Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (68)

Search Parameters:
Keywords = molecular mimicry proteins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 604 KiB  
Review
Autoantibodies in COVID-19: Pathogenic Mechanisms and Implications for Severe Illness and Post-Acute Sequelae
by Lais Alves do-Nascimento, Nicolle Rakanidis Machado, Isabella Siuffi Bergamasco, João Vitor da Silva Borges, Fabio da Ressureição Sgnotto and Jefferson Russo Victor
COVID 2025, 5(8), 121; https://doi.org/10.3390/covid5080121 - 30 Jul 2025
Viewed by 268
Abstract
The COVID-19 pandemic, caused by SARS-CoV-2, has led to a wide range of acute and chronic disease manifestations. While most infections are mild, a significant number of patients develop severe illness marked by respiratory failure, thromboinflammation, and multi-organ dysfunction. In addition, post-acute sequelae—commonly [...] Read more.
The COVID-19 pandemic, caused by SARS-CoV-2, has led to a wide range of acute and chronic disease manifestations. While most infections are mild, a significant number of patients develop severe illness marked by respiratory failure, thromboinflammation, and multi-organ dysfunction. In addition, post-acute sequelae—commonly known as long-COVID—can persist for months. Recent studies have identified the emergence of diverse autoantibodies in COVID-19, including those targeting nuclear antigens, phospholipids, type I interferons, cytokines, endothelial components, and G-protein-coupled receptors. These autoantibodies are more frequently detected in patients with moderate to severe disease and have been implicated in immune dysregulation, vascular injury, and persistent symptoms. This review examines the underlying immunological mechanisms driving autoantibody production during SARS-CoV-2 infection—including molecular mimicry, epitope spreading, and bystander activation—and discusses their functional roles in acute and post-acute disease. We further explore the relevance of autoantibodies in maternal–fetal immunity and comorbid conditions such as autoimmunity and cancer, and we summarize current and emerging therapeutic strategies. A comprehensive understanding of SARS-CoV-2-induced autoantibodies may improve risk stratification, inform clinical management, and guide the development of targeted immunomodulatory therapies. Full article
(This article belongs to the Section Host Genetics and Susceptibility/Resistance)
Show Figures

Figure 1

26 pages, 1044 KiB  
Review
Immunomodulatory Mechanisms Underlying Neurological Manifestations in Long COVID: Implications for Immune-Mediated Neurodegeneration
by Zaw Myo Hein, Thazin, Suresh Kumar, Muhammad Danial Che Ramli and Che Mohd Nasril Che Mohd Nassir
Int. J. Mol. Sci. 2025, 26(13), 6214; https://doi.org/10.3390/ijms26136214 - 27 Jun 2025
Viewed by 2137
Abstract
The COVID-19 pandemic has revealed the profound and lasting impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on the nervous system. Beyond acute infection, SARS-CoV-2 acts as a potent immunomodulatory agent, disrupting immune homeostasis and contributing to persistent inflammation, autoimmunity, and neurodegeneration. [...] Read more.
The COVID-19 pandemic has revealed the profound and lasting impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on the nervous system. Beyond acute infection, SARS-CoV-2 acts as a potent immunomodulatory agent, disrupting immune homeostasis and contributing to persistent inflammation, autoimmunity, and neurodegeneration. Long COVID, or post-acute sequelae of SARS-CoV-2 infection (PASC), is characterized by a spectrum of neurological symptoms, including cognitive dysfunction, fatigue, neuropathy, and mood disturbances. These are linked to immune dysregulation involving cytokine imbalance, blood–brain barrier (BBB) disruption, glial activation, and T-cell exhaustion. Key biomarkers such as interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), glial fibrillary acidic protein (GFAP), and neurofilament light chain (NFL) correlate with disease severity and chronicity. This narrative review examines the immunopathological mechanisms underpinning the neurological sequelae of long COVID, focusing on neuroinflammation, endothelial dysfunction, and molecular mimicry. We also assess the role of viral variants in shaping neuroimmune outcomes and explore emerging diagnostic and therapeutic strategies, including biomarker-guided and immune-targeted interventions. By delineating how SARS-CoV-2 reshapes neuroimmune interactions, this review aims to support the development of precision-based diagnostics and targeted therapies for long COVID-related neurological dysfunction. Emerging approaches include immune-modulatory agents (e.g., anti-IL-6), neuroprotective drugs, and strategies for repurposing antiviral or anti-inflammatory compounds in neuro-COVID. Given the high prevalence of comorbidities, personalized therapies guided by biomarkers and patient-specific immune profiles may be essential. Advancements in vaccine technologies and targeted biologics may also hold promise for prevention and disease modification. Finally, continued interdisciplinary research is needed to clarify the complex virus–immune–brain axis in long COVID and inform effective clinical management. Full article
Show Figures

Figure 1

22 pages, 552 KiB  
Review
The Role of Epstein-Barr Virus in the Pathogenesis of Autoimmune Diseases
by Natalia Morawiec, Bożena Adamczyk, Aleksandra Spyra, Mikołaj Herba, Sylwia Boczek, Natalia Korbel, Piotr Polechoński and Monika Adamczyk-Sowa
Medicina 2025, 61(7), 1148; https://doi.org/10.3390/medicina61071148 - 25 Jun 2025
Viewed by 1254
Abstract
Background and Objectives: The Epstein-Barr virus (EBV) belongs to the gamma herpesviruses family. Evidence from the literature suggests that EBV initiates immune responses and the production of antibodies. Chronic or recurrent EBV infections may be associated with autoimmune diseases such as systemic [...] Read more.
Background and Objectives: The Epstein-Barr virus (EBV) belongs to the gamma herpesviruses family. Evidence from the literature suggests that EBV initiates immune responses and the production of antibodies. Chronic or recurrent EBV infections may be associated with autoimmune diseases such as systemic lupus erythematosus, Sjögren’s syndrome, rheumatoid arthritis, multiple sclerosis, or inflammatory bowel diseases. This review aims to establish the role of EBV in the development and progression of autoimmune diseases. Materials and Methods: A literature search was conducted using PubMed, PMC, Google Scholar, and SCOPUS. Relevant studies, including meta-analyses, case-control studies, literature reviews, cross-sectional studies, and longitudinal studies, were identified through titles and abstracts screening for a comprehensive analysis. Results: Our study revealed a strong association between EBV infection and several autoimmune diseases, including multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, and inflammatory bowel disease. Epstein-Barr virus seropositivity was significantly higher in affected individuals. Elevated EBV-specific antibodies correlated with disease onset and severity. EBV DNA and latency proteins were detected in diseased tissues, alongside immune dysregulation and molecular mimicry mechanisms. Conclusions: Our findings highlight that EBV may be an important factor in autoimmune disease pathogenesis, contributing to immune activation and tissue damage. Further research is needed to explore EBV-targeted therapies and their potential in preventing or managing autoimmune diseases. Full article
(This article belongs to the Section Hematology and Immunology)
Show Figures

Figure 1

17 pages, 3492 KiB  
Article
Similarity to Self-Antigens Shapes Epitope Recognition from Viruses Under Autoimmune and Infectious Disease
by Alvaro Ras-Carmona, Alexander Lehmann and Pedro A. Reche
Int. J. Mol. Sci. 2025, 26(13), 6041; https://doi.org/10.3390/ijms26136041 - 24 Jun 2025
Viewed by 399
Abstract
Self/non-self-discrimination is a fundamental aspect of adaptive immunity, which helps prevent harmful autoimmune responses. However, infectious agents can also act as environmental catalysts for autoimmune diseases. In this study, we investigated the role of molecular mimicry to self-antigens in epitope recognition in relation [...] Read more.
Self/non-self-discrimination is a fundamental aspect of adaptive immunity, which helps prevent harmful autoimmune responses. However, infectious agents can also act as environmental catalysts for autoimmune diseases. In this study, we investigated the role of molecular mimicry to self-antigens in epitope recognition in relation to infectious and autoimmune diseases. To this end, we performed BLAST searches against the human proteome, utilizing known virus-specific B and T cell peptide epitopes identified in association with autoimmune or infectious diseases in humans as our queries. Additionally, similar control analyses were carried out using non-B and non-T cell epitopes, consisting of random viral peptide sequences. Overall, our results endorsed a major role of molecular mimicry in instigating or sustaining autoimmunity associated with viral infections and challenged the prevailing view on self/non-self-discrimination for T cells. Additionally, we uncovered many virus-specific epitopes among those identified in association with infectious diseases with high similarity to self-antigens, which are primarily derived from human coronaviruses and various flaviviruses. Recognition of these epitopes could lead to autoimmunity against human proteins that are in cellular components concerning cell motility, cell membrane projections, and cellular synapses. Full article
Show Figures

Figure 1

32 pages, 2557 KiB  
Article
Ensemble-Based Binding Free Energy Profiling and Network Analysis of the KRAS Interactions with DARPin Proteins Targeting Distinct Binding Sites: Revealing Molecular Determinants and Universal Architecture of Regulatory Hotspots and Allosteric Binding
by Mohammed Alshahrani, Vedant Parikh, Brandon Foley and Gennady Verkhivker
Biomolecules 2025, 15(6), 819; https://doi.org/10.3390/biom15060819 - 5 Jun 2025
Viewed by 728
Abstract
KRAS is a pivotal oncoprotein that regulates cell proliferation and survival through interactions with downstream effectors such as RAF1. Despite significant advances in understanding KRAS biology, the structural and dynamic mechanisms of KRAS allostery remain poorly understood. In this study, we employ microsecond [...] Read more.
KRAS is a pivotal oncoprotein that regulates cell proliferation and survival through interactions with downstream effectors such as RAF1. Despite significant advances in understanding KRAS biology, the structural and dynamic mechanisms of KRAS allostery remain poorly understood. In this study, we employ microsecond molecular dynamics simulations, mutational scanning, and binding free energy calculations together with dynamic network modeling to dissect how engineered DARPin proteins K27, K55, K13, and K19 engage KRAS through diverse molecular mechanisms ranging from effector mimicry to conformational restriction and allosteric modulation. Mutational scanning across all four DARPin systems identifies a core set of evolutionarily constrained residues that function as universal hotspots in KRAS recognition. KRAS residues I36, Y40, M67, and H95 consistently emerge as critical contributors to binding stability. Binding free energy computations show that, despite similar binding modes, K27 relies heavily on electrostatic contributions from major binding hotspots while K55 exploits a dense hydrophobic cluster enhancing its effector-mimetic signature. The allosteric binders K13 and K19, by contrast, stabilize a KRAS-specific pocket in the α3–loop–α4 motif, introducing new hinges and bottlenecks that rewire the communication architecture of KRAS without full immobilization. Network-based analysis reveals a strikingly consistent theme: despite their distinct mechanisms of recognition, all systems engage a unifying allosteric architecture that spans multiple functional motifs. This architecture is not only preserved across complexes but also mirrors the intrinsic communication framework of KRAS itself, where specific residues function as central hubs transmitting conformational changes across the protein. By integrating dynamic profiling, energetic mapping, and network modeling, our study provides a multi-scale mechanistic roadmap for targeting KRAS, revealing how engineered proteins can exploit both conserved motifs and isoform-specific features to enable precision modulation of KRAS signaling in oncogenic contexts. Full article
Show Figures

Graphical abstract

29 pages, 1661 KiB  
Review
Microbial Metabolite Effects on Vasculogenic Mimicry in Metastatic Cancers
by Mohammad Kamalabadi Farahani, Aisa Bahar, Hamed Tahmasebi, Valentyn Oksenych and Mojdeh Jahantigh
Cells 2025, 14(11), 811; https://doi.org/10.3390/cells14110811 - 30 May 2025
Viewed by 617
Abstract
Aggressive cancer cells can form new, functional blood vessel-like structures independently of endothelial cells, known as vasculogenic mimicry (VM), instead of the usual tumor blood vessel formation process. However, the symbiotic relationship between microbial communities and human cells ensures the upkeep of cellular [...] Read more.
Aggressive cancer cells can form new, functional blood vessel-like structures independently of endothelial cells, known as vasculogenic mimicry (VM), instead of the usual tumor blood vessel formation process. However, the symbiotic relationship between microbial communities and human cells ensures the upkeep of cellular metabolism and the functionality of the immune system and metastatic cancers. This interaction typically happens through the generation and management of hormonal intermediates, metabolites, secondary metabolites, proteins, and toxins. A disturbance in the balance between the host and microbiota can alter the dynamics of their relationship, creating a conducive environment for the development of diseases, such as cancers. This review aims to synthesize the initial evidence on the molecular processes governing the interactions between GM and cancer development and emphasize microbial metabolites’ effects on vasculogenic mimicry. Some microbial metabolites could also contribute to developing interactions between microbes and the tumor microenvironment. While numerous obstacles persist, GM’s immense significance and complete capability in shaping tailored anticancer plans cannot be exaggerated, highlighting the need to investigate a holistic method that includes microbial modulation therapy in cancer management. Full article
Show Figures

Graphical abstract

18 pages, 2372 KiB  
Review
LncRNAs Regulate Vasculogenic Mimicry in Human Cancers
by Eloísa Ibarra-Sierra, Mercedes Bermúdez, Carlos Esteban Villegas-Mercado, Macrina B. Silva-Cázares and César López-Camarillo
Cells 2025, 14(8), 616; https://doi.org/10.3390/cells14080616 - 20 Apr 2025
Viewed by 760
Abstract
Vasculogenic mimicry (VM) has recently been discovered as an alternative mechanism for nourishing cancer cells in vivo. During VM, tumor cells align and organize themselves into three-dimensional (3D) channel-like structures to transport nutrients and oxygen to the internal layers of tumors. This mechanism [...] Read more.
Vasculogenic mimicry (VM) has recently been discovered as an alternative mechanism for nourishing cancer cells in vivo. During VM, tumor cells align and organize themselves into three-dimensional (3D) channel-like structures to transport nutrients and oxygen to the internal layers of tumors. This mechanism mainly occurs in aggressive solid tumors and has been associated with poor prognosis in oncologic patients. Long non-coding RNAs (lncRNAs) are essential regulators of protein-encoding genes involved in cancer development and progression. These single-stranded RNA molecules regulate critical cellular functions in cancer cells including cell proliferation, apoptosis, angiogenesis, VM, therapy response, migration, invasion, and metastasis. Recently, high-throughput RNA-sequencing technologies have identified thousands of lncRNAs, but only a small percentage of them have been functionally characterized in human cancers. The vast amount of data about its genomic expression in tumors can allow us to dissect their functions in cancer biology and make them suitable biomarkers for cancer diagnosis and prognosis. In this study, we reviewed the current knowledge about the role of lncRNAs in regulating VM in cancer. We also examined the molecular mechanisms of lncRNAs and highlight several commonalities in the cellular functions associated with VM between diverse cancer types. Future directions for research focused on deciphering their function in VM are delineated. Finally, the potential of selected lncRNAs as novel therapeutic targets in RNA-based molecular interventions is also discussed. Full article
(This article belongs to the Special Issue Non-Coding and Coding RNAs in Targeted Cancer Therapy)
Show Figures

Graphical abstract

46 pages, 6442 KiB  
Review
Stress Responses and Mechanisms of Phytopathogens Infecting Humans: Threats, Drivers, and Recommendations
by Md. Motaher Hossain, Farjana Sultana, Mahabuba Mostafa, Humayra Ferdus, Mrinmoy Kundu, Shanta Adhikary, Nabela Akter, Ankita Saha and Md. Abdullah Al Sabbir
Stresses 2025, 5(2), 28; https://doi.org/10.3390/stresses5020028 - 18 Apr 2025
Cited by 1 | Viewed by 3188
Abstract
Cross-kingdom infections, where pathogens from one kingdom infect organisms of another, were historically regarded as rare anomalies with minimal concern. However, emerging evidence reveals their increasing prevalence and potential to disrupt the delicate balance between plant, animal, and human health systems. Traditionally recognized [...] Read more.
Cross-kingdom infections, where pathogens from one kingdom infect organisms of another, were historically regarded as rare anomalies with minimal concern. However, emerging evidence reveals their increasing prevalence and potential to disrupt the delicate balance between plant, animal, and human health systems. Traditionally recognized as plant-specific, a subset of phytopathogens, including certain fungi, bacteria, viruses, and nematodes, have demonstrated the capacity to infect non-plant hosts, particularly immunocompromised individuals. These pathogens exploit conserved molecular mechanisms, such as immune evasion strategies, stress responses, and effector proteins, to breach host-specific barriers and establish infections. Specifically, fungal pathogens like Fusarium spp. and Colletotrichum spp. employ toxin-mediated cytotoxicity and cell-wall-degrading enzymes, while bacterial pathogens, such as Pseudomonas syringae, utilize type III secretion systems to manipulate host immune responses. Viral and nematode phytopathogens also exhibit molecular mimicry and host-derived RNA silencing suppressors to facilitate infections beyond plant hosts. This review features emerging cases of phytopathogen-driven animal and human infections and dissects the key molecular and ecological determinants that facilitate such cross-kingdom transmission. It also highlights critical drivers, including pathogen plasticity, horizontal gene transfer, and the convergence of environmental and anthropogenic stressors that breach traditional host boundaries. Furthermore, this review focuses on the underlying molecular mechanisms that enable host adaptation and the evolutionary pressures shaping these transitions. To address the complex threats posed by cross-kingdom phytopathogens, a comprehensive One Health approach that bridges plant, animal, and human health strategies is advocated. Integrating molecular surveillance, pathogen genomics, AI-powered predictive modeling, and global biosecurity initiatives is essential to detect, monitor, and mitigate cross-kingdom infections. This interdisciplinary approach not only enhances our preparedness for emerging zoonoses and phytopathogen spillovers but also strengthens ecological resilience and public health security in an era of increasing biological convergence. Full article
(This article belongs to the Collection Feature Papers in Human and Animal Stresses)
Show Figures

Figure 1

10 pages, 866 KiB  
Communication
Autoimmune Diseases and Molecular Mimicry in Tuberculosis
by Leonid P. Churilov, Muslimbek G. Normatov, Hong Ling, Min Zhuang, Dmitry Kudlay and Anna Starshinova
Biology 2024, 13(12), 1083; https://doi.org/10.3390/biology13121083 - 22 Dec 2024
Cited by 1 | Viewed by 1980
Abstract
Comorbidities in tuberculosis patients are increasing annually. Autoimmune pathology may influence the diagnosis and treatment of tuberculosis (TB). However, the molecular mimicry between Mycobacterium tuberculosis (Mtb) and human autoantigens is an important provocative factor in the development of autoimmunity on one hand. Mtb [...] Read more.
Comorbidities in tuberculosis patients are increasing annually. Autoimmune pathology may influence the diagnosis and treatment of tuberculosis (TB). However, the molecular mimicry between Mycobacterium tuberculosis (Mtb) and human autoantigens is an important provocative factor in the development of autoimmunity on one hand. Mtb has already been widely discussed as a provocateur of autoimmunity in humans. The aim of this study was to determine whether molecular mimicry exists between Mtb antigens and human autoantigens previously demonstrated as targets of autoimmunity. Materials and Methods: We analyzed the level of antibodies in 19 patients with pulmonary tuberculosis. In all cases ELISA assays was used. Also, in parallel, we identified 29 similar pentapeptides between key Mtb antigens and human autoantigens. Bioinformatic methods were used in this study. All amino acid sequences of MT antigens and human autoantigens were obtained from the UniProt database, and similar epitopes between Mtb antigens and human autoantigens were identified using the original “Alignmentaj” program. The immunoreactivity of the shared pentapeptides in Mtb antigens was evaluated with use of the IEDB database. Results: The high level of antibodies to modified citrulinated vimentin (anti-MCV) was most frequently detected (57%) in comparison with other antibodies. Elevated levels of antibodies to C3 complement fragments (47%) and rheumatoid factors (21%) in the absence of any rheumatic or autoimmune diseases are noteworthy. Several of the shared pentapeptides belong to the immunoreactive epitopes of Mtb antigens. The bioinformatic data correlated with our earlier studies of the levels of corresponding autoantibodies in the sera of TB patients. Conclusion: Our findings on cross-reactivity and sequence similarity between the Mtb proteins and human autoantigens provide support for the role of antigen mimicry in TB-related autoimmunity. Full article
(This article belongs to the Special Issue Pathogen-Host Interaction and Vaccine/Drug Design)
Show Figures

Figure 1

17 pages, 2166 KiB  
Article
Immunogenic Cell Death Traits Emitted from Chronic Lymphocytic Leukemia Cells Following Treatment with a Novel Anti-Cancer Agent, SpiD3
by Elizabeth Schmitz, Abigail Ridout, Audrey L. Smith, Alexandria P. Eiken, Sydney A. Skupa, Erin M. Drengler, Sarbjit Singh, Sandeep Rana, Amarnath Natarajan and Dalia El-Gamal
Biomedicines 2024, 12(12), 2857; https://doi.org/10.3390/biomedicines12122857 - 16 Dec 2024
Cited by 1 | Viewed by 1593
Abstract
Background: Targeted therapies (e.g., ibrutinib) have markedly improved chronic lymphocytic leukemia (CLL) management; however, ~20% of patients experience disease relapse, suggesting the inadequate depth and durability of these front-line strategies. Moreover, immunotherapeutic success in CLL has been stifled by its pro-tumor microenvironment milieu [...] Read more.
Background: Targeted therapies (e.g., ibrutinib) have markedly improved chronic lymphocytic leukemia (CLL) management; however, ~20% of patients experience disease relapse, suggesting the inadequate depth and durability of these front-line strategies. Moreover, immunotherapeutic success in CLL has been stifled by its pro-tumor microenvironment milieu and low mutational burden, cultivating poor antigenicity and limited ability to generate anti-tumor immunity through adaptive immune cell engagement. Previously, we have demonstrated how a three-carbon-linker spirocyclic dimer (SpiD3) promotes futile activation of the unfolded protein response (UPR) in CLL cells through immense misfolded-protein mimicry, culminating in insurmountable ER stress and programmed CLL cell death. Method: Herein, we used flow cytometry and cell-based assays to capture the kinetics and magnitude of SpiD3-induced damage-associated molecular patterns (DAMPs) in CLL cell lines and primary samples. Result: SpiD3 treatment, in vitro and in vivo, demonstrated the capacity to propagate immunogenic cell death through emissions of classically immunogenic DAMPs (CALR, ATP, HMGB1) and establish a chemotactic gradient for bone marrow-derived dendritic cells. Conclusions: Thus, this study supports future investigation into the relationship between novel therapeutics, manners of cancer cell death, and their contributions to adaptive immune cell engagement as a means for improving anti-cancer therapy in CLL. Full article
Show Figures

Figure 1

15 pages, 609 KiB  
Review
Molecular Mimicry Between Gut Microbiome and Rheumatoid Arthritis: Current Concepts
by Anandanarayan Muruganandam, Filippo Migliorini, Naveen Jeyaraman, Raju Vaishya, Sangeetha Balaji, Swaminathan Ramasubramanian, Nicola Maffulli and Madhan Jeyaraman
Med. Sci. 2024, 12(4), 72; https://doi.org/10.3390/medsci12040072 - 12 Dec 2024
Cited by 2 | Viewed by 2259
Abstract
Rheumatoid arthritis (RA) represents an autoimmune condition impacted by a combination of genetic and environmental factors, with the gut microbiome (GMB) being one of the influential environmental factors. Patients with RA display notable modifications in the composition of their GMB, characterised by decreased [...] Read more.
Rheumatoid arthritis (RA) represents an autoimmune condition impacted by a combination of genetic and environmental factors, with the gut microbiome (GMB) being one of the influential environmental factors. Patients with RA display notable modifications in the composition of their GMB, characterised by decreased diversity and distinct bacterial alterations. The GMB, comprising an extensive array of approximately 35,000 bacterial species residing within the gastrointestinal tract, has garnered considerable attention as a pivotal contributor to both human health and the pathogenesis of diseases. This article provides an in-depth exploration of the intricate involvement of the GMB in the context of RA. The oral–GMB axis highlights the complex role of bacteria in RA pathogenesis by producing antibodies to citrullinated proteins (ACPAs) through molecular mimicry. Dysbiosis affects Tregs, cytokine levels, and RA disease activity, suggesting that regulating cytokines could be a strategy for managing inflammation in RA. The GMB also has significant implications for drug responses and toxicity, giving rise to the field of pharmacomicrobiomics. The composition of the microbiota can impact the efficacy and toxicity of drugs, while the microbiota’s metabolites can influence drug response. Recent research has identified specific bacteria, metabolites, and immune responses associated with RA, offering potential targets for personalised management. However, several challenges, including the variation in microbial composition, establishing causality, accounting for confounding factors, and translating findings into clinical practice, need to be addressed. Microbiome-targeted therapy is still in its early stages and requires further research and standardisation for effective implementation. Full article
Show Figures

Figure 1

19 pages, 12126 KiB  
Article
Insight into the Phylogenetic Relationships of Phasmatodea and Selection Pressure Analysis of Phraortes liaoningensis Chen & He, 1991 (Phasmatodea: Lonchodidae) Using Mitogenomes
by Yuxin Chen, Yani Yuan, Wenhui Yang, Kenneth B. Storey, Jiayong Zhang and Danna Yu
Insects 2024, 15(11), 858; https://doi.org/10.3390/insects15110858 - 3 Nov 2024
Cited by 2 | Viewed by 2001
Abstract
Stick and leaf insects are a group among the Insecta that are famous for their extraordinary mimicry ability. Since the establishment of the Phasmatodea, their internal classification has been constantly revised. Mitochondrial genes as molecular markers have been widely used for species classification, [...] Read more.
Stick and leaf insects are a group among the Insecta that are famous for their extraordinary mimicry ability. Since the establishment of the Phasmatodea, their internal classification has been constantly revised. Mitochondrial genes as molecular markers have been widely used for species classification, but the phylogenetic relationships within the Phasmatodea remain to be thoroughly discussed. In the present study, five mitogenomes of Phasmatodea ranging from 15,746 bp to 16,747 bp in length were sequenced. Bayesian inference (BI) and maximum likelihood (ML) analyses were carried out based on a 13 PCGs data matrix (nt123) and a combined matrix of 13 PCGs and two rRNA genes (nt123_rRNA). The present study supports the conclusion that Phylliidae was the basal group of Neophasmatodea and confirms the monophyly of Lonchodinae and Necrosciinae, but it shows that Lonchodidae was polyphyletic. A sister group of Bacillidae and Pseudophasmatidae was also recovered. The phylogenetic tree based on the nt_123 dataset showed higher node support values. The construction of a divergent time tree in this study supported the conclusion that extant Phasmatodea originated in the Jurassic (170 Mya) and most lineages diverged after the Cretaceous–Paleogene extinction event. To explore whether the mitochondrial genes of Phraortes liaoningensis collected from high latitudes where low temperatures occur for eight months of the year are under selection pressure, this study used the branch-site model and the branch model to analyze the selection pressure on the 13 mitochondria protein-coding genes (PCGs). We found that both ND2 and ND4L of Ph. liaoningensis exhibited positive selection sites using the branch-site model. This study shows that a low-temperature environment causes mitochondrial genes to be selected to meet the energy requirements for survival. Full article
(This article belongs to the Special Issue Insect Mitogenome, Phylogeny, and Mitochondrial Genome Expression)
Show Figures

Figure 1

17 pages, 2474 KiB  
Article
Molecular Mimicry between Toxoplasma gondii B-Cell Epitopes and Neurodevelopmental Proteins: An Immunoinformatic Approach
by Karla F. Meza-Sosa, David Valle-Garcia, Hugo González-Conchillos, Tonali Blanco-Ayala, Alelí Salazar, Itamar Flores, Saúl Gómez-Manzo, Dinora Fabiola González Esquivel, Gonzalo Pérez de la Cruz, Benjamín Pineda and Verónica Pérez de la Cruz
Biomolecules 2024, 14(8), 933; https://doi.org/10.3390/biom14080933 - 1 Aug 2024
Viewed by 2072
Abstract
Epidemiological studies and meta-analyses have shown a strong association between high seroprevalence of Toxoplasma gondii (T. gondii) and schizophrenia. Schizophrenic patients showed higher levels of anti-Toxoplasma immunoglobulins M and G (IgM and IgG) when compared to healthy controls. Previously, in a [...] Read more.
Epidemiological studies and meta-analyses have shown a strong association between high seroprevalence of Toxoplasma gondii (T. gondii) and schizophrenia. Schizophrenic patients showed higher levels of anti-Toxoplasma immunoglobulins M and G (IgM and IgG) when compared to healthy controls. Previously, in a rat model, we demonstrated that the progeny of mothers immunized with T. gondii lysates before gestation had behavioral and social impairments during adulthood. Therefore, we suggested that T. gondii infection can trigger autoreactivity by molecularly mimicking host brain proteins. Here, we aimed to identify the occurrence of antigenic mimicry between T. gondii epitopes and host brain proteins. Using a bioinformatic approach, we predicted T. gondii RH-88 B cell epitopes and compared them to human cell-surface proteins involved in brain development and differentiation (BrainS). Five different algorithms for B-cell-epitope prediction were used and compared, resulting in 8584 T. gondii epitopes. We then compared T. gondii predicted epitopes to BrainS proteins by local sequence alignments using BLASTP. T. gondii immunogenic epitopes significantly overlapped with 42 BrainS proteins. Among these overlapping proteins essential for brain development and differentiation, we identified HSP90 and NOTCH receptors as the proteins most likely to be targeted by the maternally generated pathogenic antibodies due to their topological overlap at the extracellular region of their sequence. This analysis highlights the relevance of pregestational clinical surveillance and screening for potential pathogenic anti-T. gondii antibodies. It also identifies potential targets for the design of vaccines that could prevent behavioral and cognitive impairments associated with pre-gestational T. gondii exposure. Full article
Show Figures

Figure 1

16 pages, 1408 KiB  
Review
A Comprehensive Review on the Intricate Interplay between COVID-19 Immunization and the New Onset of Pemphigus Foliaceus
by Beatrice Bălăceanu-Gurău, Adrian Dumitrascu, Călin Giurcăneanu, Raluca Tatar, Cristian-Dorin Gurău and Olguța Anca Orzan
Vaccines 2024, 12(8), 857; https://doi.org/10.3390/vaccines12080857 - 30 Jul 2024
Viewed by 2260
Abstract
Autoimmune bullous diseases (AIBDs) are characterized by the formation of vesicles, bullous lesions, and mucosal erosions. The autoantibodies target the cellular anchoring structures from the surface of epidermal keratinocyte named desmosomes, leading to a loss of cellular cohesion named acantholysis. AIBDs are classified [...] Read more.
Autoimmune bullous diseases (AIBDs) are characterized by the formation of vesicles, bullous lesions, and mucosal erosions. The autoantibodies target the cellular anchoring structures from the surface of epidermal keratinocyte named desmosomes, leading to a loss of cellular cohesion named acantholysis. AIBDs are classified into intraepidermal or subepidermal types based on clinical features, histological characteristics, and immunofluorescence patterns. Pemphigus foliaceus (PF) is an acquired, rare, autoimmune skin condition associated with autoantibodies that specifically target desmoglein-1, leading to a clinical presentation characterized by delicate cutaneous blisters, typically sparing the mucous membranes. Several factors, including genetic predisposition, environmental triggers, malignancies, medication use, and vaccination (for influenza, hepatitis B, rabies, tetanus, and more recently, severe acute respiratory syndrome Coronavirus 2 known as SARS-CoV-2), can potentially trigger the onset of pemphigus. With the advent of vaccines playing a pivotal role in combatting the 2019 coronavirus disease (COVID-19), extensive research has been conducted globally to ascertain their efficacy and potential cutaneous adverse effects. While reports of AIBDs post-COVID-19 vaccination exist in the medical literature, instances of PF following vaccination have been less commonly reported worldwide. The disease’s pathophysiology is likely attributed to the resemblance between the ribonucleic acid (RNA) antigen present in these vaccines and cellular nuclear matter. The protein produced by the BNT-162b2 messenger ribonucleic acid (mRNA) vaccine includes immunogenic epitopes that could potentially trigger autoimmune phenomena in predisposed individuals through several mechanisms, including molecular mimicry, the activation of pattern recognition receptors, the polyclonal stimulation of B cells, type I interferon production, and autoinflammation. In this review, we present a comprehensive examination of the existing literature regarding the relationship between COVID-19 and PF, delving into their intricate interactions. This exploration improves the understanding of both pemphigus and mRNA vaccine mechanisms, highlighting the importance of close monitoring for PF post-immunization. Full article
(This article belongs to the Special Issue 2nd Edition: Safety and Autoimmune Response to SARS-CoV-2 Vaccination)
Show Figures

Figure 1

9 pages, 817 KiB  
Review
Hepatitis C Virus and Molecular Mimicry
by Lynette Goh and Nanda Kerkar
Pathogens 2024, 13(7), 527; https://doi.org/10.3390/pathogens13070527 - 22 Jun 2024
Cited by 2 | Viewed by 1666
Abstract
This review delves into the interactions between hepatitis C virus (HCV) and the host immune system, shedding light on how by using the mechanism of molecular mimicry, the virus strategically evades the immune system, resulting in a cascade of diverse complications. HCV, notorious [...] Read more.
This review delves into the interactions between hepatitis C virus (HCV) and the host immune system, shedding light on how by using the mechanism of molecular mimicry, the virus strategically evades the immune system, resulting in a cascade of diverse complications. HCV, notorious for its ability to persistently infect hepatocytes, employs molecular mimicry to resemble host proteins, thereby avoiding immune detection and mounting an effective defense. This mimicry also triggers systemic autoimmune responses that lead to various sequelae. The objective of this review is to comprehensively explore the role of HCV-induced molecular mimicry, which not only facilitates viral survival but is also instrumental in developing autoimmune and inflammatory disorders. By mimicking host proteins, HCV triggers an immune response that inadvertently attacks the host, fostering the development of autoimmune and other inflammatory disorders. Understanding the nuanced mechanisms of HCV-mediated molecular mimicry provides crucial insights into the multifaceted sequelae of viral infections on host immune responses. Unravelling these complexities is paramount for advancing therapeutic strategies that not only target the virus directly but also mitigate the secondary autoimmune and inflammatory complications induced by HCV. Full article
Show Figures

Figure 1

Back to TopTop