Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,797)

Search Parameters:
Keywords = model railway

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 17158 KiB  
Article
Deep Learning Strategy for UAV-Based Multi-Class Damage Detection on Railway Bridges Using U-Net with Different Loss Functions
by Yong-Hyoun Na and Doo-Kie Kim
Appl. Sci. 2025, 15(15), 8719; https://doi.org/10.3390/app15158719 (registering DOI) - 7 Aug 2025
Abstract
Periodic visual inspections are currently conducted to maintain the condition of railway bridges. These inspections rely on direct visual assessments by human inspectors, often requiring specialized equipment such as aerial ladders. However, this method is not only time-consuming and costly but also involves [...] Read more.
Periodic visual inspections are currently conducted to maintain the condition of railway bridges. These inspections rely on direct visual assessments by human inspectors, often requiring specialized equipment such as aerial ladders. However, this method is not only time-consuming and costly but also involves significant safety risks. Therefore, there is a growing need for a more efficient and reliable alternative to traditional visual inspections of railway bridges. In this study, we evaluated and compared the performance of damage detection using U-Net-based deep learning models on images captured by unmanned aerial vehicles (UAVs). The target damage types include cracks, concrete spalling and delamination, water leakage, exposed reinforcement, and paint peeling. To enable multi-class segmentation, the U-Net model was trained using three different loss functions: Cross-Entropy Loss, Focal Loss, and Intersection over Union (IoU) Loss. We compared these methods to determine their ability to distinguish actual structural damage from environmental factors and surface contamination, particularly under real-world site conditions. The results showed that the U-Net model trained with IoU Loss outperformed the others in terms of detection accuracy. When applied to field inspection scenarios, this approach demonstrates strong potential for objective and precise damage detection. Furthermore, the use of UAVs in the inspection process is expected to significantly reduce both time and cost in railway infrastructure maintenance. Future research will focus on extending the detection capabilities to additional damage types such as efflorescence and corrosion, aiming to ultimately replace manual visual inspections of railway bridge surfaces with deep-learning-based methods. Full article
Show Figures

Figure 1

20 pages, 9888 KiB  
Article
WeatherClean: An Image Restoration Algorithm for UAV-Based Railway Inspection in Adverse Weather
by Kewen Wang, Shaobing Yang, Zexuan Zhang, Zhipeng Wang, Limin Jia, Mengwei Li and Shengjia Yu
Sensors 2025, 25(15), 4799; https://doi.org/10.3390/s25154799 - 4 Aug 2025
Viewed by 182
Abstract
UAV-based inspections are an effective way to ensure railway safety and have gained significant attention. However, images captured during complex weather conditions, such as rain, snow, or fog, often suffer from severe degradation, affecting image recognition accuracy. Existing algorithms for removing rain, snow, [...] Read more.
UAV-based inspections are an effective way to ensure railway safety and have gained significant attention. However, images captured during complex weather conditions, such as rain, snow, or fog, often suffer from severe degradation, affecting image recognition accuracy. Existing algorithms for removing rain, snow, and fog have two main limitations: they do not adaptively learn features under varying weather complexities and struggle with managing complex noise patterns in drone inspections, leading to incomplete noise removal. To address these challenges, this study proposes a novel framework for removing rain, snow, and fog from drone images, called WeatherClean. This framework introduces a Weather Complexity Adjustment Factor (WCAF) in a parameterized adjustable network architecture to process weather degradation of varying degrees adaptively. It also employs a hierarchical multi-scale cropping strategy to enhance the recovery of fine noise and edge structures. Additionally, it incorporates a degradation synthesis method based on atmospheric scattering physical models to generate training samples that align with real-world weather patterns, thereby mitigating data scarcity issues. Experimental results show that WeatherClean outperforms existing methods by effectively removing noise particles while preserving image details. This advancement provides more reliable high-definition visual references for drone-based railway inspections, significantly enhancing inspection capabilities under complex weather conditions and ensuring the safety of railway operations. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

33 pages, 8443 KiB  
Article
Model for Planning and Optimization of Train Crew Rosters for Sustainable Railway Transport
by Zdenka Bulková, Juraj Čamaj and Jozef Gašparík
Sustainability 2025, 17(15), 7069; https://doi.org/10.3390/su17157069 - 4 Aug 2025
Viewed by 210
Abstract
Efficient planning of train crew rosters is a key factor in ensuring operational reliability and promoting long-term sustainability in railway transport, both economically and socially. This article presents a systematic approach to developing a crew rostering model in passenger rail transport, with a [...] Read more.
Efficient planning of train crew rosters is a key factor in ensuring operational reliability and promoting long-term sustainability in railway transport, both economically and socially. This article presents a systematic approach to developing a crew rostering model in passenger rail transport, with a focus on the operational setting of the train crew depot in Česká Třebová, a city in the Czech Republic. The seven-step methodology includes identifying available train shifts, defining scheduling constraints, creating roster variants, and calculating personnel and time requirements for each option. The proposed roster reduced staffing needs by two employees, increased the average shift duration to 9 h and 42 min, and decreased non-productive time by 384 h annually. These improvements enhance sustainability by optimizing human resource use, lowering unnecessary energy consumption, and improving employees’ work–life balance. The model also provides a quantitative assessment of operational feasibility and economic efficiency. Compared to existing rosters, the proposed model offers clear advantages and remains applicable even in settings with limited technological support. The findings show that a well-designed rostering system can contribute not only to cost savings and personnel stabilization, but also to broader objectives in sustainable public transport, supporting resilient and resource-efficient rail operations. Full article
Show Figures

Figure 1

86 pages, 28919 KiB  
Article
Sustainable Risk Mapping of High-Speed Rail Networks Through PS-InSAR and Geospatial Analysis
by Seung-Jun Lee, Hong-Sik Yun and Sang-Woo Kwak
Sustainability 2025, 17(15), 7064; https://doi.org/10.3390/su17157064 - 4 Aug 2025
Viewed by 111
Abstract
This study presents an integrated geospatial framework for assessing the risk to high-speed railway (HSR) infrastructure, combining a persistent scatterer interferometric synthetic aperture radar (PS-InSAR) analysis with multi-criteria decision-making in a geographic information system (GIS) environment. Focusing on the Honam HSR corridor in [...] Read more.
This study presents an integrated geospatial framework for assessing the risk to high-speed railway (HSR) infrastructure, combining a persistent scatterer interferometric synthetic aperture radar (PS-InSAR) analysis with multi-criteria decision-making in a geographic information system (GIS) environment. Focusing on the Honam HSR corridor in South Korea, the model incorporates both maximum ground deformation and subsidence velocity to construct a dynamic hazard index. Social vulnerability is quantified using five demographic and infrastructural indicators, and a two-stage analytic hierarchy process (AHP) is applied with dependency correction to mitigate inter-variable redundancy. The resulting high-resolution risk maps highlight spatial mismatches between geotechnical hazards and social exposure, revealing vulnerable segments in Gongju and Iksan that require prioritized maintenance and mitigation. The framework also addresses data limitations by interpolating groundwater levels and estimating train speed using spatial techniques. Designed to be scalable and transferable, this methodology offers a practical decision-support tool for infrastructure managers and policymakers aiming to enhance the resilience of linear transport systems. Full article
(This article belongs to the Section Hazards and Sustainability)
Show Figures

Figure 1

24 pages, 6558 KiB  
Article
Utilizing Forest Trees for Mitigation of Low-Frequency Ground Vibration Induced by Railway Operation
by Zeyu Zhang, Xiaohui Zhang, Zhiyao Tian and Chao He
Appl. Sci. 2025, 15(15), 8618; https://doi.org/10.3390/app15158618 (registering DOI) - 4 Aug 2025
Viewed by 65
Abstract
Forest trees have emerged as a promising passive solution for mitigating low-frequency ground vibrations generated by railway operations, offering ecological and cost-effective advantages. This study proposes a three-dimensional semi-analytical method developed for evaluating the dynamic responses of the coupled track–ground–tree system. The thin-layer [...] Read more.
Forest trees have emerged as a promising passive solution for mitigating low-frequency ground vibrations generated by railway operations, offering ecological and cost-effective advantages. This study proposes a three-dimensional semi-analytical method developed for evaluating the dynamic responses of the coupled track–ground–tree system. The thin-layer method is employed to derive an explicit Green’s function corresponding to a har-monic point load acting on a layered half-space, which is subsequently applied to couple the foundation with the track system. The forest trees are modeled as surface oscillators coupled on the ground surface to evaluate the characteristics of multiple scattered wavefields. The vibration attenuation capacity of forest trees in mitigating railway-induced ground vibrations is systematically investigated using the proposed method. In the direction perpendicular to the track on the ground surface, a graded array of forest trees with varying heights is capable of forming a broad mitigation frequency band below 80 Hz. Due to the interaction of wave fields excited by harmonic point loads at multiple locations, the attenuation performance of the tree system varies significantly across different positions on the surface. The influence of variability in tree height, radius, and density on system performance is subsequently examined using a Monte Carlo simulation. Despite the inherent randomness in tree characteristics, the forest still demonstrates notable attenuation effectiveness at frequencies below 80 Hz. Among the considered parameters, variations in tree height exert the most pronounced effect on the uncertainty of attenuation performance, followed sequentially by variations in density and radius. Full article
Show Figures

Figure 1

32 pages, 1747 KiB  
Article
Can Regional Infrastructure Predict Its Economic Resilience? Limited Evidence from Spatial Modelling
by Mantas Rimidis and Mindaugas Butkus
Sustainability 2025, 17(15), 7046; https://doi.org/10.3390/su17157046 - 3 Aug 2025
Viewed by 180
Abstract
This study examines whether regional infrastructure can predict economic resilience in European regions, focusing on resistance, recovery, and reorientation during the COVID-19 crisis. While infrastructure is widely recognized as a key factor influencing regional resilience, its explicit role has been underexplored in the [...] Read more.
This study examines whether regional infrastructure can predict economic resilience in European regions, focusing on resistance, recovery, and reorientation during the COVID-19 crisis. While infrastructure is widely recognized as a key factor influencing regional resilience, its explicit role has been underexplored in the European context. Using a comprehensive literature review and spatial econometric models applied to NUTS-2 level data from 2017 to 2024, we investigate the direct and spatial spillover effects of various infrastructure types—transportation, healthcare, tourism, education, and digital access—on regional resilience outcomes. We apply OLS and four spatial models (SEM, SLX, SDEM, SDM) under 29 spatial weighting matrices to account for spatial autocorrelation. Results show that motorway density, early school leaving, and healthcare infrastructure in neighbouring regions significantly affect resistance. For recovery, railway density and GDP per capita emerge as key predictors, with notable spatial spillovers. Reorientation is shaped by population structure, railway density, and tourism infrastructure, with both positive and negative spatial dynamics observed. The findings underscore the importance of infrastructure not only in isolation but also within regional systems, revealing complex interdependencies. We conclude that policymakers must consider spatial externalities and coordinate infrastructure investments to enhance regional economic resilience across interconnected Europe. Full article
Show Figures

Figure 1

21 pages, 8015 KiB  
Article
Differential Mechanism of 3D Motions of Falling Debris in Tunnels Under Extreme Wind Environments Induced by a Single Train and by Trains Crossing
by Wei-Chao Yang, Hong He, Yi-Kang Liu and Lun Zhao
Appl. Sci. 2025, 15(15), 8523; https://doi.org/10.3390/app15158523 (registering DOI) - 31 Jul 2025
Viewed by 113
Abstract
The extended operation of high-speed railways has led to an increased incidence of tunnel lining defects, with falling debris posing a significant safety threat. Within tunnels, single-train passage and trains-crossing events constitute the most frequent operational scenarios, both generating extreme aerodynamic environments that [...] Read more.
The extended operation of high-speed railways has led to an increased incidence of tunnel lining defects, with falling debris posing a significant safety threat. Within tunnels, single-train passage and trains-crossing events constitute the most frequent operational scenarios, both generating extreme aerodynamic environments that alter debris trajectories from free fall. To systematically investigate the aerodynamic differences and underlying mechanisms governing falling debris behavior under these two distinct conditions, a three-dimensional computational fluid dynamics (CFD) model (debris–air–tunnel–train) was developed using an improved delayed detached eddy simulation (IDDES) turbulence model. Comparative analyses focused on the translational and rotational motions as well as the aerodynamic load coefficients of the debris in both single-train and trains-crossing scenarios. The mechanisms driving the changes in debris aerodynamic behavior are elucidated. Findings reveal that under single-train operation, falling debris travels a greater distance compared with trains-crossing conditions. Specifically, at train speeds ranging from 250–350 km/h, the average flight distances of falling debris in the X and Z directions under single-train conditions surpass those under trains crossing conditions by 10.3 and 5.5 times, respectively. At a train speed of 300 km/h, the impulse of CFx and CFz under single-train conditions is 8.6 and 4.5 times greater than under trains-crossing conditions, consequently leading to the observed reduction in flight distance. Under the conditions of trains crossing, the falling debris is situated between the two trains, and although the wind speed is low, the flow field exhibits instability. This is the primary factor contributing to the reduced flight distance of the falling debris. However, it also leads to more pronounced trajectory deviations and increased speed fluctuations under intersection conditions. The relative velocity (CRV) on the falling debris surface is diminished, resulting in smaller-scale vortex structures that are more numerous. Consequently, the aerodynamic load coefficient is reduced, while the fluctuation range experiences an increase. Full article
(This article belongs to the Special Issue Transportation and Infrastructures Under Extreme Weather Conditions)
Show Figures

Figure 1

31 pages, 5334 KiB  
Article
Tailoring a Three-Layer Track Model to Delay Instability and Minimize Critical Velocity Effects at Very High Velocities
by Zuzana Dimitrovová
Infrastructures 2025, 10(8), 200; https://doi.org/10.3390/infrastructures10080200 - 31 Jul 2025
Viewed by 102
Abstract
The aim of this paper is to tailor the geometry and material parameters of a three-layer railway track model to achieve favorable properties for the circulation of high-speed trains at very high velocities. The three layers imply that the model should have three [...] Read more.
The aim of this paper is to tailor the geometry and material parameters of a three-layer railway track model to achieve favorable properties for the circulation of high-speed trains at very high velocities. The three layers imply that the model should have three critical velocities for resonance. However, in many cases, some of these values are missing and must be replaced by pseudo-critical values. Since no resonance occurs at pseudo-critical velocities, even in the absence of damping, deflections never reach infinity. By using optimization techniques, it is possible to adjust the model’s parameters, so that the increase in vibrations remains minimal and does not pose a real danger. In this way, circulation velocities could be extended beyond the critical value, thereby increasing the network capacity and, consequently, improving the competitiveness of rail transport compared to other modes of transportation, thus contributing to decarbonization. The presented results are preliminary and require further analysis and validation. Several optimization techniques are implemented, leading to the establishment of designs that already have rather high pseudo-critical velocities. Further research will show how these theoretical findings can be utilized in practice. Full article
Show Figures

Figure 1

19 pages, 3130 KiB  
Article
Deep Learning-Based Instance Segmentation of Galloping High-Speed Railway Overhead Contact System Conductors in Video Images
by Xiaotong Yao, Huayu Yuan, Shanpeng Zhao, Wei Tian, Dongzhao Han, Xiaoping Li, Feng Wang and Sihua Wang
Sensors 2025, 25(15), 4714; https://doi.org/10.3390/s25154714 - 30 Jul 2025
Viewed by 234
Abstract
The conductors of high-speed railway OCSs (Overhead Contact Systems) are susceptible to conductor galloping due to the impact of natural elements such as strong winds, rain, and snow, resulting in conductor fatigue damage and significantly compromising train operational safety. Consequently, monitoring the galloping [...] Read more.
The conductors of high-speed railway OCSs (Overhead Contact Systems) are susceptible to conductor galloping due to the impact of natural elements such as strong winds, rain, and snow, resulting in conductor fatigue damage and significantly compromising train operational safety. Consequently, monitoring the galloping status of conductors is crucial, and instance segmentation techniques, by delineating the pixel-level contours of each conductor, can significantly aid in the identification and study of galloping phenomena. This work expands upon the YOLO11-seg model and introduces an instance segmentation approach for galloping video and image sensor data of OCS conductors. The algorithm, designed for the stripe-like distribution of OCS conductors in the data, employs four-direction Sobel filters to extract edge features in horizontal, vertical, and diagonal orientations. These features are subsequently integrated with the original convolutional branch to form the FDSE (Four Direction Sobel Enhancement) module. It integrates the ECA (Efficient Channel Attention) mechanism for the adaptive augmentation of conductor characteristics and utilizes the FL (Focal Loss) function to mitigate the class-imbalance issue between positive and negative samples, hence enhancing the model’s sensitivity to conductors. Consequently, segmentation outcomes from neighboring frames are utilized, and mask-difference analysis is performed to autonomously detect conductor galloping locations, emphasizing their contours for the clear depiction of galloping characteristics. Experimental results demonstrate that the enhanced YOLO11-seg model achieves 85.38% precision, 77.30% recall, 84.25% AP@0.5, 81.14% F1-score, and a real-time processing speed of 44.78 FPS. When combined with the galloping visualization module, it can issue real-time alerts of conductor galloping anomalies, providing robust technical support for railway OCS safety monitoring. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

25 pages, 15607 KiB  
Article
A Multi-Objective Optimization Method for Carbon–REC Trading in an Integrated Energy System of High-Speed Railways
by Wei-Na Zhang, Zhe Xu, Ying-Yi Hong, Fang-Yu Liu and Zhong-Qin Bi
Appl. Sci. 2025, 15(15), 8462; https://doi.org/10.3390/app15158462 - 30 Jul 2025
Viewed by 156
Abstract
The significant energy intensity of high-speed railway necessitates integrating renewable technologies to enhance grid resilience and decarbonize transport. This study establishes a coordinated carbon–green certificate market mechanism for railway power systems and develops a tri-source planning model (grid/solar/energy storage) that comprehensively considers the [...] Read more.
The significant energy intensity of high-speed railway necessitates integrating renewable technologies to enhance grid resilience and decarbonize transport. This study establishes a coordinated carbon–green certificate market mechanism for railway power systems and develops a tri-source planning model (grid/solar/energy storage) that comprehensively considers the full lifecycle carbon emissions of these assets while minimizing lifecycle costs and CO2 emissions. The proposed EDMOA algorithm optimizes storage configurations across multiple operational climatic regimes. Benchmark analysis demonstrates superior economic–environmental synergy, achieving a 23.90% cost reduction (USD 923,152 annual savings) and 24.02% lower emissions (693,452.5 kg CO2 reduction) versus conventional systems. These results validate the synergistic integration of hybrid power systems with the carbon–green certificate market mechanism as a quantifiable pathway towards decarbonization in rail infrastructure. Full article
Show Figures

Figure 1

14 pages, 17389 KiB  
Article
A Distortion Image Correction Method for Wide-Angle Cameras Based on Track Visual Detection
by Quanxin Liu, Xiang Sun and Yuanyuan Peng
Photonics 2025, 12(8), 767; https://doi.org/10.3390/photonics12080767 - 30 Jul 2025
Viewed by 240
Abstract
Regarding the distortion correction problem of large field of view wide-angle cameras commonly used in railway visual inspection systems, this paper proposes a novel online calibration method for non-specially made cooperative calibration objects. Based on the radial distortion divisor model, first, the spatial [...] Read more.
Regarding the distortion correction problem of large field of view wide-angle cameras commonly used in railway visual inspection systems, this paper proposes a novel online calibration method for non-specially made cooperative calibration objects. Based on the radial distortion divisor model, first, the spatial coordinates of natural spatial landmark points are constructed according to the known track gauge value between two parallel rails and the spacing value between sleepers. By using the image coordinate relationships corresponding to these spatial coordinates, the coordinates of the distortion center point are solved according to the radial distortion fundamental matrix. Then, a constraint equation is constructed based on the collinear constraint of vanishing points in railway images, and the Levenberg–Marquardt algorithm is used to found the radial distortion coefficients. Moreover, the distortion coefficients and the coordinates of the distortion center are re-optimized according to the least squares method (LSM) between points and the fitted straight line. Finally, based on the above, the distortion correction is carried out for the distorted railway images captured by the camera. The experimental results show that the above method can efficiently and accurately perform online distortion correction for large field of view wide-angle cameras used in railway inspection without the participation of specially made cooperative calibration objects. The whole method is simple and easy to implement, with high correction accuracy, and is suitable for the rapid distortion correction of camera images in railway online visual inspection. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

16 pages, 2523 KiB  
Article
Application of Machine Learning Algorithms for Predicting the Dynamic Stiffness of Rail Pads Based on Static Stiffness and Operating Conditions
by Isaac Rivas, Jose A. Sainz-Aja, Diego Ferreño, Víctor Calzada, Isidro Carrascal, Jose Casado and Soraya Diego
Appl. Sci. 2025, 15(15), 8310; https://doi.org/10.3390/app15158310 - 25 Jul 2025
Viewed by 207
Abstract
The vertical stiffness of railway tracks is crucial for ensuring safe and efficient rail transport. Rail-pad dynamic stiffness is a key component influencing track performance. Determining the dynamic stiffness of rail pads poses a challenge because it depends not only on the material [...] Read more.
The vertical stiffness of railway tracks is crucial for ensuring safe and efficient rail transport. Rail-pad dynamic stiffness is a key component influencing track performance. Determining the dynamic stiffness of rail pads poses a challenge because it depends not only on the material and geometry of the rail pad but also on the testing conditions, due to the non-linear material response. To address this issue, a methodology is proposed in this paper to estimate dynamic stiffness using static stiffness measurements. This approach enables the prediction of dynamic stiffness for different situations from a single laboratory test. This study further examines whether this correlation remains valid for different types of rail pads, even when their mechanical behavior has been degraded by temperature, wear, or chemical agents. Experiments were conducted under varying temperatures and on rail pads that underwent mechanical and chemical degradation. The analysis assesses the validity of the static-to-dynamic stiffness correlation under degraded conditions and investigates the influence of each testing condition on the ability to estimate dynamic stiffness from static stiffness and operational parameters. The findings provide insights into the reliability of this predictive model and highlight the impact of degradation mechanisms on the dynamic behavior of rail pads. This research enhances the understanding of rail pad performance and offers a practical approach for evaluating dynamic stiffness. By considering all of the variables used in the analysis, the approach achieves R2 values of up to 0.99, which carries significant implications for track design and maintenance. Full article
Show Figures

Figure 1

25 pages, 4047 KiB  
Article
Vulnerability Analysis of the China Railway Express Network Under Emergency Scenarios
by Huiyong Li, Wenlu Zhou, Laijun Zhao, Lixin Zhou and Pingle Yang
Appl. Sci. 2025, 15(15), 8205; https://doi.org/10.3390/app15158205 - 23 Jul 2025
Viewed by 240
Abstract
In the context of globalization and the Belt and Road Initiative, maintaining the stability and security of the China Railway Express network (CRN) is critical for international logistics operations. However, unexpected events can lead to node and edge failures within the CRN, potentially [...] Read more.
In the context of globalization and the Belt and Road Initiative, maintaining the stability and security of the China Railway Express network (CRN) is critical for international logistics operations. However, unexpected events can lead to node and edge failures within the CRN, potentially triggering cascading failures that critically compromise network performance. This study introduces a Coupled Map Lattice model that incorporates cargo flow dynamics, distributing cargo based on distance and the residual capacity of neighboring nodes. We analyze cascading failures in the CRN under three scenarios, isolated node failure, isolated edge disruption, and simultaneous node and edge failure, to assess the network’s vulnerability during emergencies. Our findings show that deliberate attacks targeting cities with high node strength result in more significant damage than attacks on cities with a high node degree or betweenness. Additionally, when edges are disrupted by unexpected events, the impact of edge removals on cascading failures depends on their strategic position and connections within the network, not just their betweenness and weight. The study further reveals that removing collinear edges can effectively slow the propagation of cascading failures in response to deliberate attacks. Furthermore, a single-factor cargo flow allocation method significantly enhances the network’s resilience against edge failures compared to node failures. These insights provide practical guidance and strategic support for the CR Express in mitigating the effects of both unforeseen events and intentional attacks. Full article
(This article belongs to the Section Transportation and Future Mobility)
Show Figures

Figure 1

25 pages, 1084 KiB  
Article
Do China State-Level Economic and Technological Development Zones Have a Positive Effect on Regional Total Factor Productivity? A Perspective Based on the Moderating Effect of Transportation Infrastructure
by Mengshang Liang, Changxin Xu, Mingxian Li and Yang Lu
Systems 2025, 13(8), 620; https://doi.org/10.3390/systems13080620 - 23 Jul 2025
Viewed by 187
Abstract
With the deceleration of China’s economic growth, the crude economic model will progressively diminish in its competitive edge, thereby posing challenges for state-level economic and technological development zones (ETDZs) in terms of transitioning their development model and grappling with low levels of total [...] Read more.
With the deceleration of China’s economic growth, the crude economic model will progressively diminish in its competitive edge, thereby posing challenges for state-level economic and technological development zones (ETDZs) in terms of transitioning their development model and grappling with low levels of total factor productivity (TFP). This study aims to evaluate the TFP of prominent cities in China, examine the influence of the establishment of state-level ETDZs on urban TFP, and investigate the moderating effect of transportation infrastructure on this relationship. The results show that the aggregate TFP of Chinese urban areas declined from 1999 to 2020, a trend linked to structural economic adjustments and persistent underutilization of capital in several regions. The establishment of state-level ETDZs has been found to exert a notable positive influence on regional TFP. The presence of transportation infrastructure plays a moderating role in facilitating state-level ETDZs, thereby enhancing regional TFP. Among various modes of transportation, highways and railways are particularly prominent in this regard. These conclusions provide a theoretical basis and decision-making reference for further unleashing the policy potential of development zones in China. Full article
(This article belongs to the Section Systems Practice in Social Science)
Show Figures

Figure 1

10 pages, 303 KiB  
Article
Mortality from Pleural and Lung Cancer in Railway Maintenance Workers
by Leonardo Scarso, Marco Novelli, Eva Lorenza Negri, Carlotta Zunarelli, the Pleural Cancer 2024 Study Group and Francesco Saverio Violante
Life 2025, 15(7), 1155; https://doi.org/10.3390/life15071155 - 21 Jul 2025
Viewed by 275
Abstract
(1) Background: Occupational exposure to asbestos remains a significant public health concern due to its association with pleural cancer and other cancers. This cohort study examines the incidence of asbestos-related diseases among railway carriage maintenance workers exposed to asbestos between 1960 and 1979 [...] Read more.
(1) Background: Occupational exposure to asbestos remains a significant public health concern due to its association with pleural cancer and other cancers. This cohort study examines the incidence of asbestos-related diseases among railway carriage maintenance workers exposed to asbestos between 1960 and 1979 in Bologna, Italy. (2) Methods: A cohort of 2197 male workers was followed from 1960 onwards, with data collected on asbestos exposure, smoking habits, and mortality outcomes. The association of asbestos exposure and smoking with the risk of pleural cancer and lung cancer was assessed using Cox proportional hazards regression models. (3) Results: This study identified a substantial burden of asbestos-related pleural cancer, with an exponential increase in risk over time since the beginning of exposure. Our results suggest the lack of a multiplicative effect of asbestos exposure and smoking on lung cancer risk. The Cox models showed a significant association between smoking and lung cancer risk, with a hazard ratio of 3.26 (95% CI: 1.10–9.64, p = 0.03), less significant for asbestos exposure, with a hazard ratio of 1.42 (95% CI: 0.66–3.06). (4) Conclusions: This study provides valuable insights into the long-term health effects of occupational asbestos exposure and underscores the complex interaction between asbestos exposure and smoking in the development of lung cancer. Full article
(This article belongs to the Section Epidemiology)
Show Figures

Figure 1

Back to TopTop