Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (481)

Search Parameters:
Keywords = millimeter-wave design

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2087 KiB  
Article
A 28-nm CMOS Low-Power/Low-Voltage 60-GHz LNA for High-Speed Communication
by Minoo Eghtesadi, Andrea Ballo, Gianluca Giustolisi, Salvatore Pennisi and Egidio Ragonese
Electronics 2025, 14(14), 2819; https://doi.org/10.3390/electronics14142819 - 13 Jul 2025
Viewed by 261
Abstract
This paper presents a wideband low-power/low-voltage 60-GHz low-noise amplifier (LNA) in a 28-nm bulk CMOS technology. The LNA has been designed for high-speed millimeter-wave (mm-wave) communications. It consists of two pseudo-differential amplifying stages and a buffer stage included for 50-Ohm on-wafer measurements. Two [...] Read more.
This paper presents a wideband low-power/low-voltage 60-GHz low-noise amplifier (LNA) in a 28-nm bulk CMOS technology. The LNA has been designed for high-speed millimeter-wave (mm-wave) communications. It consists of two pseudo-differential amplifying stages and a buffer stage included for 50-Ohm on-wafer measurements. Two integrated input/output baluns guarantee both simultaneous 50-ohm input–noise/output matching at input/output radio frequency (RF) pads. A power-efficient design strategy is adopted to make the LNA suitable for low-power applications, while minimizing the noise figure (NF). Thanks to the adopted design strategy, the post-layout simulation results show an excellent trade-off between power gain and 3-dB bandwidth (BW3dB) with 13.5 dB and 7 GHz centered at 60 GHz, respectively. The proposed LNA consumes only 11.6 mA from a 0.9-V supply voltage with an NF of 8.4 dB at 60 GHz, including the input transformer loss. The input 1 dB compression point (IP1dB) of −15 dBm at 60 GHz confirms the first-rate linearity of the proposed amplifier. Human body model (HBM) electrostatic discharge (ESD) protection is guaranteed up to 2 kV at the RF input/output pads thanks to the input/output integrated transformers. Full article
(This article belongs to the Special Issue 5G Mobile Telecommunication Systems and Recent Advances, 2nd Edition)
Show Figures

Figure 1

19 pages, 5777 KiB  
Article
Considering a mm-Wave Front-End Receiver and Quadrature Down-Converter for 18–40 GHz with Low Noise Figure and High Gain for an ESM System
by Yuseok Jeon and Hyunkyu Kim
Electronics 2025, 14(14), 2803; https://doi.org/10.3390/electronics14142803 - 11 Jul 2025
Viewed by 114
Abstract
In this paper, RF sub-modules with millimeter-wave functionality are considered and verified for designing an ultra-wideband receiver (18–40 GHz) required in the electronic support measure (ESM) field. The pre-design of an ultra-wideband super heterodyne receiver (SHR) requires a front-end module (FEM) with four [...] Read more.
In this paper, RF sub-modules with millimeter-wave functionality are considered and verified for designing an ultra-wideband receiver (18–40 GHz) required in the electronic support measure (ESM) field. The pre-design of an ultra-wideband super heterodyne receiver (SHR) requires a front-end module (FEM) with four units in the system. Each FEM has four channels with the same path, while the quadrature millimeter down-converter (QMDC) needs to have a converting function that uses a broadband mixer. The FEM includes the ability to provide built-in test (BIT) path functionality to the antenna ports prior to system field installation. Each path of the QMDC requires the consideration of several factors, such as down-converting, broadband gain flatness, and high isolation. As this is an RF module requiring high frequency and wideband characteristics, it is necessary to identify risk factors in advance within a predictable range. Accordingly, the blind-mate A (BMA) connector connection method, the phase-alignment test method in the down-conversion structure, and the LO signal, IF path inflow-blocking method were analyzed and designed. Full article
Show Figures

Figure 1

26 pages, 389 KiB  
Review
Recent Advancements in Millimeter-Wave Antennas and Arrays: From Compact Wearable Designs to Beam-Steering Technologies
by Faisal Mehmood and Asif Mehmood
Electronics 2025, 14(13), 2705; https://doi.org/10.3390/electronics14132705 - 4 Jul 2025
Viewed by 563
Abstract
Millimeter-wave (mmWave) antennas and antenna arrays have gained significant attention due to their pivotal role in emerging wireless communication, sensing, and imaging technologies. With the rapid deployment of 5G and the transition toward 6G networks, the demand for compact, high-gain, and reconfigurable mmWave [...] Read more.
Millimeter-wave (mmWave) antennas and antenna arrays have gained significant attention due to their pivotal role in emerging wireless communication, sensing, and imaging technologies. With the rapid deployment of 5G and the transition toward 6G networks, the demand for compact, high-gain, and reconfigurable mmWave antennas has intensified. This article highlights recent advancements in mmWave antenna technologies, including hybrid beamforming using phased arrays, dynamic beam-steering enabled by liquid crystal and MEMS-based structures, and high-capacity MIMO architectures. We also examine the integration of metamaterials and metasurfaces for miniaturization and gain enhancement. Applications covered include wearable antennas with low-SAR textile substrates, conformal antennas for UAV-based mmWave relays, and high-resolution radar arrays for autonomous vehicles. The study further analyzes innovative fabrication methods such as inkjet and aerosol jet printing, micromachining, and laser direct structuring, along with advanced materials like Kapton, PDMS, and graphene. Numerical modeling techniques such as full-wave EM simulation and machine learning-based optimization are discussed alongside experimental validation approaches. Beyond communications, we assess mmWave systems for biomedical imaging, security screening, and industrial sensing. Key challenges addressed include efficiency degradation at high frequencies, interference mitigation in dense environments, and system-level integration. Finally, future directions, including AI-driven design automation, intelligent reconfigurable surfaces, and integration with quantum and terahertz technologies, are outlined. This comprehensive synthesis aims to serve as a valuable reference for advancing next-generation mmWave antenna systems. Full article
(This article belongs to the Special Issue Recent Advancements of Millimeter-Wave Antennas and Antenna Arrays)
Show Figures

Figure 1

21 pages, 1476 KiB  
Article
AI-Driven Handover Management and Load Balancing Optimization in Ultra-Dense 5G/6G Cellular Networks
by Chaima Chabira, Ibraheem Shayea, Gulsaya Nurzhaubayeva, Laura Aldasheva, Didar Yedilkhan and Saule Amanzholova
Technologies 2025, 13(7), 276; https://doi.org/10.3390/technologies13070276 - 1 Jul 2025
Viewed by 711
Abstract
This paper presents a comprehensive review of handover management and load balancing optimization (LBO) in ultra-dense 5G and emerging 6G cellular networks. With the increasing deployment of small cells and the rapid growth of data traffic, these networks face significant challenges in ensuring [...] Read more.
This paper presents a comprehensive review of handover management and load balancing optimization (LBO) in ultra-dense 5G and emerging 6G cellular networks. With the increasing deployment of small cells and the rapid growth of data traffic, these networks face significant challenges in ensuring seamless mobility and efficient resource allocation. Traditional handover and load balancing techniques, primarily designed for 4G systems, are no longer sufficient to address the complexity of heterogeneous network environments that incorporate millimeter-wave communication, Internet of Things (IoT) devices, and unmanned aerial vehicles (UAVs). The review focuses on how recent advances in artificial intelligence (AI), particularly machine learning (ML) and deep learning (DL), are being applied to improve predictive handover decisions and enable real-time, adaptive load distribution. AI-driven solutions can significantly reduce handover failures, latency, and network congestion, while improving overall user experience and quality of service (QoS). This paper surveys state-of-the-art research on these techniques, categorizing them according to their application domains and evaluating their performance benefits and limitations. Furthermore, the paper discusses the integration of intelligent handover and load balancing methods in smart city scenarios, where ultra-dense networks must support diverse services with high reliability and low latency. Key research gaps are also identified, including the need for standardized datasets, energy-efficient AI models, and context-aware mobility strategies. Overall, this review aims to guide future research and development in designing robust, AI-assisted mobility and resource management frameworks for next-generation wireless systems. Full article
Show Figures

Figure 1

31 pages, 927 KiB  
Article
A Narrative Review on Key Values Indicators of Millimeter Wave Radars for Ambient Assisted Living
by Maria Gardano, Antonio Nocera, Michela Raimondi, Linda Senigagliesi and Ennio Gambi
Electronics 2025, 14(13), 2664; https://doi.org/10.3390/electronics14132664 - 30 Jun 2025
Viewed by 258
Abstract
The demographic shift toward an aging population calls for innovative strategies to ensure independence, health, and quality of life in later years. In this context, Ambient Assisted Living (AAL) solutions, supported by Information and Communication Technologies (ICTs), offer promising advances for non-invasive and [...] Read more.
The demographic shift toward an aging population calls for innovative strategies to ensure independence, health, and quality of life in later years. In this context, Ambient Assisted Living (AAL) solutions, supported by Information and Communication Technologies (ICTs), offer promising advances for non-invasive and continuous support. Commonly, ICTs are evaluated only from the perspectives related to key performance indicators (KPIs); nevertheless, the design and implementation of such technologies must account for important psychological, social, and ethical dimensions. Radar-based sensing systems are emerging as an option due to their unobtrusive nature and capacity to operate without direct user interaction. This work explores how radar technologies, particularly those operating in the millimeter wave (mmWave) spectrum, can provide core key value indicators (KVIs) essential to aging societies, such as human dignity, trustworthiness, fairness, and sustainability. Through a review of key application domains, the paper illustrates the practical contributions of mmWave radar in Ambient Assisting Living (AAL) contexts, underlining how its technical attributes align with the complex needs of elderly care environments and produce value for society. This work uniquely integrates key value indicator (KVI) frameworks with mmWave radar capabilities to address unmet ethical needs in the AAL domain. It advances existing literature by proposing a value-driven design approach that directly informs technical specifications, enabling the alignment of engineering choices with socially relevant values and supporting the development of technologies for a more inclusive and ethical society. Full article
(This article belongs to the Special Issue Assistive Technology: Advances, Applications and Challenges)
Show Figures

Figure 1

21 pages, 6378 KiB  
Article
Regular Wave Effects on the Hydrodynamic Performance of Fine-Mesh Nettings in Sampling Nets
by Zhiqiang Liu, Fuxiang Hu, Rong Wan, Shaojian Guo, Yucheng Wang and Cheng Zhou
Appl. Sci. 2025, 15(13), 7229; https://doi.org/10.3390/app15137229 - 27 Jun 2025
Viewed by 240
Abstract
Fine-mesh netting, with mesh dimensions of the order of a few millimeters, is widely used in sampling nets for the collection of larval and juvenile fishes. The wave force characteristics of fine-mesh netting significantly affect the operational performance of these nets. This study [...] Read more.
Fine-mesh netting, with mesh dimensions of the order of a few millimeters, is widely used in sampling nets for the collection of larval and juvenile fishes. The wave force characteristics of fine-mesh netting significantly affect the operational performance of these nets. This study employed both wave tank experiments and numerical simulations to analyze the hydrodynamic performance of fine-mesh netting under varying wave conditions. A series of numerical simulations and particle image velocimetry (PIV) experiments were conducted to investigate the damping effects of fine-mesh netting on wave propagation. The results revealed that horizontal wave forces increased with both the wave period and wave height. When the wave period was held constant, the drag and inertial coefficients of the netting generally decreased as the Reynolds number and the Keulegan–Carpenter (KC) number increased. The wave transmission coefficients of the netting decreased as the wave height increased for the same wave period. However, at a constant wave height, the transmission coefficients initially increased and then decreased with the increasing wave period. The water particle velocity was significantly affected by the netting, with a notable reduction in velocity downstream of the netting at both the wave crest and trough phases. The simulation results and PIV measurements of the water particle velocity field distribution were in good agreement. This study provides important insights for the design and optimization of sampling nets. Full article
Show Figures

Figure 1

15 pages, 4432 KiB  
Article
Millimeter-Wave Miniaturized Substrate-Integrated Waveguide Multibeam Antenna Based on Multi-Layer E-Plane Butler Matrix
by Qing-Yuan Wu, Ling-Hui Wu, Cheng-Qin Ben and Ji-Wei Lian
Electronics 2025, 14(13), 2553; https://doi.org/10.3390/electronics14132553 - 24 Jun 2025
Viewed by 234
Abstract
A millimeter-wave multi-layer and miniaturized multibeam antenna fed by an E-plane Butler matrix (BM) in substrate integrated waveguide (SIW) technology is proposed. For the beam-forming network (BFN), a folded E-plane 4 × 4 BM is proposed, whose basic components are stacked up along [...] Read more.
A millimeter-wave multi-layer and miniaturized multibeam antenna fed by an E-plane Butler matrix (BM) in substrate integrated waveguide (SIW) technology is proposed. For the beam-forming network (BFN), a folded E-plane 4 × 4 BM is proposed, whose basic components are stacked up along the vertical direction aiming to reduce the horizontal size by more than 75% compared with a single-layer BM. For the radiation portion, an unconventional slot antenna array arranged in a ladder type is adopted. The slot antenna elements are distributed in separate layers, making them more compatible with the presented BM and are arranged in the longitudinal direction to suppress the mutual coupling effect. Furthermore, the BM has been adjusted to accommodate the slot antenna array and obtain further miniaturization. The overall dimension of the designed multibeam antenna, taking the BFN into account, is 12 mm × 45 mm × 2 mm (1.2 λ × 4.5 λ × 0.2 λ), which is preferable for future 6G smartphone applications. The impacts of the air gap in fabrication are also taken into consideration to alleviate the error between simulated model and fabricated prototype. Full article
Show Figures

Figure 1

16 pages, 2246 KiB  
Article
Context-Aware Beam Selection for IRS-Assisted mmWave V2I Communications
by Ricardo Suarez del Valle, Abdulkadir Kose and Haeyoung Lee
Sensors 2025, 25(13), 3924; https://doi.org/10.3390/s25133924 - 24 Jun 2025
Viewed by 439
Abstract
Millimeter wave (mmWave) technology, with its ultra-high bandwidth and low latency, holds significant promise for vehicle-to-everything (V2X) communications. However, it faces challenges such as high propagation losses and limited coverage in dense urban vehicular environments. Intelligent Reflecting Surfaces (IRSs) help address these issues [...] Read more.
Millimeter wave (mmWave) technology, with its ultra-high bandwidth and low latency, holds significant promise for vehicle-to-everything (V2X) communications. However, it faces challenges such as high propagation losses and limited coverage in dense urban vehicular environments. Intelligent Reflecting Surfaces (IRSs) help address these issues by enhancing mmWave signal paths around obstacles, thereby maintaining reliable communication. This paper introduces a novel Contextual Multi-Armed Bandit (C-MAB) algorithm designed to dynamically adapt beam and IRS selections based on real-time environmental context. Simulation results demonstrate that the proposed C-MAB approach significantly improves link stability, doubling average beam sojourn times compared to traditional SNR-based strategies and standard MAB methods, and achieving gains of up to four times the performance in scenarios with IRS assistance. This approach enables optimized resource allocation and significantly improves coverage, data rate, and resource utilization compared to conventional methods. Full article
Show Figures

Figure 1

15 pages, 5094 KiB  
Article
Design and Realization of a Multi-Band, High-Gain, and High-Isolation MIMO Antenna for 5G mmWave Communications
by Nabeel Alsaab and Mahmoud Shaban
Appl. Sci. 2025, 15(12), 6857; https://doi.org/10.3390/app15126857 - 18 Jun 2025
Viewed by 367
Abstract
This research introduces a novel, high-performance multiple-input–multiple-output (MIMO) antenna designed to operate in allocated millimeter-wave (mmWave) 5G wireless communications. Operating in the tri-band, 28, 35, and 38 GHz, the four-port MIMO antenna possesses a compact size—measuring just 50 × 50 × 0.787 mm [...] Read more.
This research introduces a novel, high-performance multiple-input–multiple-output (MIMO) antenna designed to operate in allocated millimeter-wave (mmWave) 5G wireless communications. Operating in the tri-band, 28, 35, and 38 GHz, the four-port MIMO antenna possesses a compact size—measuring just 50 × 50 × 0.787 mm3 (4.67λo × 4.67λo × 0.73λo). The antenna delivers a remarkable performance, achieving peak gains of 9.6, 7.8, and 13.7 dBi in the tri-band, respectively. The realized bandwidths are 1.1, 2.2, and 3.7 GHz, at the tri-band frequencies. The antenna’s performance was significantly improved by carefully spacing the elements and employing a decoupling technique using metamaterial cells. This minimized interference between the antenna elements, resulting in efficient MIMO operation with a low envelope correlation coefficient of 0.00015 and a high diversity gain approaching 10 dB, and high isolation of 34.5, 22, and 30 dB, in the tri-band. This proposed design is confirmed with experimental measurements and offers a promising candidate for multi-band use of mmWave communication systems. Full article
(This article belongs to the Special Issue Multi-Band/Broadband Antenna Design, Optimization and Measurement)
Show Figures

Figure 1

13 pages, 4379 KiB  
Article
A Broadband Millimeter-Wave Circularly Polarized Folded Reflectarray Antenna Based on Transmissive Linear-to-Circular Polarization Converter
by Yue Cao, Zhuwei Wang, Qing Wang, Mingzhu Du and Miaojuan Zhang
Micromachines 2025, 16(6), 711; https://doi.org/10.3390/mi16060711 - 14 Jun 2025
Viewed by 436
Abstract
In this paper, a wideband circularly polarized folded reflectarray antenna (CPFRA) based on a transmissive linear-to-circular polarization converter is proposed. The CPFRA consists of a primary reflector and a sub-reflector. To achieve broadband performance, a metasurface-based RA element on the primary reflector surface [...] Read more.
In this paper, a wideband circularly polarized folded reflectarray antenna (CPFRA) based on a transmissive linear-to-circular polarization converter is proposed. The CPFRA consists of a primary reflector and a sub-reflector. To achieve broadband performance, a metasurface-based RA element on the primary reflector surface and a transmissive linear-to-circular polarization converter on the sub-reflector surface are applied. Moreover, the transmissive linear-to-circular polarization converter on the sub-reflector surface helps convert linear polarization to circular polarization. To verify the proposed CPFRA, a prototype is designed, fabricated, and tested. The measured results exhibit that the proposed CPFRA presents a 3 dB gain bandwidth of 27.4% and a 3 dB axial ratio bandwidth of 23%. The CPFRA achieves a peak gain of 21.2 dBi with an aperture efficiency of 27.2%. The proposed CPFRA is a promising candidate for millimeter-wave (mm-W) satellite communication applications because of its advantages of high gain, low cost, low profile, and broad bandwidth. Full article
(This article belongs to the Special Issue Microwave Passive Components, 3rd Edition)
Show Figures

Figure 1

28 pages, 7907 KiB  
Article
Transformer-Based Air-to-Ground mmWave Channel Characteristics Prediction for 6G UAV Communications
by Borui Huang, Zhichao Xin, Fan Yang, Yuyang Zhang, Yu Liu, Jie Huang and Ji Bian
Sensors 2025, 25(12), 3731; https://doi.org/10.3390/s25123731 - 14 Jun 2025
Viewed by 392
Abstract
With the increasing development of 6th-generation (6G) air-to-ground (A2G) communications, the combination of millimeter-wave (mmWave) and multiple-input multiple-output (MIMO) technologies can offer unprecedented bandwidth and capacity for unmanned aerial vehicle (UAV) communications. The introduction of new technologies will also make the UAV channel [...] Read more.
With the increasing development of 6th-generation (6G) air-to-ground (A2G) communications, the combination of millimeter-wave (mmWave) and multiple-input multiple-output (MIMO) technologies can offer unprecedented bandwidth and capacity for unmanned aerial vehicle (UAV) communications. The introduction of new technologies will also make the UAV channel characteristics more complex and variable, posing higher requirements for UAV channel modeling. This paper presents a novel predictive channel modeling method based on Transformer architecture by integrating data-driven approaches with UAV air-to-ground channel modeling. By introducing the mmWave and MIMO into UAV communications, the channel data of UAVs at various flight altitudes is first collected. Based on the Transformer network, the typical UAV channel characteristics, such as received power, delay spread, and angular spread, are then predicted and analyzed. The results indicate that the proposed predictive method exhibits excellent performance in prediction accuracy and stability, effectively addressing the complexity and variability of channel characteristics caused by mmWave bands and MIMO technology. This method not only provides strong support for the design and optimization of future 6G UAV communication systems but also lays a solid communication foundation for the widespread application of UAVs in intelligent transportation, logistics, and other fields in the future. Full article
Show Figures

Figure 1

26 pages, 42046 KiB  
Article
High-Resolution Wide-Beam Millimeter-Wave ArcSAR System for Urban Infrastructure Monitoring
by Wenjie Shen, Wenxing Lv, Yanping Wang, Yun Lin, Yang Li, Zechao Bai and Kuai Yu
Remote Sens. 2025, 17(12), 2043; https://doi.org/10.3390/rs17122043 - 13 Jun 2025
Viewed by 270
Abstract
Arc scanning synthetic aperture radar (ArcSAR) can achieve high-resolution panoramic imaging and retrieve submillimeter-level deformation information. To monitor buildings in a city scenario, ArcSAR must be lightweight; have a high resolution, a mid-range (around a hundred meters), and low power consumption; and be [...] Read more.
Arc scanning synthetic aperture radar (ArcSAR) can achieve high-resolution panoramic imaging and retrieve submillimeter-level deformation information. To monitor buildings in a city scenario, ArcSAR must be lightweight; have a high resolution, a mid-range (around a hundred meters), and low power consumption; and be cost-effective. In this study, a novel high-resolution wide-beam single-chip millimeter-wave (mmwave) ArcSAR system, together with an imaging algorithm, is presented. First, to handle the non-uniform azimuth sampling caused by motor motion, a high-accuracy angular coder is used in the system design. The coder can send the radar a hardware trigger signal when rotated to a specific angle so that uniform angular sampling can be achieved under the unstable rotation of the motor. Second, the ArcSAR’s maximum azimuth sampling angle that can avoid aliasing is deducted based on the Nyquist theorem. The mathematical relation supports the proposed ArcSAR system in acquiring data by setting the sampling angle interval. Third, the range cell migration (RCM) phenomenon is severe because mmwave radar has a wide azimuth beamwidth and a high frequency, and ArcSAR has a curved synthetic aperture. Therefore, the fourth-order RCM model based on the range-Doppler (RD) algorithm is interpreted with a uniform azimuth angle to suit the system and implemented. The proposed system uses the TI 6843 module as the radar sensor, and its azimuth beamwidth is 64°. The performance of the system and the corresponding imaging algorithm are thoroughly analyzed and validated via simulations and real data experiments. The output image covers a 360° and 180 m area at an azimuth resolution of 0.2°. The results show that the proposed system has good application prospects, and the design principles can support the improvement of current ArcSARs. Full article
Show Figures

Figure 1

17 pages, 874 KiB  
Review
A Comprehensive Survey of Research Trends in mmWave Technologies for Medical Applications
by Xiaoyu Zhang, Chuhui Liu, Yanda Cheng, Zhengxiong Li, Chenhan Xu, Chuqin Huang, Ye Zhan, Wei Bo, Jun Xia and Wenyao Xu
Sensors 2025, 25(12), 3706; https://doi.org/10.3390/s25123706 - 13 Jun 2025
Viewed by 721
Abstract
Millimeter-wave (mmWave) sensing has emerged as a promising technology for non-contact health monitoring, offering high spatial resolution, material sensitivity, and integration potential with wireless platforms. While prior work has focused on specific applications or signal processing methods, a unified understanding of how mmWave [...] Read more.
Millimeter-wave (mmWave) sensing has emerged as a promising technology for non-contact health monitoring, offering high spatial resolution, material sensitivity, and integration potential with wireless platforms. While prior work has focused on specific applications or signal processing methods, a unified understanding of how mmWave signals map to clinically relevant biomarkers remains lacking. This survey presents a full-stack review of mmWave-based medical sensing systems, encompassing signal acquisition, physical feature extraction, modeling strategies, and potential medical and healthcare uses. We introduce a taxonomy that decouples low-level mmWave signal features—such as motion, material property, and structure—from high-level biomedical biomarkers, including respiration pattern, heart rate, tissue hydration, and gait. We then classify and contrast the modeling approaches—ranging from physics-driven analytical models to machine learning techniques—that enable this mapping. Furthermore, we analyze representative studies across vital signs monitoring, cardiovascular assessment, wound evaluation, and neuro-motor disorders. By bridging wireless sensing and medical interpretation, this work offers a structured reference for designing next-generation mmWave health monitoring systems. We conclude by discussing open challenges, including model interpretability, clinical validation, and multimodal integration. Full article
(This article belongs to the Special Issue Feature Papers in Biomedical Sensors 2025)
Show Figures

Figure 1

16 pages, 7546 KiB  
Article
Differential-Fed Wideband Circularly Polarized SIW Cavity-Backed Slot Antenna Array
by Chao Wang, Xiao-Chun Li and David Keezer
Electronics 2025, 14(12), 2389; https://doi.org/10.3390/electronics14122389 - 11 Jun 2025
Viewed by 346
Abstract
This paper presents a wideband circularly polarized (CP) substrate-integrated waveguide (SIW) cavity-backed slot antenna array arranged in a 2 × 2 configuration with differential feeding structures. The design features arc-shaped microstrips within the SIW cavity to excite the TE011x/ [...] Read more.
This paper presents a wideband circularly polarized (CP) substrate-integrated waveguide (SIW) cavity-backed slot antenna array arranged in a 2 × 2 configuration with differential feeding structures. The design features arc-shaped microstrips within the SIW cavity to excite the TE011x/TE101y and TE211y/TE121x modes. By overlapping the center frequencies of the two modes, wideband CP radiation is achieved. The introduction of four modified ring couplers composes a simple but efficient differential feeding network, eliminating the need for balanced resistors like baluns, making it more suitable for millimeter wave or even higher frequency applications. Experimental results show that the antenna array achieves a −10 dB impedance bandwidth of 32.6% (from 17.28 to 24.00 GHz), a 3 dB axial ratio (AR) bandwidth of 13.8% (from 17.05 to 19.57 GHz), a 3 dB gain bandwidth of 41.8% (from 15.39 to 23.51 GHz) and a peak gain of 10.6 dBi, with results closely matching simulation data. This study enhances the development of differential CP SIW cavity-backed slot antenna arrays, offering a potential solution for creating compact integrated front-end circuits in the millimeter wave or Terahertz frequency range. Full article
Show Figures

Figure 1

13 pages, 3609 KiB  
Article
A Compact Wideband Millimeter-Wave Crossover for Phased Array Antenna Systems in Remote Sensing Applications
by Fayyadh H. Ahmed, Rola Saad and Salam K. Khamas
Sensors 2025, 25(12), 3641; https://doi.org/10.3390/s25123641 - 10 Jun 2025
Viewed by 345
Abstract
A new compact, wideband, millimeter-wave microstrip crossover—designed without vias—demonstrates effective performance with an insertion loss of 2 dB across a wide frequency range. For Path 1, the operational bandwidth spans 11 GHz (13–24 GHz), while for Path 2, it extends over 10 GHz [...] Read more.
A new compact, wideband, millimeter-wave microstrip crossover—designed without vias—demonstrates effective performance with an insertion loss of 2 dB across a wide frequency range. For Path 1, the operational bandwidth spans 11 GHz (13–24 GHz), while for Path 2, it extends over 10 GHz (12–22 GHz). The overlapping bandwidth, maintaining the 2 dB insertion loss criterion, covers 9 GHz (13–22 GHz). The design introduces two transition mechanisms to achieve optimal scattering parameters for the crossover: a stair-shaped microstrip line (MST) to ground-backed coplanar waveguide (GCPW) for the initial crossed line (Path 1), and vertical coupling between microstrip and coplanar hourglass microstrip patches on a single-layer substrate for Path 2. This innovative approach ensures an insertion loss of approximately 1 dB for both paths across the bandwidth, with a slight increase beyond 20 GHz for Path 2 due to substrate losses. Both crossed lines maintain a return loss of 10 dB across the spectrum, with isolation of approximately 20 dB. This design presents a flat, compact, and via-less configuration, with physical dimensions measuring 6.5 mm × 7.6 mm. The proposed design exhibits excellent scattering parameters, which enhance the efficiency of phased array antenna systems in terms of power transfer between input and output ports, as well as improving isolation between different input ports in the feed network of these systems used in remote sensing. Consequently, this contributes to the increased sensitivity and accuracy of such systems. Full article
(This article belongs to the Special Issue Antennas for Wireless Communications)
Show Figures

Figure 1

Back to TopTop