Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = molybdenite Re–Os dating

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
39 pages, 8119 KiB  
Article
Magmatic Redox Evolution and Porphyry–Skarn Transition in Multiphase Cu-Mo-W-Au Systems of the Eocene Tavşanlı Belt, NW Türkiye
by Hüseyin Kocatürk, Mustafa Kumral, Hüseyin Sendir, Mustafa Kaya, Robert A. Creaser and Amr Abdelnasser
Minerals 2025, 15(8), 792; https://doi.org/10.3390/min15080792 - 28 Jul 2025
Viewed by 286
Abstract
This study explores the magmatic and hydrothermal evolution of porphyry–skarn–transitional Cu-Mo-W-Au systems within the Nilüfer Mineralization Complex (NMC), located in the westernmost segment of the Eocene Tavşanlı Metallogenic Belt, NW Türkiye. Through integration of field data, whole-rock geochemistry, Re–Os molybdenite dating, and amphibole–biotite [...] Read more.
This study explores the magmatic and hydrothermal evolution of porphyry–skarn–transitional Cu-Mo-W-Au systems within the Nilüfer Mineralization Complex (NMC), located in the westernmost segment of the Eocene Tavşanlı Metallogenic Belt, NW Türkiye. Through integration of field data, whole-rock geochemistry, Re–Os molybdenite dating, and amphibole–biotite mineral chemistry, the petrogenetic controls on mineralization across four spatially associated mineralized regions (Kirazgedik, Güneybudaklar, Kozbudaklar, and Delice) were examined. The earliest and thermally most distinct phase is represented by the Kirazgedik porphyry system, characterized by high temperature (~930 °C), oxidized quartz monzodioritic intrusions emplaced at ~2.7 kbar. Rising fO2 and volatile enrichment during magma ascent facilitated structurally focused Cu-Mo mineralization. At Güneybudaklar, Re–Os geochronology yields an age of ~49.9 Ma, linking Mo- and W-rich mineralization to a transitional porphyry–skarn environment developed under moderately oxidized (ΔFMQ + 1.8 to +0.5) and hydrous (up to 7 wt.% H2O) magmatic conditions. Kozbudaklar represents a more reduced, volatile-poor skarn system, leading to Mo-enriched scheelite mineralization typical of late-stage W-skarns. The Delice system, developed at the contact of felsic cupolas and carbonates, records the broadest range of redox and fluid compositions. Mixed oxidized–reduced fluid signatures and intense fluid–rock interaction reflect complex, multistage fluid evolution involving both magmatic and external inputs. Geochemical and mineralogical trends—from increasing silica and Rb to decreasing Sr and V—trace a systematic evolution from mantle-derived to felsic, volatile-rich magmas. Structurally, mineralization is controlled by oblique fault zones that localize magma emplacement and hydrothermal flow. These findings support a unified genetic model in which porphyry and skarn mineralization styles evolved continuously from multiphase magmatic systems during syn-to-post-subduction processes, offering implications for exploration models in the Western Tethyan domain. Full article
Show Figures

Figure 1

32 pages, 32586 KiB  
Article
Magmatic Evolution at the Saindak Cu-Au Deposit: Implications for the Formation of Giant Porphyry Deposits
by Jun Hong, Yasir Shaheen Khalil, Asad Ali Narejo, Xiaoyong Yang, Tahseenullah Khan, Zhihua Wang, Huan Tang, Haidi Zhang, Bo Yang and Wenyuan Li
Minerals 2025, 15(8), 768; https://doi.org/10.3390/min15080768 - 22 Jul 2025
Viewed by 1206
Abstract
The Chagai porphyry copper belt is a major component of the Tethyan metallogenic domain, which spans approximately 300 km and hosts several giant porphyry copper deposits. The tectonic setting, whether subduction-related or post-collisional, and the deep dynamic processes governing the formation of these [...] Read more.
The Chagai porphyry copper belt is a major component of the Tethyan metallogenic domain, which spans approximately 300 km and hosts several giant porphyry copper deposits. The tectonic setting, whether subduction-related or post-collisional, and the deep dynamic processes governing the formation of these giant deposits remain poorly understood. Mafic microgranular enclaves (MMEs), mafic dikes, and multiple porphyries have been documented in the Saindak mining area. This work examines both the ore-rich and non-ore intrusions in the Saindak porphyry Cu-Au deposit, using methods like molybdenite Re-Os dating, U-Pb zircon ages, Hf isotopes, and bulk-rock geochemical data. Geochronological results indicate that ore-fertile and barren porphyries yield ages of 22.15 ± 0.22 Ma and 22.21 ± 0.33 Ma, respectively. Both MMEs and mafic dikes have zircons with nearly identical 206Pb/238U weighted mean ages (21.21 ± 0.18 Ma and 21.21 ± 0.16 Ma, respectively), corresponding to the age of the host rock. Geochemical and Sr–Nd–Hf isotopic evidence indicates that the Saindak adakites were generated by the subduction of the Arabian oceanic lithosphere under the Eurasian plate, rather than through continental collision. The adakites were mainly formed by the partial melting of a metasomatized mantle wedge, induced by fluids from the dehydrating subducting slab, with minor input from subducted sediments and later crust–mantle interactions during magma ascent. We conclude that shallow subduction of the Arabian plate during the Oligocene–Miocene may have increased the flow of subducted fluids into the sub-arc mantle source of the Chagai arc. This process may have facilitated the widespread deposition of porphyry copper and copper–gold mineralization in the region. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

21 pages, 10400 KiB  
Article
Origin of the Xulaojiugou Pb–Zn Deposit, Heilongjiang Province, NE China: Constraints from Molybdenite Re–Os Isotopic Dating, Trace Elements, and Isotopic Compositions of Sulfides
by Gan Liu, Yunsheng Ren, Jingmou Li and Wentan Xu
Minerals 2025, 15(5), 441; https://doi.org/10.3390/min15050441 - 25 Apr 2025
Viewed by 393
Abstract
The Xulaojiugou Pb–Zn deposit, situated in the eastern Xing’an-Mongolia Orogenic Belt (XMOB), represents a medium-scale Pb–Zn deposit in central Heilongjiang Province, NE China. The mineralization occurs mainly near the contact zone of porphyritic biotite granite, medium-grained monzogranite, and marble in the Early Cambrian Qianshan [...] Read more.
The Xulaojiugou Pb–Zn deposit, situated in the eastern Xing’an-Mongolia Orogenic Belt (XMOB), represents a medium-scale Pb–Zn deposit in central Heilongjiang Province, NE China. The mineralization occurs mainly near the contact zone of porphyritic biotite granite, medium-grained monzogranite, and marble in the Early Cambrian Qianshan Formation. Orebodies exhibit typical skarn characteristics and are structurally controlled by NE trending faults. To constrain the metallogenic age, ore-forming processes, and sources of ore-forming materials, we conducted integrated geochemical analyses, Re–Os isotope dating, in situ sulfur isotope analysis, and trace element analysis. Five molybdenite samples provided a Re–Os isochron age of 184.6 ± 3.0 Ma, indicating Early Jurassic mineralization. In situ δ34S values from 20 sphalerite and 9 galena samples ranged from 5.31‰ to 5.83‰, suggesting derivation of sulfur from a deep magmatic source. Trace element analysis of 42 spots from three sphalerite samples revealed formation temperatures of 248–262 °C, which are consistent with mesothermal conditions. Integrated with regional tectonic evolution, the Xulaojiugou deposit is genetically linked to medium-grained monzogranite emplacement and represents a typical skarn polymetallic deposit, which is genetically associated with the regional porphyry–skarn metallogenic system that developed during the Early Yanshanian (Jurassic) tectonic–magmatic event and was driven by the subduction of the Paleo-Pacific plate. Full article
Show Figures

Figure 1

17 pages, 9690 KiB  
Article
Age and Source of the Jinjingzui Skarn-Type Gold Deposit in the Southeastern Hubei Province, China
by Yan Li, Chun Cheng, Yuan Yao and Qinghua Yan
Appl. Sci. 2025, 15(5), 2763; https://doi.org/10.3390/app15052763 - 4 Mar 2025
Viewed by 748
Abstract
The Jinjingzui gold (Au) deposit is located in the central part of Edong, China. The theoretical gold reserves are large with significant potential for mining and future development. This deposit is the only Au-bearing deposit discovered in the Middle-Lower Yangtze River Valley Metallogenic [...] Read more.
The Jinjingzui gold (Au) deposit is located in the central part of Edong, China. The theoretical gold reserves are large with significant potential for mining and future development. This deposit is the only Au-bearing deposit discovered in the Middle-Lower Yangtze River Valley Metallogenic Belt, which has existing ore bodies that are mainly diorite. Re–Os dating of molybdenite from the Jinjingzui deposit confirm that the deposit formed in the Lower Cretaceous period, with an isochron age of 138.5 ± 2.7 Ma. The geochemical data of the rocks indicate that the diorite contains 54.75% to 56.66% SiO2, 5.68% to 8.94% Fe2O3, 2.05% to 2.19% MgO, and 1.06% to 1.08% TiO2, and with enrichment of large-ion lithophile elements (e.g., Rb and Ba). High-field-strength elements U-Nb–Ti displayed strong negative anomalies. Six pyrites from the Jinjingzui Au deposit δ34SV-PDB(‰) ranged from −2.4% to −8.4%, with an average value of −3.1%, and 206Pb~204Pb, 207Pb~204Pb, 208Pb~204Pb contents ranged from 17.77–18.58, 15.48–15.67 to 37.91–39.05, with average values of 18.14, 15.59 and 38.49, respectively. These values indicate that the metallic components originated from the upper mantle and lower crust. The Re concentrations in the molybdenites are significantly higher than those in other ores within the district (847.91~2018.58 × 10−6), suggesting a significant mantle component was involved in the mineralization process. Full article
Show Figures

Figure 1

18 pages, 4260 KiB  
Article
Metallogenic Chronology and Prospecting Indication of Tiechanghe Granite and Polymetallic Molybdenum Mineralization Types in Jiulong Area, Western Sichuan, China
by Shuang Yang, Hongqi Tan, Zhongquan Li, Junliang Hu, Xinyan Wang and Daming Liu
Minerals 2024, 14(9), 909; https://doi.org/10.3390/min14090909 - 5 Sep 2024
Cited by 2 | Viewed by 1002
Abstract
The Songpan–Ganzi Orogenic Belt (SGOB) is bounded by the South China, North China, and Qiangtang blocks and forms the eastern margin of the Tibetan Plateau. The Tiechanghe Granite is located at the junction of the southeast margin of the SGOB and the western [...] Read more.
The Songpan–Ganzi Orogenic Belt (SGOB) is bounded by the South China, North China, and Qiangtang blocks and forms the eastern margin of the Tibetan Plateau. The Tiechanghe Granite is located at the junction of the southeast margin of the SGOB and the western margin of the Yangtze Block. To elucidate the genetic relationship between the Tiechanghe Granite and the surrounding molybdenum deposits in Western Sichuan, in this study, we conducted zircon U-Pb and molybdenite Re-Os isotopic dating. The results indicate that the Tiechanghe Granite predominantly consists of monzogranite, with minor occurrences of syenogranite, while the molybdenum deposits are mainly found in skarn and quartz veins. The laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) zircon U-Pb ages of the Tiechanghe Granite range from 162.9 ± 0.7 Ma (MSWD = 0.31, n = 25) to 163.4 ± 0.6 Ma (MSWD = 0.85, n = 26), and the LA-ICP-MS zircon U-Pb age of the pegmatite veins is 164.1 ± 0.9 Ma (MSWD = 1.3, n = 19). These ages are consistent with the weighted average Re-Os age of the Ziershi molybdenite (160.3 ± 1.6 Ma, n = 2) within the error margins. These findings and previously obtained magmatic and metallogenic ages for the region suggest that a magmatic and mineralization event involving granite, molybdenum, tungsten, and copper occurred at around 162–164 Ma in the study area. This discovery broadens the exploration perspective for mineral resources in the Jiulong area of Western Sichuan and the entirety of Western Sichuan. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

27 pages, 12287 KiB  
Article
Molybdenum Mineralization in Eastern Hebei, China: Evidence from Geochronology and Isotopic Composition
by Jinlong Sun, Yang Cheng, Xinxing Liu, Guang’an Meng and Xintong Dong
Minerals 2024, 14(7), 662; https://doi.org/10.3390/min14070662 - 27 Jun 2024
Viewed by 1235
Abstract
The northern margin of the North China Craton is one of the most important porphyry-skarn molybdenum ore belts in the world. The eastern Hebei Province, which contains a high number of molybdenum and gold (molybdenum) resources, is an important portion of the northern [...] Read more.
The northern margin of the North China Craton is one of the most important porphyry-skarn molybdenum ore belts in the world. The eastern Hebei Province, which contains a high number of molybdenum and gold (molybdenum) resources, is an important portion of the northern margin of the North China Craton. Xichanggou and Huashi, located in eastern Hebei, are quartz-molybdenum vein deposits that are intimately associated with intrusions that are deeply concealed in the mining area. This work presents two zircon U-Pb dates and ten molybdenite Re-Os ages from samples of the aforementioned two deposits in order to determine the timing of the intrusion and mineralization. The zircon U-Pb ages of the quartz monzonite porphyry from Xichanggou are determined to be 163.3 ± 0.3 Ma and 162.8 ± 0.4 Ma. The molybdenite Re-Os dating yielded ages of 160.3 ± 4.6 Ma for Xichanggou and 171.4 ± 19 Ma for Huashi, respectively. The isotopic composition of oxygen and hydrogen of the ore-forming fluid from Huashi, as indicated by the δDV-SMOW values (−80.0‰ to −67.6‰) and δ18OH2O values (−1.86‰ to 2.33‰), suggests that the fluid is primarily composed of water derived from magma, with some contribution from atmospheric precipitation. The sulfur isotope values (δ34S) of sulfides from Xichanggou range from 6.5‰ to 7.1‰, while the δ34S values from Huashi range from 3.3‰ to 4.9‰. The lead isotope ratios (206Pb/204Pb and 207Pb/204Pb) of sulfides from Xichanggou and Huashi average at 17.414, 15.428, and 17.591, 15.379, respectively. The Re-Os isotopic compositions of ore sulfides mostly fall within the range of 318 ppm to 50,114 ppm. These isotopic compositions indicate that the materials responsible for the formation of the ores in Xichanggou and Huashi primarily originate from the melting of lower crust materials that have been contaminated by the mantle. Based on the regional data, the molybdenum deposits in eastern Hebei were formed in multiple periods, specifically approximately 170 Ma and 160 Ma in Huahsi and Xichanggou, respectively. The subduction of the Paleo-Pacific plate during the middle–late Jurassic period led to the partial remelting of lower crust material, resulting in the acquisition of a significant quantity of metal elements (Mo), which were subsequently deposited. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

27 pages, 22770 KiB  
Article
Ore Genesis and the Magmatism of the Yuhaixi Mo(Cu) Deposit in Eastern Tianshan, NW China: Constraints from Geology, Geochemistry, Zircon U-Pb and Molybdenite Re-Os Dating
by Di Wang, Chunji Xue, Yun Zhao, Chao Li, Binbin Xi, Yang Yang, Qinglei Tian, Xunshan Kang and Xing Wu
Minerals 2023, 13(11), 1368; https://doi.org/10.3390/min13111368 - 26 Oct 2023
Viewed by 1502
Abstract
The Yuhaixi Mo(Cu) deposit is a new discovery in the eastern section of the Dananhu-Tousuquan island arc, Eastern Tianshan. However, the genesis of the Yuhaixi Mo(Cu) deposit is still not fully understood. The Yuhaixi intrusion is composed of monzonitic granites, diorites, granites, and [...] Read more.
The Yuhaixi Mo(Cu) deposit is a new discovery in the eastern section of the Dananhu-Tousuquan island arc, Eastern Tianshan. However, the genesis of the Yuhaixi Mo(Cu) deposit is still not fully understood. The Yuhaixi intrusion is composed of monzonitic granites, diorites, granites, and gabbro dikes, among which disseminated or veinlet Mo and Cu mineralization is mainly hosted by the monzonitic granites. The LA-ICP-MS zircon U-Pb dating yields emplacement ages of 359.4 ± 1.6 Ma for the monzonitic granite, 298.8 ± 1.8 Ma for the diorite, and 307.0 ± 2.3 Ma for the granite. The Re-Os dating of molybdenite hosted by monzonitic granite yields a well-constrained 187Re-187Os isochron age of 354.1 ± 6.8 Ma (MSWD = 1.7) with a weighted average age of 344.5 ± 3.1 Ma. The Mo mineralization is closely associated with the Yuhaixi monzonitic granite. The Yuhaixi monzonitic granite rocks are characterized by high silica (SiO2 > 70 wt.%), low MgO (0.23–0.36), Ni, Cr contents, and they are enriched in light rare earth elements (LREEs) and large ion lithophile elements (LILEs: e.g., K, Ba, Pb and Sr), and depleted in heavy rare earth elements (HREEs) and high field-strength elements (HFSEs: e.g., Nb, Ta and Ti). They are weak peraluminous and have high εHf(t) (11.37–17.59) and εNd(t) (1.36–7.75) values, and varied initial 87Sr/86Sr (0.7037–0.7128) values. The Yuhaixi post-ore granites exhibit similar geochemical and isotopic signatures to the Yuhaixi monzonitic granite. These characteristics suggest that the Yuhaixi felsic rocks are likely sourced from the partial melting of the juvenile lower crust. The Yuhaixi diorite has low SiO2, and K2O contents, relatively high Na2O, MgO (Mg# = 45–53) contents, and depletions in HFSE (e.g., Nb, Ta, and Ti). These geochemical features, coupled with isotopic data such as low initial 87Sr/86Sr (≤0.7043), high εNd(t) (2.5 to 3.0) and εHf(t) (≥11.6) values, and young Hf model ages, suggest that their parental magmas possibly originated from the partial melting of the depleted lithospheric mantle that was metasomatized by hydrous melts or fluids from the subducting oceanic plate. Integrating our new results with previous works on the Dananhu-Tousuquan island arc belt, we suggest that the Yuhaixi Mo(Cu)deposit is likely sourced from the juvenile lower crust, which was formed in an arc setting, where the bipolar subduction of the North Tianshan oceanic slab forms the Dananhu Tousuquan belt to the north and the Aqishan-Yamansu belt to the south. The eastern section of the Dananhu-Tousuquan island arc is a promising target for late Paleozoic porphyry Mo(Cu) deposits. Full article
Show Figures

Figure 1

32 pages, 7755 KiB  
Article
Ore Genesis of the Lower Urgen Porphyry Molybdenum Deposit in the Northern Great Xing’an Range, Northeast China: Constraints from Molybdenite Re-Os Dating, Fluid Inclusions, and H-O-S-Pb Isotopes
by Guangliang Zhang, Wei Xie, Shouqin Wen, Qingdong Zeng, Lingli Zhou, Hui Wang, Kailun Zhang, Tieqiao Tang and Pengcheng Ma
Minerals 2023, 13(9), 1189; https://doi.org/10.3390/min13091189 - 10 Sep 2023
Cited by 1 | Viewed by 1837
Abstract
The Lower Urgen molybdenum deposit (44,856 t Mo @ 0.141%), situated in the northern Great Xing’an Range, is a newly discovered porphyry molybdenum deposit. Mineralization is characterized by veinlet-disseminated- and vein-type quartz–sulfide orebodies primarily occurring in the cupola of the Early Cretaceous granite [...] Read more.
The Lower Urgen molybdenum deposit (44,856 t Mo @ 0.141%), situated in the northern Great Xing’an Range, is a newly discovered porphyry molybdenum deposit. Mineralization is characterized by veinlet-disseminated- and vein-type quartz–sulfide orebodies primarily occurring in the cupola of the Early Cretaceous granite porphyry stock. In this study, we present a detailed description of the ore geology, molybdenite Re-Os dating, H-O-S-Pb isotopic compositions, and fluid inclusion (FI) analyses including petrography, laser Raman, and microthermometry to precisely constrain the timing of ore formation, the origin of ore-forming fluids and materials, as well as the metal precipitation mechanism. Molybdenite Re-Os dating yielded two model ages of 141.2 ± 1.5 and 147.7 ± 1.7 Ma, coeval with the regional Late Jurassic–Early Cretaceous molybdenum metallogenesis. The hydrothermal process can be divided into three stages: the quartz–molybdenite(–pyrite) stage, quartz–polymetallic sulfide stage, and quartz–carbonate stage. Four types of FIs were distinguished for quartz, including two-phase liquid-rich (L-type), saline (S-type), CO2-rich (C1-type), and CO2-bearing (C2-type) FIs. Microthermometric data showed that the homogenization temperatures and salinities from the early to late stages were 240–430 °C, 5.0–11.9, and 30.1–50.8 wt% NaCl equiv.; 180–280 °C and 3.0–9.1 wt% NaCl equiv.; and 120–220 °C and 0.2–7.9 wt% NaCl equiv., respectively, suggesting a decreasing trend. H-O isotopic compositions indicate that the ore-forming fluids were initially of magmatic origin with the increasing incorporation of meteoric water. S-Pb isotopic compositions indicate that the ore-forming materials originated from granitic magmas, and the mineralization is genetically related to the ore-bearing granite porphyry stock in the deposit. Fluid immiscibility and fluid–rock interaction are collectively responsible for the massive deposition of molybdenite in stage 1, whereas fluid mixing and immiscibility played a critical role in the deposition of polymetallic sulfide in stage 2. Full article
Show Figures

Figure 1

16 pages, 10276 KiB  
Article
Biotite Geochemistry and Its Implication for the Difference in Mineralization in the Xiongcun Porphyry Cu–Au Ore District, Tibet
by Pan Tang, Juxing Tang, Xinghai Lang, Bin Lin, Fuwei Xie, Miao Sun, Faqiao Li, Jing Qi, Hao Cui, Mengdie Wang, Yan Xiong and Gang Tao
Minerals 2023, 13(7), 876; https://doi.org/10.3390/min13070876 - 29 Jun 2023
Cited by 4 | Viewed by 2777
Abstract
The Xiongcun Cu–Au ore district is in the southern middle Gangdese Metallogenic Belt, Tibet, and formed during Neo-Tethyan oceanic subduction. The Xiongcun ore district mainly comprises two deposits, the No. I and No. II deposits, which were formed by two individual mineralization events [...] Read more.
The Xiongcun Cu–Au ore district is in the southern middle Gangdese Metallogenic Belt, Tibet, and formed during Neo-Tethyan oceanic subduction. The Xiongcun ore district mainly comprises two deposits, the No. I and No. II deposits, which were formed by two individual mineralization events according to deposit geology and Re–Os isotopic dating of molybdenite. The No. I deposit is similar to a reduced porphyry copper–gold deposit, given the widespread occurrence of primary and/or hydrothermal pyrrhotite and common CH4-rich and rare N2-rich fluid inclusions. The No. II deposit, similar to classic oxidized porphyry copper–gold deposits, contains highly oxidized minerals, including magnetite, anhydrite, and hematite. The halogen chemistry of the ore-forming fluid from the No. I and No. II deposits is still unclear. Biotite geochemistry with halogen contents was used to investigate the differences in ore-forming fluid between the No. I and No. II deposits. Hydrothermal biotite from the No. I deposit, usually intergrown with sphalerite, is Mg-rich and classified as phlogopite and Mg-biotite, and hydrothermal biotite from the No. II deposit is classified as Mg-biotite. Hydrothermal biotite from the No. I deposit has significantly higher SiO2, MnO, MgO, F, Li, Sc, Zn, Rb, Tl, and Pb contents and lower Al2O3, FeOtot, Cl, Ba, Cr, V, Co, Ni, Y, Sr, Zr, Th, and Cu contents than the biotite from the No. II deposit. Hydrothermal biotites from the No. I and No. II deposits yield temperatures ranging from 230 °C to 593 °C and 212 °C to 306 °C, respectively. The calculated oxygen fugacity and fugacity ratios indicate that the hydrothermal fluid of the No. I deposit has a higher F content, oxygen fugacity, and log(fHF/fHCl) value and a lower log(fH2O/fHF) value than the hydrothermal fluid from the No. II deposit. The biotite geochemistry shows that the No. I and No. II deposits formed from different hydrothermal fluids. The hydrothermal fluid of the No. I deposit was mixed with meteoric waters containing organic matter, resulting in a decrease in oxygen fugacity and more efficient precipitation of gold. The No. I and No. II deposits were formed by a Cl-rich hydrothermal system conducive to transporting Cu and Au. The decreasing Cl, oxygen fugacity, and temperature may be the key factors in Cu and Au precipitation. Biotite geochemistry allows a more detailed evaluation of the halogen chemistry of hydrothermal fluids and their evolution within porphyry Cu systems. Full article
Show Figures

Figure 1

16 pages, 4610 KiB  
Article
Metallogenic Mechanism and Geodynamic Background of the Chang’an Chong Cu-Mo Deposit in Southern Ailaoshan Tectonic Belt: New Evidence from Garnet U-Pb Dating and In-Situ S Isotope
by Bin Sun, Yi Liu, Yongfeng Yan, Lei Ye and Gang Chen
Minerals 2022, 12(11), 1389; https://doi.org/10.3390/min12111389 - 31 Oct 2022
Cited by 1 | Viewed by 2445
Abstract
The Chang’an Chong Cu-Mo deposit is located in the Chang’an Cu-Mo-Au ore cluster in the southern Ailaoshan tectonic belt in southwestern China. There are six intrusive bodies in the mining area, among which the No.Ⅱ intrusive body is the largest and most closely [...] Read more.
The Chang’an Chong Cu-Mo deposit is located in the Chang’an Cu-Mo-Au ore cluster in the southern Ailaoshan tectonic belt in southwestern China. There are six intrusive bodies in the mining area, among which the No.Ⅱ intrusive body is the largest and most closely related to Cu-Mo mineralization of skarn. The No. 1 main orebody is composed of the No. 1 copper orebody and No. 1 molybdenum orebody, which are distributed in parallel with similar shapes. In this paper, the age of skarn is determined by the LA-SF-ICP-MS U-Pb dating of garnet, and it is nearly consistent with the age of alkaline porphyry in this region (41–32 Ma). Compared with the U-Pb age of zircon from the ore-bearing porphyry and the Re-Os age of molybdenite, the U-Pb age of garnet was consistent with them within error, indicating that they were the same mineralization event, which further proves that the porphyry-skarn Cu-Mo-Au mineralization event along the Ailaoshan-Red River fault zone mainly occurred at 38~32 Ma. In-situ S isotope results show that the δ34S mean values of disseminated pyrite (PyI), pyrite of sulfide veins (PyⅡ) and chalcopyrite (Ccp) in the main mineralization period are 2.35‰, 3.60‰ and 0.55‰, respectively. These δ34S values are similar to those of magma and slightly enriched in δ34S, and the δ34S value of chalcopyrite is mainly concentrated near 0‰, so it can be considered that the S of the ore-forming fluid came from magmatic-hydrothermal fluids. Based on the comprehensive analysis of the regional metallogenic background, deposit chronology and isotope geochemistry, it is concluded that the Chang’an Chong Cu-Mo deposit was formed in an intra-plate post-collision strike-slip environment. Full article
(This article belongs to the Special Issue Applications of U-Th-Pb Geochronology of Accessory Minerals)
Show Figures

Figure 1

25 pages, 7509 KiB  
Article
Age, Genesis and Tectonic Setting of the Sayashk Tin Deposit in the East Junggar Region: Constraints from Lu–Hf Isotopes, Zircon U–Pb and Molybdenite Re–Os Dating
by Zhenjun Sun, Guanghu Liu, Yunsheng Ren, Xi Chen, Xinhao Sun, Chengyang Wang and Zuowu Li
Minerals 2022, 12(9), 1063; https://doi.org/10.3390/min12091063 - 23 Aug 2022
Cited by 2 | Viewed by 2035
Abstract
The Sayashk tin (Sn) deposit is located within the southern part of the Eastern Junggar orogenic belt in Xinjiang Province and forms part of the Kalamaili alkaline granite belt. There are many Sn polymetallic deposits in the area. To constrain the age, genesis, [...] Read more.
The Sayashk tin (Sn) deposit is located within the southern part of the Eastern Junggar orogenic belt in Xinjiang Province and forms part of the Kalamaili alkaline granite belt. There are many Sn polymetallic deposits in the area. To constrain the age, genesis, and tectonic setting of the Sayashk tin deposit in the East Junggar region, we conducted a bulk-rock geochemical analysis of the granite porphyry (SR1) and medium- to fine-grained granite (SR2) hosts of the deposit, LA-ICP-MS zircon U–Pb dating and Lu–Hf isotopic analysis, as well as molybdenite Re–OS dating and combined our results with the metallogenic conditions and other geological characteristics of the deposit. The results show that the Sayashk Sn deposit is indeed spatially, temporally, and genetically closely related to the granite porphyry and medium-fine-grained granite. Both zircon U–Pb ages are 308.2 ± 1.5 Ma and 310.9 ± 1.5 Ma, respectively. The isochron age of molybdenite is 301.4 ± 6.7 Ma, which represents the crystallization age of the granite porphyry and medium-fine-grained granite. Therefore, all of them formed in the late Carboniferous epoch. The medium-fine-grained granites and granite porphyry are characteristically rich in Si and alkali, poor in Ca and Mg, rich in high field-strength elements (HFSE, e.g., Zr, Hf) and Ce, and deficient in Ba, Sr, Eu, P, and Ti. They are typical A-type granites, showing the characteristics of a mixed crustal mantle source. The εHf(t) values of the zircon from the granite porphyry (SR1) range from 10.27 to 16.17 (average 13.71), εHf(t) values of the zircon from the medium-fine-grained granites (SR2) are between 5.72 and 9.21 (average 7.08), and the single model ages (TDM1) and two-stage model ages (TDM2) of the granite porphyry (SR1) fall within the ranges of 319~535 Ma and 339~644 Ma. The single model ages (TDM1) and two-stage model ages (TDM2) of the medium-fine-grained granites (SR2) fall within the ranges of 346~479 Ma and 309~557 Ma. There is little difference between their two-stage model ages and zircon U–Pb ages, indicating that the Sayashk granite may be the product of partial melting of juvenile crustal. Combined with previous research results, the Sayashk Sn deposit formed in a post-collision extensional tectonic setting after the late Carboniferous in the Kalamaili area. Full article
(This article belongs to the Special Issue Genesis and Metallogeny of Non-ferrous and Precious Metal Deposits)
Show Figures

Figure 1

15 pages, 6126 KiB  
Article
Geochronology and Tectonic Implications of the Nianzigou Granites and Associated Mo Deposit, Inner Mongolia
by Yang Li, Yongqiang Yang, Lei Hua, Yaxing Leng and Jiang Xin
Minerals 2022, 12(7), 791; https://doi.org/10.3390/min12070791 - 21 Jun 2022
Cited by 1 | Viewed by 2497
Abstract
Multiple stages of igneous rocks occur in the recently discovered Nianzigou Mo deposit in Chifeng, Inner Mongolia, which can provide insights into the late Mesozoic geodynamic evolution of the southern Da Hinggan Range. The mineralization age is similar to the age of local [...] Read more.
Multiple stages of igneous rocks occur in the recently discovered Nianzigou Mo deposit in Chifeng, Inner Mongolia, which can provide insights into the late Mesozoic geodynamic evolution of the southern Da Hinggan Range. The mineralization age is similar to the age of local granites, but there are few detailed studies of the tectonic setting during Cu-Mo mineralization in this area. The Nianzigou Mo deposit is located close to the northern margin of the North China Craton and in the eastern Central Asian Orogenic Belt and is a typical quartz-vein-type Mo deposit in the Xilamulun Mo ore belt. The granite in this deposit has high SiO2, Al2O3, K2O, and Na2O contents, and low MgO, CaO, and Fe2O3t contents. The granite is characterized by enrichments in large-ion lithophile elements and depletions in high-field-strength elements and, in particular, Sr, Ti, and P. The granite has high contents of rare-earth elements, is enriched in light rare-earth elements, and has marked negative Eu anomalies. The granite is an alkaline and calc-alkaline and metaluminous A-type granite. The zircon U-Pb ages of the monzogranite and granite porphyry are 157.2 ± 0.3 and 154.4 ± 0.4 Ma. The model age obtained by Re-Os isotopic dating is 154.3 ± 1.7 Ma, indicating that molybdenite mineralization also occurred during the Late Jurassic period. Given that the molybdenite Re contents are 7.8–24.9 ppm (average = 16.8 ppm), the ore-forming materials of the Nianzigou Mo deposit had a mixed crust–mantle source, but were mainly derived from the lower crust. Based on the geology and geochemistry, we propose that the Nianzigou Mo deposit formed in a postorogenic extensional tectonic setting associated with the southward subduction of the Mongol–Okhotsk oceanic plate. Full article
Show Figures

Figure 1

34 pages, 13450 KiB  
Article
Zircon U-Pb Dating of Magmatism and Mineralizing Hydrothermal Activity in the Variscan Karkonosze Massif and Its Eastern Metamorphic Cover (SW Poland)
by Stanisław Z. Mikulski, Ian S. Williams, Holly J. Stein and Jan Wierchowiec
Minerals 2020, 10(9), 787; https://doi.org/10.3390/min10090787 - 7 Sep 2020
Cited by 18 | Viewed by 4118
Abstract
SHRIMP (Sensitive high resolution ion microprobe) zircon U-Pb dating of the two main igneous rocks types in the Karkonosze Pluton, porphyritic and equigranular monzogranite, yield 206Pb/238U ages between 312.0 ± 2.9 and 306.9 ± 3.0 Ma. These coincide, within uncertainty, [...] Read more.
SHRIMP (Sensitive high resolution ion microprobe) zircon U-Pb dating of the two main igneous rocks types in the Karkonosze Pluton, porphyritic and equigranular monzogranite, yield 206Pb/238U ages between 312.0 ± 2.9 and 306.9 ± 3.0 Ma. These coincide, within uncertainty, with the majority of previous dates from the pluton, which indicate development of the main magmatic processes between ca. 315 and 303 Ma. They also coincide with molybdenite and sulfide Re-Os ages from ore deposits developed during magmatic and pneumatolitic-hydrothermal (e.g., Szklarska Poręba Huta and Michałowice) or/and metasomatic and hydrothermal (e.g., Kowary, Czarnów and Miedzianka) processes forming Mo-W-Sn-Fe-Cu-As-REE-Y-Nb-Th-U mineralization. The 206Pb/238U zircon age of 300.7 ± 2.4 Ma from a rhyolite porphyry dyke (with disseminated base metal sulfide mineralization) in the Miedzianka Cu-(U) deposit coincides with the development of regional tectonic processes along the Intra-Sudetic Fault. Moreover, at the end-Carboniferous, transition from a collisional to within-plate tectonic setting in the central part of the European Variscides introduced volcanism in the Intra-Sudetic Basin. Together, these processes produced brecciation of older ore mineralization, as well as metal remobilization and deposition of younger medium- and low-temperature hydrothermal mineralization (mainly Cu-Fe-Zn-Pb-Ag-Au-Bi-Se, and Th-U), which became superimposed on earlier high-temperature Mo-W-Sn- Fe-As-Cu-REE mineralization. A few 206Pb/238U ages > 320 Ma remain to be reconciled, but might be due to the high U and Th contents of the zircon and the strong influence of overprinting pneumatolitic-hydrothermal processes. Full article
Show Figures

Figure 1

27 pages, 8804 KiB  
Article
U-Pb, Ar-Ar, and Re-Os Geochronological Constraints on Multiple Magmatic–Hydrothermal Episodes at the Lake George Mine, Central New Brunswick
by Carlin Lentz, Kathleen Thorne, Christopher R. M. McFarlane and Douglas A. Archibald
Minerals 2020, 10(6), 566; https://doi.org/10.3390/min10060566 - 23 Jun 2020
Cited by 6 | Viewed by 4191
Abstract
The Lake George antimony mine was at one time North America’s largest producer of antimony. Despite being widely known for the antimony mineralization, the deposit also hosts a range of styles of mineralization such as multiple generations of W-Mo bearing quartz veins as [...] Read more.
The Lake George antimony mine was at one time North America’s largest producer of antimony. Despite being widely known for the antimony mineralization, the deposit also hosts a range of styles of mineralization such as multiple generations of W-Mo bearing quartz veins as well as a system of As-Au bearing quartz–carbonate veins. In situ U-Pb zircon geochronology, using LA ICP-MS, of the Lake George granodiorite yielded a weighted mean 206Pb/238U age of 419.6 ± 3.0 Ma. Step heating of phlogopite separated from the lamprophyre dykes produced a 40Ar/39Ar plateau segment date of 419.4 ± 1.4 Ma. Single molybdenite crystal analysis for Re-Os geochronology was conducted on two W-Mo-bearing quartz veins, which cross-cut altered granodiorite and altered metasedimentary rocks and yielded two dates of 415.7 ± 1.7 Ma and 416.1 ± 1.7 Ma respectively. 40Ar/39Ar geochronology of muscovite from alteration associated with Au-bearing quartz–carbonate veins yielded one representative plateau segment date of 414.1 ± 1.3 Ma. The dates produced in this study revealed that the different magmatic–hydrothermal events at the Lake George mine occurred over approximately a 10-million-year period at the end of the Silurian and the start of the Devonian following the termination of the Acadian orogeny. Full article
(This article belongs to the Special Issue Magmatic–Hydrothermal Alteration and Mineralizing Processes)
Show Figures

Figure 1

18 pages, 16479 KiB  
Article
Re-Os Geochronology, Whole-Rock and Radiogenic Isotope Geochemistry of the Wulandele Porphyry Molybdenum Deposit in Inner Mongolia, China, and Their Geological Significance
by Xiaojun Zhang, Chunliang Yao, David R. Lentz, Ying Qin, Yiwen Wei, Fengshun Zhao, Zhen Yang, Rui Liu and Zhenfei Zhang
Minerals 2020, 10(4), 374; https://doi.org/10.3390/min10040374 - 21 Apr 2020
Cited by 2 | Viewed by 3500
Abstract
The Wulandele molybdenum deposit is a porphyry-type Mo deposit in the Dalaimiao area of northern Inner Mongolia, China. Molybdenite Re-Os dating yields a model age of 134.8 ± 1.9 Ma, with the fine-grained monzogranite most closely related to the mineralization. The lithogeochemical data [...] Read more.
The Wulandele molybdenum deposit is a porphyry-type Mo deposit in the Dalaimiao area of northern Inner Mongolia, China. Molybdenite Re-Os dating yields a model age of 134.8 ± 1.9 Ma, with the fine-grained monzogranite most closely related to the mineralization. The lithogeochemical data show that the monzogranite is weakly peraluminous, high-K calc-alkaline series, with reduced to slightly oxidized, highly fractionated I-type granite characteristics. The relatively low initial 87Sr/86Sr (range from 0.705347 to 0.705771), weakly negative εNd(t) (range from −2.0 to −1.3), and crust-mantle mixing of Pb isotopes suggest that the monzogranite originated from the partial melting of mafic juvenile lower continental crust derived from the depleted mantle, with a minor component of ancient continental crust. Combined with the regional tectonic evolution, we argue that the partial melting, then injection, of the monzogranite melt was probably triggered by collapse or delamination of the thickened lithosphere, which was mainly in response to the post-orogenic extensional setting of the Mongol–Okhotsk belt; this is possibly coupled with a back-arc extension related to Paleo-Pacific plate subduction. The extensively fractional crystallization of the monzogranite melt is the crucial enrichment process, resulting in magmatic hydrothermal Mo mineralization in the Wulandele deposit, and the Cretaceous granitoids are generally favorable to form Mo mineralization in the Dalaimiao area. Full article
(This article belongs to the Special Issue Magmatic–Hydrothermal Alteration and Mineralizing Processes)
Show Figures

Figure 1

Back to TopTop