Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = mmu-miR-27a-3p

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 2482 KiB  
Article
Characterization of microRNA Expression Profiles of Murine Female Genital Tracts Following Nippostrongylus brasiliensis and Herpes Simplex Virus Type 2 Co-Infection
by Roxanne Pillay, Pragalathan Naidoo and Zilungile L. Mkhize-Kwitshana
Microorganisms 2025, 13(8), 1734; https://doi.org/10.3390/microorganisms13081734 - 24 Jul 2025
Viewed by 421
Abstract
Soil-transmitted helminths (STHs) and Herpes Simplex Virus type 2 (HSV-2) are highly prevalent infections with overlapping distribution, particularly in resource-poor regions. STH/HSV-2 co-infections may impact female reproductive health. However, many aspects of STH/HSV-2 co-infections, including the role of microRNAs (miRNAs) in regulating female [...] Read more.
Soil-transmitted helminths (STHs) and Herpes Simplex Virus type 2 (HSV-2) are highly prevalent infections with overlapping distribution, particularly in resource-poor regions. STH/HSV-2 co-infections may impact female reproductive health. However, many aspects of STH/HSV-2 co-infections, including the role of microRNAs (miRNAs) in regulating female genital tract (FGT) immunity and their potential contribution to pathologies such as chronic inflammation, impaired mucosal defense, and reproductive tract cancers remain unclear. In this study we investigated the miRNA expression profiles in murine FGT tissues following single or co-infection with Nippostrongylus brasiliensis (Nb) and HSV-2 and explored predicted miRNA-mRNA targets and pathways. An analysis of miRNA sequencing data was conducted to determine differentially expressed (DE) miRNAs between infected FGT tissues and uninfected controls. Ingenuity Pathway Analysis was conducted to predict the immune-related target genes of the DE miRNAs and reveal enriched canonical pathways, top diseases, and biological functions. Selected representative DE miRNAs were validated using RT-qPCR. Our results showed a total of eight DE miRNAs (mmu-miR-218-5p, mmu-miR-449a-5p, mmu-miR-497a-3p, mmu-miR-144-3p, mmu-miR-33-5p, mmu-miR-451a, mmu-miR-194-5p, and mmu-miR-192-5p) in the comparison of Nb-infected versus uninfected controls; nine DE miRNAs (mmu-miR-451a, mmu-miR-449a-5p, mmu-miR-144-3p, mmu-miR-376a-3p, mmu-miR-192-5p, mmu-miR-218-5p, mmu-miR-205-3p, mmu-miR-103-3p, and mmu-miR-200b-3p) in the comparison of HSV-2-infected versus uninfected controls; and one DE miRNA (mmu-miR-199a-5p) in the comparison of Nb/HSV-2 co-infected versus uninfected controls (p-value < 0.05, |logFC| ≥ 1). Core expression analysis showed that, among other canonical pathways, the DE miRNAs and their predicted mRNA targets were involved in neutrophil degranulation, interleukin-4 and interleukin-13 signaling, natural killer cell signaling, interferon alpha/beta signaling, and ISGylation. Additionally, cancer was predicted as one of the significantly enriched diseases, particularly in the co-infected group. This is the first study to provide insights into the FGT miRNA profiles following Nb and HSV-2 single and co-infection, as well as the predicted genes and pathways they regulate, which may influence host immunity and pathology. This study highlights the role of miRNAs in regulating FGT immunity and pathology in the context of STH/HSV-2 co-infection. Full article
(This article belongs to the Special Issue Insights into Microbial Infections, Co-Infections, and Comorbidities)
Show Figures

Figure 1

10 pages, 5690 KiB  
Article
Detection of miR-133a-5p Using a Molecular Beacon Probe for Investigating Postmortem Intervals
by Eun Hye Lee, Mingyoung Jeong, Kwangmin Park, Dong Geon Lee, Eun Ju Lee, Haneul Lee, Ah Yeoung Kim, Jae Won Ahn, Hyun Jun Woo, Sunghyun Kim, Jaewon Lim and Jungho Kim
Non-Coding RNA 2024, 10(6), 58; https://doi.org/10.3390/ncrna10060058 - 26 Nov 2024
Viewed by 1437
Abstract
Background: When a body is discovered at a crime or murder scene, it is crucial to examine the body and estimate its postmortem interval (PMI). Accurate estimation of PMI is vital for identifying suspects and providing clues to resolve the case. MicroRNAs (miRNAs [...] Read more.
Background: When a body is discovered at a crime or murder scene, it is crucial to examine the body and estimate its postmortem interval (PMI). Accurate estimation of PMI is vital for identifying suspects and providing clues to resolve the case. MicroRNAs (miRNAs or miRs) are small non-coding RNAs that remain relatively stable in the cell nucleus even after death-related changes occur. Objective: This study developed a molecular beacon probe for mmu-miR-133a-5p and assessed its use in mouse muscle tissue at temperatures of 4 °C and 21 °C to estimate the PMI. Methods: A total of 36 healthy adult male BALB/c mice were divided into 9 PMI time points (0, 2, 6, 8, and 10 days) with 3 mice per time point, and they were exposed to 4 °C and 21 °C. Next, the expression pattern of mmu-miR-133a in the skeletal muscle tissue over a 10-day PMI period was analyzed using the developed molecular beacon probe. Results: The molecular beacon (MB) probe was designed for optimal thermodynamic stability with a hairpin structure that opened in the presence of mmu-miR-133a-5p, thus separating the fluorophore from the quencher and resulting in a strong fluorescence signal at 495 nm. Fluorescence intensity increased with mmu-miR-133a-5p concentration from 1 ng/μL to 1000 ng/μL and exhibited a strong correlation (R2 = 0.9966) and a detection limit of 1 ng/μL. Subsequently, the expression level of mmu-miR-133a-5p was observed to be stable in mouse skeletal muscle tissue at both 4 °C and 21 °C. Conclusions: This user-friendly assay can complete measurements in just 30 min after RNA extraction and is suitable for point-of-care testing, and it possesses the potential to improve existing complex and time-consuming methods for PMI estimation. Full article
(This article belongs to the Section Detection and Biomarkers of Non-Coding RNA)
Show Figures

Figure 1

22 pages, 5573 KiB  
Article
Circular RNA hsa_circ_0008726 Targets the hsa-miR-206-3p/KLF4 Axis to Modulate 4,4′-Methylene Diphenyl Diisocyanate-Glutathione Conjugate-Induced Chemokine Transcription in Macrophages
by Chen-Chung Lin, Brandon F. Law and Justin M. Hettick
Cells 2024, 13(20), 1725; https://doi.org/10.3390/cells13201725 - 18 Oct 2024
Viewed by 1555
Abstract
Exposure to 4,4′-methylene diphenyl diisocyanate (MDI) in the workplace may lead to the development of occupational asthma (OA). However, the specific mechanism(s) by which MDI induces OA are poorly understood. Previous reports have demonstrated that MDI and MDI-glutathione (GSH) conjugate exposure downregulates endogenous [...] Read more.
Exposure to 4,4′-methylene diphenyl diisocyanate (MDI) in the workplace may lead to the development of occupational asthma (OA). However, the specific mechanism(s) by which MDI induces OA are poorly understood. Previous reports have demonstrated that MDI and MDI-glutathione (GSH) conjugate exposure downregulates endogenous human/murine (hsa/mmu)-microRNA(miR)-206-3p, resulting in the activation of mmu/hsa-miR-206-3p-regulated signaling pathways in macrophages. Circular RNAs (circRNAs) regulate many important biological processes by targeting endogenous miRs; however, whether MDI/MDI-GSH exposure may influence circRNA expressions is unknown. Several circRNAs have been identified that regulate hsa-miR-206-3p. We hypothesize that MDI-GSH conjugate exposure induces endogenous circRNA(s) to regulate hsa-miR-206-3p in macrophages. The expression of candidate hsa-miR-206-3p-binding circRNAs was determined from MDI-GSH conjugate-treated differentiated THP-1 macrophages using RT-qPCR. MDI-GSH exposures induced hsa_circ_0008726 and its host gene transcript DNAJB6, whereas other circRNA(s) examined were either not detected or unchanged. RNA-induced silencing complex-immunoprecipitation (RISC-IP) experiments confirm that hsa-miR-206-3p can bind to hsa_circ_0008726. The expressions of endogenous hsa-miR-206-3p, hsa-miR-206-3p-regulated KLF4, and KLF4-activated M2 macrophage-associated markers and chemokines were up-/down-regulated by transfection of hsa_circ_0008726 siRNAs or hsa_circ_0008726 overexpression plasmid in macrophages, respectively. These results suggest MDI-GSH exposure downregulates hsa-miR-206-3p via induction of endogenous hsa_circ_0008726/DNAJB6, resulting in the upregulation of hsa-miR-206-3p-mediated regulations in macrophages. Full article
(This article belongs to the Special Issue Advances in the Biogenesis, Biology, and Functions of Noncoding RNAs)
Show Figures

Graphical abstract

16 pages, 2602 KiB  
Article
MicroRNA Profile of Mouse Adipocyte-Derived Extracellular Vesicles
by Tamás Röszer
Cells 2024, 13(15), 1298; https://doi.org/10.3390/cells13151298 - 1 Aug 2024
Cited by 2 | Viewed by 1800
Abstract
The post-transcriptional control of gene expression is a complex and evolving field in adipocyte biology, with the premise that the delivery of microRNA (miRNA) species to the obese adipose tissue may facilitate weight loss. Cells shed extracellular vesicles (EVs) that may deliver miRNAs [...] Read more.
The post-transcriptional control of gene expression is a complex and evolving field in adipocyte biology, with the premise that the delivery of microRNA (miRNA) species to the obese adipose tissue may facilitate weight loss. Cells shed extracellular vesicles (EVs) that may deliver miRNAs as intercellular messengers. However, we know little about the miRNA profile of EVs secreted by adipocytes during postnatal development. Here, we defined the miRNA cargo of EVs secreted by mouse adipocytes in two distinct phases of development: on postnatal day 6, when adipocytes are lipolytic and thermogenic, and on postnatal day 56, when adipocytes have active lipogenesis. EVs were collected from cell culture supernatants, and their miRNA profile was defined by small RNA sequencing. The most abundant miRNA of mouse adipocyte-derived EVs was mmu-miR-148a-3p. Adipocyte EVs on postnatal day 6 were hallmarked with mmu-miR-98-5p, and some miRNAs were specific to this developmental stage, such as mmu-miR-466i-5p and 12 novel miRNAs. Adipocytes on postnatal day 56 secreted mmu-miR-365-3p, and 16 miRNAs were specific to this developmental stage. The miRNA cargo of adipocyte EVs targeted gene networks of cell proliferation, insulin signaling, interferon response, thermogenesis, and lipogenesis. We provided here a database of miRNAs secreted by developing mouse adipocytes, which may be a tool for further studies on the regulation of gene networks that control mouse adipocyte development. Full article
Show Figures

Graphical abstract

22 pages, 4224 KiB  
Article
microRNA as a Maternal Marker for Prenatal Stress-Associated ASD, Evidence from a Murine Model
by Taeseon Woo, Candice King, Nick I. Ahmed, Madison Cordes, Saatvika Nistala, Matthew J. Will, Clark Bloomer, Nataliya Kibiryeva, Rocio M. Rivera, Zohreh Talebizadeh and David Q. Beversdorf
J. Pers. Med. 2023, 13(9), 1412; https://doi.org/10.3390/jpm13091412 - 20 Sep 2023
Cited by 6 | Viewed by 2024
Abstract
Autism Spectrum Disorder (ASD) has been associated with a complex interplay between genetic and environmental factors. Prenatal stress exposure has been identified as a possible risk factor, although most stress-exposed pregnancies do not result in ASD. The serotonin transporter (SERT) gene has been [...] Read more.
Autism Spectrum Disorder (ASD) has been associated with a complex interplay between genetic and environmental factors. Prenatal stress exposure has been identified as a possible risk factor, although most stress-exposed pregnancies do not result in ASD. The serotonin transporter (SERT) gene has been linked to stress reactivity, and the presence of the SERT short (S)-allele has been shown to mediate the association between maternal stress exposure and ASD. In a mouse model, we investigated the effects of prenatal stress exposure and maternal SERT genotype on offspring behavior and explored its association with maternal microRNA (miRNA) expression during pregnancy. Pregnant female mice were divided into four groups based on genotype (wildtype or SERT heterozygous knockout (Sert-het)) and the presence or absence of chronic variable stress (CVS) during pregnancy. Offspring behavior was assessed at 60 days old (PD60) using the three-chamber test, open field test, elevated plus-maze test, and marble-burying test. We found that the social preference index (SPI) of SERT-het/stress offspring was significantly lower than that of wildtype control offspring, indicating a reduced preference for social interaction on social approach, specifically for males. SERT-het/stress offspring also showed significantly more frequent grooming behavior compared to wildtype controls, specifically for males, suggesting elevated repetitive behavior. We profiled miRNA expression in maternal blood samples collected at embryonic day 21 (E21) and identified three miRNAs (mmu-miR-7684-3p, mmu-miR-5622-3p, mmu-miR-6900-3p) that were differentially expressed in the SERT-het/stress group compared to all other groups. These findings suggest that maternal SERT genotype and prenatal stress exposure interact to influence offspring behavior, and that maternal miRNA expression late in pregnancy may serve as a potential marker of a particular subtype of ASD pathogenesis. Full article
Show Figures

Figure 1

20 pages, 3605 KiB  
Article
MiRNA Profiling and Its Potential Roles in Rapid Growth of Velvet Antler in Gansu Red Deer (Cervus elaphus kansuensis)
by Zhenxiang Zhang, Caixia He, Changhong Bao, Zhaonan Li, Wenjie Jin, Changzhong Li and Yanxia Chen
Genes 2023, 14(2), 424; https://doi.org/10.3390/genes14020424 - 7 Feb 2023
Cited by 5 | Viewed by 2383
Abstract
A significant variety of cell growth factors are involved in the regulation of antler growth, and the fast proliferation and differentiation of various tissue cells occur during the yearly regeneration of deer antlers. The unique development process of velvet antlers has potential application [...] Read more.
A significant variety of cell growth factors are involved in the regulation of antler growth, and the fast proliferation and differentiation of various tissue cells occur during the yearly regeneration of deer antlers. The unique development process of velvet antlers has potential application value in many fields of biomedical research. Among them, the nature of cartilage tissue and the rapid growth and development process make deer antler a model for studying cartilage tissue development or rapid repair of damage. However, the molecular mechanisms underlying the rapid growth of antlers are still not well studied. MicroRNAs are ubiquitous in animals and have a wide range of biological functions. In this study, we used high-throughput sequencing technology to analyze the miRNA expression patterns of antler growth centers at three distinct growth phases, 30, 60, and 90 days following the abscission of the antler base, in order to determine the regulatory function of miRNA on the rapid growth of antlers. Then, we identified the miRNAs that were differentially expressed at various growth stages and annotated the functions of their target genes. The results showed that 4319, 4640, and 4520 miRNAs were found in antler growth centers during the three growth periods. To further identify the essential miRNAs that could regulate fast antler development, five differentially expressed miRNAs (DEMs) were screened, and the functions of their target genes were annotated. The results of KEGG pathway annotation revealed that the target genes of the five DEMs were significantly annotated to the “Wnt signaling pathway”, “PI3K-Akt signaling pathway”, “MAPK signaling pathway”, and “TGF-β signaling pathway”, which were associated with the rapid growth of velvet antlers. Therefore, the five chosen miRNAs, particularly ppy-miR-1, mmu-miR-200b-3p, and novel miR-94, may play crucial roles in rapid antler growth in summer. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

15 pages, 2352 KiB  
Article
miR-21, miR-93, miR-191, miR-let-7b, and miR-499 Expression Level in Plasma and Cerebrospinal Fluid in Patients with Prolonged Disorders of Consciousness
by Tatiana A. Petrova, Sergey A. Kondratyev, Anna A. Kostareva, Roman V. Rutkovskiy, Irina A. Savvina and Ekaterina A. Kondratyeva
Neurol. Int. 2023, 15(1), 40-54; https://doi.org/10.3390/neurolint15010004 - 29 Dec 2022
Cited by 5 | Viewed by 2705
Abstract
In recent decades, significant progress has been achieved in understanding the mechanisms of disturbance and restoration of consciousness in patients after severe brain damage resulting in prolonged disorders of consciousness (pDOC). MicroRNAs (miRs) may be potential candidates as possible biomarkers for the classification [...] Read more.
In recent decades, significant progress has been achieved in understanding the mechanisms of disturbance and restoration of consciousness in patients after severe brain damage resulting in prolonged disorders of consciousness (pDOC). MicroRNAs (miRs) may be potential candidates as possible biomarkers for the classification of disease subtypes, and prognosis in patients with pDOC. The aim of the study was to analyze miRs expression levels (hsa-miR-21-5p, hsa-miR-93-5p, hsa-miR-191-5p, mmu-miR-499-5p, hsa-let-7b-5p) by a real-time polymerase chain reaction in plasma and cerebrospinal fluid (CSF) from patients with pDOC and to identify a potential biomarker for dividing patients into groups according to disease severity. We analyzed the levels of investigated miRs in pDOC patients, divided by etiology, CRSI, and the total group compared with controls. Our results showed that dividing patients with pDOC into groups according to the etiology of the disease resulted in the most significant differences in the levels of miR-93, -21, and -191 in CSF and plasma samples between groups of patients. Among the analyzed miRs, we did not find a marker that would help to distinguish VS/UWS patient groups from MCS. Examining of miRs as possible prognostic markers in patients with pDOC, the starting point seems to be the cause that led to the development of the disease. Full article
(This article belongs to the Special Issue Recent Advances in Traumatic Brain Injury)
Show Figures

Graphical abstract

16 pages, 3949 KiB  
Article
Regulation Networks of Non-Coding RNA-Associated ceRNAs in Cisplatin-Induced Acute Kidney Injury
by Yun Ding, Shengfeng Wan, Wenna Liu, Yanfang Lu, Qin Xu, Yujin Gan, Lei Yan, Yue Gu, Ziyang Liu, Yifeng Hu, Huixia Cao and Fengmin Shao
Cells 2022, 11(19), 2971; https://doi.org/10.3390/cells11192971 - 23 Sep 2022
Cited by 5 | Viewed by 3121
Abstract
Cisplatin is widely used as a chemotherapeutic drug to treat various solid tumors. However, it often induces severe side effects, including nephrotoxicity, which limits its application in clinical settings. Furthermore, the underlying mechanisms of action are unclear. Here, we applied whole-transcriptome RNA sequencing [...] Read more.
Cisplatin is widely used as a chemotherapeutic drug to treat various solid tumors. However, it often induces severe side effects, including nephrotoxicity, which limits its application in clinical settings. Furthermore, the underlying mechanisms of action are unclear. Here, we applied whole-transcriptome RNA sequencing to a cisplatin-induced acute kidney injury (CP-AKI) mouse model to evaluate competing endogenous RNA (ceRNA) networks. We found 4460 mRNAs, 1851 long non-coding RNAs, 101 circular RNAs, and 102 microRNAs significantly differentially expressed between CP-AKI and control mice. We performed gene set enrichment analysis to reveal the biological functions of the mRNAs and constructed non-coding RNA-associated ceRNA networks in CP-AKI mice. Two ceRNA regulatory pathways, Lhx1os-203/mmu-miR-21a-3p/Slc7a13 and circular RNA_3907/mmu-miR-185-3p/Ptprn, were validated using quantitative real-time PCR. The protein–protein interaction network indicated that Il6, Cxcl1, Cxcl2, and Plk1 serve as hub genes and are highly connected with the inflammatory response or DNA damage. Transcription factors, such as Stat3, Cebpb, and Foxm1, regulate gene expression levels in CP-AKI. Our study provides insight into non-coding RNA-associated ceRNA networks and mRNAs in CP-AKI and identifies potential treatment targets. Full article
Show Figures

Figure 1

26 pages, 54714 KiB  
Article
Prostate Cancer Secretome and Membrane Proteome from Pten Conditional Knockout Mice Identify Potential Biomarkers for Disease Progression
by Nilton J. Santos, Ana Carolina Lima Camargo, Hernandes F. Carvalho, Luis Antonio Justulin and Sérgio Luis Felisbino
Int. J. Mol. Sci. 2022, 23(16), 9224; https://doi.org/10.3390/ijms23169224 - 17 Aug 2022
Cited by 5 | Viewed by 3249
Abstract
Prostate cancer (PCa) is the second most common cause of mortality among men. Tumor secretome is a promising strategy for understanding the biology of tumor cells and providing markers for disease progression and patient outcomes. Here, transcriptomic-based secretome analysis was performed on the [...] Read more.
Prostate cancer (PCa) is the second most common cause of mortality among men. Tumor secretome is a promising strategy for understanding the biology of tumor cells and providing markers for disease progression and patient outcomes. Here, transcriptomic-based secretome analysis was performed on the PCa tumor transcriptome of Genetically Engineered Mouse Model (GEMM) Pb-Cre4/Ptenf/f mice to identify potentially secreted and membrane proteins—PSPs and PMPs. We combined a selection of transcripts from the GSE 94574 dataset and a list of protein-coding genes of the secretome and membrane proteome datasets using the Human Protein Atlas Secretome. Notably, nine deregulated PMPs and PSPs were identified in PCa (DMPK, PLN, KCNQ5, KCNQ4, MYOC, WIF1, BMP7, F3, and MUC1). We verified the gene expression patterns of Differentially Expressed Genes (DEGs) in normal and tumoral human samples using the GEPIA tool. DMPK, KCNQ4, and WIF1 targets were downregulated in PCa samples and in the GSE dataset. A significant association between shorter survival and KCNQ4, PLN, WIF1, and F3 expression was detected in the MSKCC dataset. We further identified six validated miRNAs (mmu-miR-6962-3p, mmu-miR- 6989-3p, mmu-miR-6998-3p, mmu-miR-5627-5p, mmu-miR-15a-3p, and mmu-miR-6922-3p) interactions that target MYOC, KCNQ5, MUC1, and F3. We have characterized the PCa secretome and membrane proteome and have spotted new dysregulated target candidates in PCa. Full article
(This article belongs to the Special Issue From Omics to Therapeutic Targets in Cancer)
Show Figures

Figure 1

12 pages, 2302 KiB  
Article
Prmt7 Downregulation in Mouse Spermatogonia Functions through miR-877-3p/Col6a3
by Hongmei Gao, Mingrui Zhang, Jiankang Guo, Zhiguo Liu, Fei Guo, Bingyuan Wang and Yulian Mu
Life 2022, 12(8), 1194; https://doi.org/10.3390/life12081194 - 5 Aug 2022
Viewed by 2241
Abstract
Protein arginine methyltransferases 7 (Prmt7) is expressed in male germ cells, including primordial germ cells, gonocytes, and spermatogonia. Our previous study demonstrated that Prmt7 downregulation reduced the proliferation of GC-1 cells (a cell line of mouse immortalized spermatogonia). However, how Prmt7 [...] Read more.
Protein arginine methyltransferases 7 (Prmt7) is expressed in male germ cells, including primordial germ cells, gonocytes, and spermatogonia. Our previous study demonstrated that Prmt7 downregulation reduced the proliferation of GC-1 cells (a cell line of mouse immortalized spermatogonia). However, how Prmt7 regulates spermatogonial proliferation through miRNA and the target gene remains elusive. Here, we experimentally reduced the Prmt7 expression in the GC-1 cells and subjected them to miRNA sequencing to explore the miRNA profile and its Prmt7-responsive members. In total, 48 differentially expressed miRNAs (DEmiRNAs), including 36 upregulated and 12 downregulated miRNAs, were identified. After verifying the validity of sequencing results through qRT-PCR assays in randomly selected DEmiRNAs, we predicted the target genes of these DEmiRNAs. Next, we combined DEmiRNA target genes and previously identified differentially expressed genes between Prmt7 knockdown and control groups of GC-1 cells, which resulted in seven miRNA/target gene pairs. Among these miRNA/target gene pairs, we further detected the expression of Col6a3 (collagen type VI alpha 3) as the target gene of mmu-miR-877-3p. The results suggested that Prmt7 downregulation in mouse spermatogonia might function through miR-877-3p/Col6a3. Overall, these findings provide new insights into the role of Prmt7 in male germ cell development through miRNA and target genes. Full article
(This article belongs to the Section Physiology and Pathology)
Show Figures

Figure 1

14 pages, 4052 KiB  
Article
Involvement of MicroRNA-27a-3p in the Licorice-Induced Alteration of Cd28 Expression in Mice
by Gang Feng, Guozheng Liang, Yaqian Zhang, Jicong Hu, Chuandong Zhou, Jiawen Li, Wenfeng Zhang, Han Shen, Fenglin Wu, Changli Tao, Yan Liu and Hongwei Shao
Genes 2022, 13(7), 1143; https://doi.org/10.3390/genes13071143 - 25 Jun 2022
Cited by 2 | Viewed by 2473
Abstract
Licorice has previously been shown to affect gene expression in cells; however, the underlying mechanisms remain to be clarified. We analyzed the microRNA expression profile of serum from mice treated by gavage with licorice decoction, and obtained 11 differentially expressed microRNAs (DEmiRNAs). We [...] Read more.
Licorice has previously been shown to affect gene expression in cells; however, the underlying mechanisms remain to be clarified. We analyzed the microRNA expression profile of serum from mice treated by gavage with licorice decoction, and obtained 11 differentially expressed microRNAs (DEmiRNAs). We also screened differentially expressed genes (DEgenes) based on RNA-Seq data, and 271 common genes were identified by intersection analysis of the predicted target genes of 11 DEmiRNAs and the DEgenes. The miRNA–gene network showed that most of the hub genes were immune-related. KEGG enrichment analysis of the 271 genes identified three significant pathways, and the 21 genes involved in these three pathways, and the 11 DEmiRNAs, were constructed into a miRNA pathway–target gene network, in which mmu-miR-27a-3p stood out. Compared to ImmPort, there were 13 immune genes within the above group of 21 genes, and three intersected with the mmu-miR-27a-3p predicted target genes, Cd28, Grap2 and Cxcl12, of which the expression of Cd28 changed most significantly. We confirmed the regulation of Cd28 by mmu-miR-27a-3p using a dual-luciferase assay, and further confirmed that overexpression of mmu-miR-27a-3p could significantly downregulate the expression of Cd28 in lymphocytes. These results indicate that mmu-miR-27a-3p could be involved in the licorice-mediated regulation of the expression of Cd28 in mice. Full article
(This article belongs to the Special Issue Transcriptomics and Bioinformatics in Precision Medicine)
Show Figures

Figure 1

22 pages, 3077 KiB  
Article
Circ0001470 Acts as a miR-140-3p Sponge to Facilitate the Progression of Embryonic Development through Regulating PTGFR Expression
by Long Zhang, Changfan Zhou, Xiaoyu Jiang, Shuntao Huang, Yiheng Li, Tao Su, Guowei Wang, You Zhou, Min Liu and Dequan Xu
Cells 2022, 11(11), 1746; https://doi.org/10.3390/cells11111746 - 25 May 2022
Cited by 8 | Viewed by 2747
Abstract
Embryonic implantation and development are vital in early pregnancy and assisted reproduction. Circular RNAs (circRNAs) are involved in the two physiological processes and thus regulate animal reproduction. However, their specific regulatory functions and mechanisms remain unclear. Here, a novel circ0001470, originating from the [...] Read more.
Embryonic implantation and development are vital in early pregnancy and assisted reproduction. Circular RNAs (circRNAs) are involved in the two physiological processes and thus regulate animal reproduction. However, their specific regulatory functions and mechanisms remain unclear. Here, a novel circ0001470, originating from the porcine GRN gene, differentially expressed on day 18 versus day 32 of gestation in Meishan and Yorkshire pigs was screened. The circularization characteristic of circ0001470 was identified based on divergent primer amplification, Sanger sequencing, RNase digestion, and RNA nuclear-cytoplasmic fractionation. Functionally, circ0001470 can promote cell proliferation and cycle progression of endometrial epithelial cells (EECs) and also inhibit apoptosis of EECs using CCK-8 assays and flow cytometry analyses. Mechanistically, bioinformatics database prediction, luciferase screening, RNA immunoprecipitation (RIP), RNA-pull down, and FISH co-localization experiments revealed that the circ0001470 acted as a competing endogenous RNA (ceRNA) through sponging miR-140-3p to regulate downstream PTGFR expression. Moreover, in vivo assays revealed that mmu_circGRN promoted embryonic development by affecting the expression of PTGFR, which can activate the MAPK reproduction pathway and facilitate pregnancy maintenance. This study enriched our understanding of circRNAs in embryo implantation and development by deciding the fate of EECs. Full article
(This article belongs to the Section Reproductive Cells and Development)
Show Figures

Graphical abstract

25 pages, 3780 KiB  
Article
Potential Biomarkers and Drugs for Nanoparticle-Induced Cytotoxicity in the Retina: Based on Regulation of Inflammatory and Apoptotic Genes
by Dongli Xie, Jianchen Hu, Tong Wu, Kangli Cao and Xiaogang Luo
Int. J. Environ. Res. Public Health 2022, 19(9), 5664; https://doi.org/10.3390/ijerph19095664 - 6 May 2022
Cited by 6 | Viewed by 2676
Abstract
The eye is a superficial organ directly exposed to the surrounding environment. Thus, the toxicity of nanoparticle (NP) pollutants to the eye may be potentially severer relative to inner organs and needs to be monitored. However, the cytotoxic mechanisms of NPs on the [...] Read more.
The eye is a superficial organ directly exposed to the surrounding environment. Thus, the toxicity of nanoparticle (NP) pollutants to the eye may be potentially severer relative to inner organs and needs to be monitored. However, the cytotoxic mechanisms of NPs on the eyes remain rarely reported. This study was to screen crucial genes associated with NPs-induced retinal injuries. The gene expression profiles in the retina induced by NPs [GSE49371: Au20, Au100, Si20, Si100; GSE49048: presumptive therapeutic concentration (PTC) TiO2, 10PTC TiO2] and commonly used retinal cell injury models (optic nerve injury procedure: GSE55228, GSE120257 and GSE131486; hypoxia exposure: GSE173233, GSE151610, GSE135844; H2O2 exposure: GSE122270) were obtained from the Gene Expression Omnibus database. A total of 381 differentially expressed genes (including 372 mRNAs and 9 lncRNAs) were shared between NP exposure and the optic nerve injury model when they were compared with their corresponding controls. Function enrichment analysis of these overlapped genes showed that Tlr2, Crhbp, Ccl2, Cxcl10, Fas, Irf8, Socs3, Stat3, Gbp6, Casp1 and Syk were involved in inflammatory- and apoptotic-related processes. Protein-protein interaction network analysis revealed eight of them (Tlr2, Ccl2, Cxcl10, Irf8, Socs3, Stat3, Casp1 and Syk) were hub genes. Moreover, Socs3 could interact with upstream Stat3 and downstream Fas/Casp1/Ccl2/Cxcl10; Irf8 could interact with upstream Tlr2, Syk and downstream Cxcl10. Competing endogenous RNAs network analysis identified Socs3, Irf8, Gdf6 and Crhbp could be regulated by lncRNAs and miRNAs (9330175E14Rik-mmu-miR-762-Socs3, 6430562O15Rik-mmu-miR-207-Irf8, Gm9866-mmu-miR-669b-5p-Gdf6, 4933406C10Rik-mmu-miR-9-5p-Crhbp). CMap–CTD database analyses indicated the expression levels of Tlr2, Ccl2, Cxcl10, Fas, Irf8, Socs3, Stat3, Gbp6, Casp1 and Syk could be reversed by folic acid. Crhbp and Gdf6 were also verified to be downregulated, while Tlr2, Ccl2, Irf8, Socs3 and Stat3 were upregulated in hypoxia/H2O2-induced retinal injury models. Hereby, our findings suggest that Crhbp, Irf8, Socs3 and Gdf6 as well as their upstream mRNAs, lncRNAs and miRNAs may be potential monitoring biomarkers and therapeutic targets for NP-induced retinal injuries. Folic acid supplementation may be a preventive and therapeutic approach. Full article
Show Figures

Figure 1

17 pages, 3730 KiB  
Article
Dynamic miRNA Landscape Links Mammary Gland Development to the Regulation of Milk Protein Expression in Mice
by Wenjing Wang, Xupeng Zang, Yonglun Liu, Yunyi Liang, Gengyuan Cai, Zhenfang Wu and Zicong Li
Animals 2022, 12(6), 727; https://doi.org/10.3390/ani12060727 - 14 Mar 2022
Cited by 7 | Viewed by 3005
Abstract
Mammary gland morphology varies considerably between pregnancy and lactation status, e.g., virgin to pregnant and lactation to weaning. Throughout these critical developmental phases, the mammary glands undergo remodeling to accommodate changes in milk production capacity, which is positively correlated with milk protein expression. [...] Read more.
Mammary gland morphology varies considerably between pregnancy and lactation status, e.g., virgin to pregnant and lactation to weaning. Throughout these critical developmental phases, the mammary glands undergo remodeling to accommodate changes in milk production capacity, which is positively correlated with milk protein expression. The purpose of this study was to investigate the microRNA (miRNA) expression profiles in female ICR mice’s mammary glands at the virgin stage (V), day 16 of pregnancy (P16d), day 12 of lactation (L12d), day 1 of forced weaning (FW1d), and day 3 of forced weaning (FW3d), and to identify the miRNAs regulating milk protein gene expression. During the five stages of testing, 852 known miRNAs and 179 novel miRNAs were identified in the mammary glands. Based on their expression patterns, the identified miRNAs were grouped into 12 clusters. The expression pattern of cluster 1 miRNAs was opposite to that of milk protein genes in mammary glands in all five different stages. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that the predicted target genes of cluster 1 miRNAs were related to murine mammary gland development and lactation. Furthermore, fluorescence in situ hybridization (FISH) analysis revealed that the novel-mmu-miR424-5p, which belongs to the cluster 1 miRNAs, was expressed in murine mammary epithelial cells. The dual-luciferase reporter assay revealed that an important milk protein gene—β-casein (CSN2)—was regarded as one of the likely targets for the novel-mmu-miR424-5p. This study analyzed the expression patterns of miRNAs in murine mammary glands throughout five critical developmental stages, and discovered a novel miRNA involved in regulating the expression of CSN2. These findings contribute to an enhanced understanding of the developmental biology of mammary glands, providing guidelines for increasing lactation efficiency and milk quality. Full article
(This article belongs to the Special Issue Non-Coding RNAs Roles in Animals)
Show Figures

Figure 1

15 pages, 6717 KiB  
Article
MiR-24-3p Conservatively Regulates Muscle Cell Proliferation and Apoptosis by Targeting Common Gene CAMK2B in Rat and Cattle
by Ge Yang, Mingli Wu, Xinqi Liu, Fuwen Wang, Mei Li, Xiaoya An, Fuxia Bai, Chuzhao Lei and Ruihua Dang
Animals 2022, 12(4), 505; https://doi.org/10.3390/ani12040505 - 17 Feb 2022
Cited by 8 | Viewed by 3547
Abstract
Skeletal muscle plays an important role in the growth and development of meat animals. MicroRNAs (miRNAs) can participate in the regulation of muscle development-related functions; however, there have been few reports on whether there are related miRNAs that conservatively regulate muscle development among [...] Read more.
Skeletal muscle plays an important role in the growth and development of meat animals. MicroRNAs (miRNAs) can participate in the regulation of muscle development-related functions; however, there have been few reports on whether there are related miRNAs that conservatively regulate muscle development among different species. In this study, the miRNA transcriptome sequencing data of the muscle tissue of cattle, rat, goat, and pig showed that miR-24-3p may conservatively regulate muscle development in these species. Furthermore, mmu-miR-24-3p can positively regulate C2C12 cell proliferation and apoptosis by regulating key proliferation and apoptosis genes in muscle development, which was verified by CCK-8 and RT-qPCR. Bta-miR-24-3p can also positively regulate the proliferation and apoptosis of bovine muscle primary cells by regulating key proliferation and apoptosis genes in the process of muscle development, as verified by CCK-8 and RT-qPCR. The target genes of miR-24-3p in cattle, rat, goat, and pig, which include a large proportion of target genes shared among the four species, are enriched in multiple cell functions and signal pathways that are closely related to muscle development, as revealed by GO and KEGG enrichment analysis. A double luciferase test showed that the shared target genes WNT4, CAMK2B, and TCF7 were targeted by mmu-miR-24-3p in rat and bta-miR-24-3p in cattle. These three shared target genes WNT4, CAMK2B, and TCF7 are involved in the Wnt signaling pathway, which showed that miR-24-3p plays an important role in rat and cattle. The shared target gene (CAMK2B) in rat and cattle increased significantly after the inhibition of miR-24-3p by RT-qPCR. The findings of this study contribute to a better understanding of the role of miR-24-3p in the regulation of muscle development. Full article
(This article belongs to the Special Issue RNA-Sequencing Technique in Animals Research)
Show Figures

Figure 1

Back to TopTop