun 2025
Cited by 1 | Viewed by 496
Abstract
The aim of this study was the hydrothermal leaching of silver from waste monocrystalline silicon (m-Si) and polycrystalline silicon (p-Si) photovoltaic panel (PV) cells using organic acids, namely oxalic acid (OA) and citric acid (CA). Before leaching, two different pretreatment procedures were applied. [...] Read more.
The aim of this study was the hydrothermal leaching of silver from waste monocrystalline silicon (m-Si) and polycrystalline silicon (p-Si) photovoltaic panel (PV) cells using organic acids, namely oxalic acid (OA) and citric acid (CA). Before leaching, two different pretreatment procedures were applied. First, the fluoropolymer backsheet was manually removed from the panel pieces and, then, the samples were subjected to high-temperature heating for the thermal degradation of the ethylene vinyl acetate (EVA) polymer. When removal by hand was not feasible, the second pretreatment procedure was followed by toluene immersion to remove the EVA and backsheet and separate the cells, glass, and films. After pretreatment, 4 M HCl leaching was applied to remove the aluminum layer from the cells. The remaining cells were subjected to hydrothermal leaching with organic acids to extract the silver. Several hydrothermal parameters were investigated, such as acid concentration (1-1.5-2 M), processing time (60-105-150 min), and temperature (150-180-210 °C), while the liquid-to-solid (L/S) ratio was fixed at 30 mL: 1 g, based on preliminary tests. Response surface methodology (RSM) was applied to optimize the hydrothermal leaching parameters. The optimized parameters were 210 °C, 95 min, 2 M CA or 210 °C, 60 min, 1 M OA. OA was more effective in Ag leaching than CA. The results were compared to HNO3 leaching. The green leaching of silver from end-of-life PV panels with organic acids is an environmentally beneficial route. Full article
Show Figures

Figure 1

14 pages, 10258 KiB  
Article
Atomic Simulation of Wear and Slip Behavior Between Monocrystalline Silicon and 6H-SiC Friction Pair
by Jiansheng Pan, Jianwei Wu, Daiyi Lei, Huan Liu, Pengyue Zhao, Bo Zhao, Jiang Liu and Qingshan Yang
Lubricants 2025, 13(4), 147; https://doi.org/10.3390/lubricants13040147 - 27 Mar 2025
Viewed by 500
Abstract
The slip mechanism between the chunk and wafer during high-speed dynamic scanning of the extreme ultraviolet lithography (EUV) motion stage remains unclear. Considering real-machined roughness, molecular dynamics (MD) simulations were performed to investigate the nanotribological behavior of 6H-SiC sliders on single-crystal silicon substrates. [...] Read more.
The slip mechanism between the chunk and wafer during high-speed dynamic scanning of the extreme ultraviolet lithography (EUV) motion stage remains unclear. Considering real-machined roughness, molecular dynamics (MD) simulations were performed to investigate the nanotribological behavior of 6H-SiC sliders on single-crystal silicon substrates. The effects of sinusoidal asperity parameters and normal loads on wear and slip were systematically analyzed. Results indicate that, for friction between sinusoidal asperities and ideal flat surfaces, the amplitude of surface parameters exhibits negligible influence on friction. In contrast, reduced normal loads and lower periods significantly increase both friction force and coefficient of friction (COF). Full article
(This article belongs to the Special Issue Recent Advances in Lubricated Tribological Contacts)
Show Figures

Figure 1

23 pages, 22041 KiB  
Article
MEMS Pressure Sensors with Novel TSV Design for Extreme Temperature Environments
by Muhannad Ghanam, Peter Woias and Frank Goldschmidtböing
Sensors 2025, 25(3), 636; https://doi.org/10.3390/s25030636 - 22 Jan 2025
Viewed by 3754
Abstract
This study introduces a manufacturing process based on industrial MEMS technology, enabling the production of diverse sensor designs customized for a wide range of absolute pressure measurements. Using monocrystalline silicon as the structural material minimizes thermal stresses and eliminates temperature-dependent semiconductor effects, as [...] Read more.
This study introduces a manufacturing process based on industrial MEMS technology, enabling the production of diverse sensor designs customized for a wide range of absolute pressure measurements. Using monocrystalline silicon as the structural material minimizes thermal stresses and eliminates temperature-dependent semiconductor effects, as silicon functions solely as a mechanical material. Integrating a eutectic bonding process in the sensor fabrication allows for a reliable operation at temperatures up to 350 °C. The capacitive sensor electrodes are enclosed within a silicon-based Faraday cage, ensuring effective shielding against external electrostatic interference. An innovative Through-Silicon Via (TSV) design, sealed using gold–gold (Au-Au) diffusion and gold–silicon (Au-Si) eutectic bonding, further enhances the mechanical and thermal stability of the sensors, even under high-temperature conditions. The unfilled TSV structure mitigates mechanical stress from thermal expansion. The sensors exhibited excellent performance, achieving a linearity of 99.994%, a thermal drift of −0.0164% FS (full scale)/K at full load and 350 °C, and a high sensitivity of 34 fF/kPa. These results highlight the potential of these sensors for high-performance applications across various demanding environments. Full article
(This article belongs to the Collection Next Generation MEMS: Design, Development, and Application)
Show Figures

Figure 1

17 pages, 6438 KiB  
Article
Synthesis and Study of Oxide Semiconductor Nanoheterostructures in SiO2/Si Track Template
by Alma Dauletbekova, Diana Junisbekova, Zein Baimukhanov, Aivaras Kareiva, Anatoli I. Popov, Alexander Platonenko, Abdirash Akilbekov, Ainash Abdrakhmetova, Gulnara Aralbayeva, Zhanymgul Koishybayeva and Jonibek Khamdamov
Crystals 2024, 14(12), 1087; https://doi.org/10.3390/cryst14121087 - 18 Dec 2024
Cited by 1 | Viewed by 1222
Abstract
In this study, chemical deposition was used to synthesize structures of Ga2O3 -NW/SiO2/Si (NW—nanowire) at 348 K and SnO2-NW/SiO2/Si at 323 K in track templates SiO2/Si (either n- or p-type). The resulting [...] Read more.
In this study, chemical deposition was used to synthesize structures of Ga2O3 -NW/SiO2/Si (NW—nanowire) at 348 K and SnO2-NW/SiO2/Si at 323 K in track templates SiO2/Si (either n- or p-type). The resulting crystalline nanowires were δ-Ga2O3 and orthorhombic SnO2. Computer modeling of the delta phase of gallium oxide yielded a lattice parameter of a = 9.287 Å, which closely matched the experimental range of 9.83–10.03 Å. The bandgap is indirect with an Eg = 5.5 eV. The photoluminescence spectra of both nanostructures exhibited a complex band when excited by light with λ = 5.16 eV, dominated by luminescence from vacancy-type defects. The current–voltage characteristics of δ-Ga2O3 NW/SiO2/Si-p showed one-way conductivity. This structure could be advantageous in devices where a reverse current is undesirable. The p-n junction with a complex structure was formed. This junction consists of a polycrystalline nanowire base exhibiting n-type conductivity and a monocrystalline Si substrate with p-type conductivity. The I–V characteristics of SnO2-NW/SiO2/Si suggested near-metallic conductivity due to the presence of metallic tin. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

32 pages, 11259 KiB  
Article
An Assessment of the Environmental Impact of Construction Materials of Monocrystalline and Perovskite Photovoltaic Power Plants Toward Their Sustainable Development
by Izabela Piasecka and Zbigniew Kłos
Materials 2024, 17(23), 5787; https://doi.org/10.3390/ma17235787 - 26 Nov 2024
Cited by 3 | Viewed by 1250
Abstract
The interest in alternative energy sources, including the use of solar radiation energy, is growing year by year. Currently, the most frequently installed photovoltaic modules are made of single-crystalline silicon solar cells (sc-Si). However, one of the latest solutions are perovskite solar cells [...] Read more.
The interest in alternative energy sources, including the use of solar radiation energy, is growing year by year. Currently, the most frequently installed photovoltaic modules are made of single-crystalline silicon solar cells (sc-Si). However, one of the latest solutions are perovskite solar cells (PSC), which are considered the future of photovoltaics. Therefore, the main objective of this research was to assess the environmental impact of the construction materials of monocrystalline and perovskite photovoltaic power plants toward their sustainable development. The research object was the construction materials and components of two 1 MW photovoltaic power plants: one based on monocrystalline modules and the other on perovskite modules. The life cycle assessment (LCA) method was used for the analyses. The IMPACT World+, IPCC and CED models were used in it. The analyses were performed separately for five sets of elements: support structures, photovoltaic panels, inverter stations, electrical installations and transformers. Two post-consumer management scenarios were adopted: storage and recycling. The life cycle of a photovoltaic power plant based on photovoltaic modules made of perovskite cells is characterized by a smaller negative impact on the environment compared to traditional power plants with monocrystalline silicon modules. Perovskites, as a construction material of photovoltaic modules, fit better into the main assumptions of sustainable development compared to cells made of monocrystalline silicon. However, it is necessary to conduct further work which aims at reducing energy and material consumption in the life cycles of photovoltaic power plants. Full article
(This article belongs to the Special Issue Sustainable Materials for Engineering Applications)
Show Figures

Graphical abstract

31 pages, 2446 KiB  
Review
Advance of Sustainable Energy Materials: Technology Trends for Silicon-Based Photovoltaic Cells
by Mladen Bošnjaković
Sustainability 2024, 16(18), 7962; https://doi.org/10.3390/su16187962 - 12 Sep 2024
Cited by 13 | Viewed by 4609
Abstract
Modules based on c-Si cells account for more than 90% of the photovoltaic capacity installed worldwide, which is why the analysis in this paper focusses on this cell type. This study provides an overview of the current state of silicon-based photovoltaic technology, the [...] Read more.
Modules based on c-Si cells account for more than 90% of the photovoltaic capacity installed worldwide, which is why the analysis in this paper focusses on this cell type. This study provides an overview of the current state of silicon-based photovoltaic technology, the direction of further development and some market trends to help interested stakeholders make decisions about investing in PV technologies, and it can be an excellent incentive for young scientists interested in this field to find a narrower field of research. This analysis covers all process steps, from the production of metallurgical silicon from raw material quartz to the production of cells and modules, and it includes technical, economic and environmental aspects. The economic aspect calls for more economical production. The ecological aspect looks for ways to minimise the negative impact of cell production on the environment by reducing emissions and using environmentally friendly materials. The technical aspect refers to the state of development of production technologies that contribute to achieving the goals of the economic, environmental and sustainability-related aspects. This involves ways to reduce energy consumption in all process steps, cutting ingots into wafers with the smallest possible cutting width (less material waste), producing thin cells with the greatest possible dimensional accuracy, using cheaper materials and more efficient production. An extremely important goal is to achieve the highest possible efficiency of PV cells, which is achieved by reducing cell losses (optical, electrical, degradation). New technologies in this context are Tunnel Oxide Passivated Contact (TOPcon), Interdigitated Back Contact Cells (IBCs), Heterojunction Cells (HJTs), Passivated Emitter Rear Totally Diffused cells (PERTs), silicon heterojunction cells (SHJs), Multi-Bush, High-Density Cell Interconnection, Shingled Cells, Split Cells, Bifacial Cells and others. The trend is also to increase the cell size and thus increase the output power of the module but also to reduce the weight of the module per kW of power. Research is also focused to maximise the service life of PV cells and minimise the degradation of their operating properties over time. The influence of shade and the increase in cell temperature on the operating properties should preferably be minimised. In this context, half-cut and third-cut cell technology, covering the cell surface with a layer that reduces soiling and doping with gallium instead of boron are newer technologies that are being applied. All of this leads to greater sustainability in PV technology, and solar energy becomes more affordable and necessary in the transition to a “green” economy. Full article
Show Figures

Figure 1

13 pages, 5096 KiB  
Article
Yield Performance of Standard Multicrystalline, Monocrystalline, and Cast-Mono Modules in Outdoor Conditions
by Ismael Guerrero, Carlos del Cañizo and Yuanjie Yu
Energies 2024, 17(18), 4544; https://doi.org/10.3390/en17184544 - 10 Sep 2024
Cited by 2 | Viewed by 1247
Abstract
On the journey to reduce the cost of solar modules, several silicon-growing techniques have been explored to grow the wafers the cells are based on. The most utilized ones have been the multicrystalline silicon (mc-Si) and the monocrystalline ones, with monocrystalline grown by [...] Read more.
On the journey to reduce the cost of solar modules, several silicon-growing techniques have been explored to grow the wafers the cells are based on. The most utilized ones have been the multicrystalline silicon (mc-Si) and the monocrystalline ones, with monocrystalline grown by the Czochralski (Cz) technique being the current winner. Cast-mono (CM-Si) was also largely employed during the last decade, and there are several gigawatts (GWs) of modules on the field, but no data were shared on the performance of those modules. In this study, we put three small installations next to each other in the field consisting of 12 modules each, with the only difference being in the wafers technology employed: mc-Si, CM-Si, and CZ-Si. The first two systems have been manufactured with the same equipment and had their field performance closely monitored for three years, while the CZ-Si one has been monitored for 17 months. The performance data shared show that CM-Si performance on the field is better than mc-Si and is very similar to CZ-Si, with no abnormal degradation. CM-Si requires less energy than CZ-Si to be manufactured, and high efficiencies have been reported; the field performance suggests that it is a very valid technology that deserves further exploration. Full article
(This article belongs to the Special Issue Photovoltaic Solar Cells and Systems: Fundamentals and Applications)
Show Figures

Figure 1

13 pages, 5366 KiB  
Article
Characteristics and Significance of Natural Nanoparticles in the Groundwater of the Baotu Spring Area in Jinan, Shandong Province, Eastern China
by Caiping Hu, Rui Liu, Peng Zhang, Yaqin Wang, Lei Zuo, Xiaoheng Zhang and Changsuo Li
Water 2024, 16(13), 1820; https://doi.org/10.3390/w16131820 - 26 Jun 2024
Cited by 2 | Viewed by 1524
Abstract
Karst groundwater is a crucial water source, but it has faced significant environmental risks in recent years. The complexity of the groundwater system necessitates innovative approaches to studying karst groundwater. This paper focuses on the karst groundwater of the Baotu Spring area in [...] Read more.
Karst groundwater is a crucial water source, but it has faced significant environmental risks in recent years. The complexity of the groundwater system necessitates innovative approaches to studying karst groundwater. This paper focuses on the karst groundwater of the Baotu Spring area in Jinan. Using the nanoparticle tracking analysis instrument, it is observed that the collected groundwater contains many natural nanoparticles, with particle sizes mainly ranging from 76.3 to 621.8 nm and concentrations primarily between 0.31 and 5.0 × 105 Particles/L. The transmission electron microscope (TEM) is used to study the characteristics of naturally occurring nanoparticles in the karst groundwater. The results show that the karst groundwater mainly contains particles of Ca, Na, Fe, Al, Si, and other elements, which exist in granular and irregular forms. The size of individual particles varies from 40 to 600 nm, and they are mostly amorphous and monocrystalline. The characteristics of the particles suggest that the direct recharge area mainly receives infiltration from atmospheric precipitation, with minimal influence from human activities and agriculture. In contrast, the indirect recharge and discharge areas are more significantly affected by external environments, including domestic sewage, industrial wastewater discharge, and agricultural fertilizers. These findings also suggest that elements can be transported in particle form during water-rock interactions, potentially playing a significant role in the cycling of elements between water and rocks. The particles in the study area are situated in a relatively oxidized environment, suggesting that fracture and oxidation are the main processes for particle formation. Particles can effectively transport metallic elements in groundwater, offering fresh perspectives on the migration of these elements and acting as carriers for inorganic substances, thereby increasing their mobility in aquatic environments. Given the widespread presence of natural nanoparticles in the water cycle system, some stable nanoparticles can serve as new types of groundwater tracing agents during the groundwater migration process. Full article
Show Figures

Figure 1

25 pages, 32539 KiB  
Article
Material Removal Mechanism of SiC Ceramic by Porous Diamond Grinding Wheel Using Discrete Element Simulation
by Zhaoqin Zhang, Jiaxuan Xu, Yejun Zhu, Zhongxing Zhang and Weiqi Zeng
Materials 2024, 17(11), 2688; https://doi.org/10.3390/ma17112688 - 2 Jun 2024
Viewed by 1491
Abstract
SiC ceramics are typically hard and brittle materials. Serious surface/subsurface damage occurs during the grinding process due to the poor self-sharpening ability of monocrystalline diamond grits. Nevertheless, recent findings have demonstrated that porous diamond grits can achieve high-efficiency and low-damage machining. However, research [...] Read more.
SiC ceramics are typically hard and brittle materials. Serious surface/subsurface damage occurs during the grinding process due to the poor self-sharpening ability of monocrystalline diamond grits. Nevertheless, recent findings have demonstrated that porous diamond grits can achieve high-efficiency and low-damage machining. However, research on the removal mechanism of porous diamond grit while grinding SiC ceramic materials is still in the bottleneck stage. A discrete element simulation model of the porous diamond grit while grinding SiC ceramics was established to optimize the grinding parameters (e.g., grinding wheel speed, undeformed chip thickness) and pore parameters (e.g., cutting edge density) of the porous diamond grit. The influence of these above parameters on the removal and damage of SiC ceramics was explored from a microscopic perspective, comparing with monocrystalline diamond grit. The results show that porous diamond grits cause less damage to SiC ceramics and have better grinding performance than monocrystalline diamond grits. In addition, the optimal cutting edge density and undeformed chip thickness should be controlled at 1–3 and 1–2 um, respectively, and the grinding wheel speed should be greater than 80 m/s. The research results lay a scientific foundation for the efficient and low-damage grinding of hard and brittle materials represented by SiC ceramics, exhibiting theoretical significance and practical value. Full article
(This article belongs to the Special Issue Cutting Processes for Materials in Manufacturing)
Show Figures

Figure 1

20 pages, 11826 KiB  
Article
Experimental and Simulation Research on Femtosecond Laser Induced Controllable Morphology of Monocrystalline SiC
by Yang Hua, Zhenduo Zhang, Jiyu Du, Xiaoliang Liang, Wei Zhang, Yukui Cai and Quanjing Wang
Micromachines 2024, 15(5), 573; https://doi.org/10.3390/mi15050573 - 26 Apr 2024
Cited by 4 | Viewed by 3982
Abstract
Silicon carbide (SiC) is utilized in the automotive, semiconductor, and aerospace industries because of its desirable characteristics. Nevertheless, the traditional machining method induces surface microcracks, low geometrical precision, and severe tool wear due to the intrinsic high brittleness and hardness of SiC. Femtosecond [...] Read more.
Silicon carbide (SiC) is utilized in the automotive, semiconductor, and aerospace industries because of its desirable characteristics. Nevertheless, the traditional machining method induces surface microcracks, low geometrical precision, and severe tool wear due to the intrinsic high brittleness and hardness of SiC. Femtosecond laser processing as a high-precision machining method offers a new approach to SiC processing. However, during the process of femtosecond laser ablation, temperature redistribution and changes in geometrical morphology features are caused by alterations in carrier density. Therefore, the current study presented a multi-physics model that took carrier density alterations into account to more accurately predict the geometrical morphology for femtosecond laser ablating SiC. The transient nonlinear evolutions of the optical and physical characteristics of SiC irradiated by femtosecond laser were analyzed and the influence of laser parameters on the ablation morphology was studied. The femtosecond laser ablation experiments were performed, and the ablated surfaces were subsequently analyzed. The experimental results demonstrate that the proposed model can effectively predict the geometrical morphology. The predicted error of the ablation diameter is within the range from 0.15% to 7.44%. The predicted error of the ablation depth is within the range from 1.72% to 6.94%. This work can offer a new way to control the desired geometrical morphology of SiC in the automotive, semiconductor, and aerospace industries. Full article
(This article belongs to the Section D:Materials and Processing)
Show Figures

Figure 1

13 pages, 2815 KiB  
Article
The Influence of B4C Film Density on Damage Threshold Based on Monte Carlo Method for X-ray Mirror
by Tingting Sui, Haohui Zhuo, Anchun Tang and Xin Ju
Materials 2024, 17(5), 1026; https://doi.org/10.3390/ma17051026 - 23 Feb 2024
Viewed by 1127
Abstract
The uniformity and consistency of X-ray mirror film materials prepared by experimental methods are difficult to guarantee completely. These factors directly affect the service life of free electron laser devices in addition to its own optical properties. Therefore, the quality of the film [...] Read more.
The uniformity and consistency of X-ray mirror film materials prepared by experimental methods are difficult to guarantee completely. These factors directly affect the service life of free electron laser devices in addition to its own optical properties. Therefore, the quality of the film material, especially the density, has a critical effect on its application. Boron carbide film and monocrystalline silicon substrate were suitable examples to explore their influence of density on the damage threshold based on Monte Carlo and heat-conduction methods. Through simulation results, it was found that the change in film density could affect the energy deposition depth and damage threshold. When the film density was 2.48 g/cm3, it had relatively high damage threshold in all energy ranges. And then the specific incident parameter for practical application was investigated. It was found that the damage mechanism of the B4C/Si was the melting of the interface. And the damage threshold was also higher with the film density of 2.48 g/cm3. Therefore, it was recommended to maintain the density at this value as far as possible when preparing the film, and to ensure the uniformity and consistency of the film material. Full article
Show Figures

Figure 1

13 pages, 3921 KiB  
Article
Prediction of Subsurface Microcrack Damage Depth Based on Surface Roughness in Diamond Wire Sawing of Monocrystalline Silicon
by Keying Wang, Yufei Gao and Chunfeng Yang
Materials 2024, 17(3), 553; https://doi.org/10.3390/ma17030553 - 24 Jan 2024
Cited by 6 | Viewed by 1873
Abstract
In diamond wire saw cutting monocrystalline silicon (mono-Si), the material brittleness removal can cause microcrack damage in the subsurface of the as-sawn silicon wafer, which has a significant impact on the mechanical properties and subsequent processing steps of the wafers. In order to [...] Read more.
In diamond wire saw cutting monocrystalline silicon (mono-Si), the material brittleness removal can cause microcrack damage in the subsurface of the as-sawn silicon wafer, which has a significant impact on the mechanical properties and subsequent processing steps of the wafers. In order to quickly and non-destructively obtain the subsurface microcrack damage depth (SSD) of as-sawn silicon wafers, this paper conducted research on the SSD prediction model for diamond wire saw cutting of mono-Si, and established the relationship between the SSD and the as-sawn surface roughness value (SR) by comprehensively considering the effect of tangential force and the influence of the elastic stress field and residual stress field below the abrasive on the propagation of median cracks. Furthermore, the theoretical relationship model between SR and SSD has been improved by adding a coefficient considering the influence of material ductile regime removal on SR values based on experiments sawing mono-Si along the (111) crystal plane, making the theoretical prediction value of SSD more accurate. The research results indicate that a decrease in wire speed and an increase in feed speed result in an increase in SR and SSD in silicon wafers. There is a non-linear increasing relationship between silicon wafer SSD and SR, with SSD = 21.179 Ra4/3. The larger the SR, the deeper the SSD, and the smaller the relative error of SSD between the theoretical predicted and experimental measurements. The research results provide a theoretical and experimental basis for predicting silicon wafer SSD in diamond wire sawing and optimizing the process. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

20 pages, 3557 KiB  
Article
Parameters Identification of Photovoltaic Cell and Module Models Using Modified Social Group Optimization Algorithm
by Habib Kraiem, Ezzeddine Touti, Abdulaziz Alanazi, Ahmed M. Agwa, Tarek I. Alanazi, Mohamed Jamli and Lassaad Sbita
Sustainability 2023, 15(13), 10510; https://doi.org/10.3390/su151310510 - 4 Jul 2023
Cited by 11 | Viewed by 1925
Abstract
Photovoltaic systems have become more attractive alternatives to be integrated into electrical power systems. Therefore, PV cells have gained immense interest in studies related to their operation. A photovoltaic module’s performance can be optimized by identifying the parameters of a photovoltaic cell to [...] Read more.
Photovoltaic systems have become more attractive alternatives to be integrated into electrical power systems. Therefore, PV cells have gained immense interest in studies related to their operation. A photovoltaic module’s performance can be optimized by identifying the parameters of a photovoltaic cell to understand its behavior and simulate its characteristics from a given mathematical model. This work aims to extract and identify the parameters of photovoltaic cells using a novel metaheuristic algorithm named Modified Social Group Optimization (MSGO). First, a comparative study was carried out based on various technologies and models of photovoltaic modules. Then, the proposed MSGO algorithm was tested on a monocrystalline type of panel with its single-diode and double-diode models. Then, it was tested on an amorphous type of photovoltaic cell (hydrogenated amorphous silicon (a-Si: H)). Finally, an experimental validation was carried out to test the proposed MSGO algorithm and identify the parameters of the polycrystalline type of panel. All obtained results were compared to previous research findings. The present study showed that the MSGO is highly competitive and demonstrates better efficiency in parameter identification compared to other optimization algorithms. The Individual Absolute Error (IAE) obtained by the MSGO is better than the other errors for most measurement values in the case of single- and double-diode models. Relatedly, the average fitness function obtained by the MSGO algorithm has the fastest convergence rate. Full article
Show Figures

Figure 1

Back to TopTop