Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = midlatitude F region ionosphere

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 6414 KiB  
Article
D- and F-Region Ionospheric Response to the Severe Geomagnetic Storm of April 2023
by Arnab Sen, Sujay Pal, Bakul Das and Sushanta K. Mondal
Atmosphere 2025, 16(6), 716; https://doi.org/10.3390/atmos16060716 - 13 Jun 2025
Viewed by 581
Abstract
This study investigates the impact on the Earth’s ionosphere of a severe geomagnetic storm (Dst  212 nT) that began on 23 April 2023 at around 17:37 UT according to very low-frequency (VLF, 3–30 kHz) or low-frequency (LF, 30–300 [...] Read more.
This study investigates the impact on the Earth’s ionosphere of a severe geomagnetic storm (Dst  212 nT) that began on 23 April 2023 at around 17:37 UT according to very low-frequency (VLF, 3–30 kHz) or low-frequency (LF, 30–300 kHz) radio signals and ionosonde data. We analyze VLF/LF signals received by SuperSID monitors located in mid-latitude (Europe) and low-latitude (South America, Colombia) areas across nine different propagation paths in the Northern Hemisphere. Mid-latitude regions exhibited a daytime amplitude perturbation, mostly an increase, by ∼3–5 dB during the storm period, with a subsequent recovery after 7–8 days post April 23. In contrast, signals received in low-latitude regions (UTP, Colombia) did not show significant variation during the storm-disturbed days. We also observe that the 3-hour average of foF2 data declined by up to 3 MHz on April 23 and April 24 at the European Digisonde stations. However, no significant variation in foF2 was observed at the low-latitude Digisonde stations in Brazil. Both the VLF and ionosonde data exhibited anomalies during the storm period in the European regions, confirming that both D- and F-region ionospheric perturbation was caused by the severe geomagnetic storm. Full article
Show Figures

Figure 1

24 pages, 48751 KiB  
Article
Effects of the Mother’s Day Superstorm (10–11 May 2024) over the Global Ionosphere
by Krishnendu Sekhar Paul, Mefe Moses, Haris Haralambous and Christina Oikonomou
Remote Sens. 2025, 17(5), 859; https://doi.org/10.3390/rs17050859 - 28 Feb 2025
Cited by 2 | Viewed by 1123
Abstract
The present study examines the global ionospheric response to the “Mother’s Day Superstorm” (10–11 May 2024), one of the most intense geomagnetic storms since 1957, with a minimum SYM-H index of −436 nT. Constellation Observing System for Meteorology, Ionosphere, and Climate-2 (COSMIC-2) Radio [...] Read more.
The present study examines the global ionospheric response to the “Mother’s Day Superstorm” (10–11 May 2024), one of the most intense geomagnetic storms since 1957, with a minimum SYM-H index of −436 nT. Constellation Observing System for Meteorology, Ionosphere, and Climate-2 (COSMIC-2) Radio Occultation (RO) data indicated an increase in the F2 layer maximum critical frequency (foF2) over midlatitude dayside regions, which was accompanied by a significant F-region uplift (hmF2 increase) on a global scale, even on the nightside during the main and recovery phases. At the same time, a decrease in foF2 was observed on the nightside. High southeastward and vertical drift velocities were observed in the nightside sector of the northern hemisphere with the dayside sector exhibiting upward and southwestward-to-northwestward drifts during the main and recovery phases of the storm. An intense upward drift (~170 m/s) in the southern hemisphere was registered with the poleward expansion of the Equatorial Ionization Anomaly (EIA) during the main phase. Swarm A data highlighted the EIA expansion from ~45°N to 60°S during the dayside main phase and from ~30°N to 40°S on the nightside during recovery. Full article
(This article belongs to the Special Issue Application of GNSS Remote Sensing in Ionosphere Monitoring)
Show Figures

Graphical abstract

13 pages, 16029 KiB  
Article
Numerical Simulation of Perkins Instability in the Midlatitude F-Region Ionosphere: The Influence of Background Ionospheric Multi-Factors
by Yi Liu, Ting Lan, Yufeng Zhou, Yunzhou Zhu, Zhiqiang Fan, Yewen Wu, Yuqiang Zhang and Xiang Wang
Atmosphere 2025, 16(2), 221; https://doi.org/10.3390/atmos16020221 - 16 Feb 2025
Viewed by 628
Abstract
A numerical simulation of Perkins instability in the midlatitude F-region ionosphere is developed in this study. The growth of nighttime plasma density perturbation excited by Perkins instability was successfully reproduced. The simulated results show that the ionospheric perturbation structure elongated from northwest (NW) [...] Read more.
A numerical simulation of Perkins instability in the midlatitude F-region ionosphere is developed in this study. The growth of nighttime plasma density perturbation excited by Perkins instability was successfully reproduced. The simulated results show that the ionospheric perturbation structure elongated from northwest (NW) to southeast (SE) was generated from initial random seeding by applying a very large southeastward neutral wind (200 m/s). The domain wave vector direction agreed with the linear Perkins theory. Our simulated results were consistent with the previous observations and simulations. To investigate the influence of background ionospheric multi-factors on the generation of nighttime medium-scale traveling ionospheric disturbance (MSTID), we simulated the evolution process of ionospheric perturbations under initial background ionospheric conditions. The simulated results indicate the importance of neutral scale height on the development of nighttime MSTID and suggest that a smaller neutral scale height would amplify the amplitude of ionospheric perturbations. The influences of gravity wave (GW) activity and polarized electric field seeding from plasma instability in the E region are also discussed in this study. We conclude that the additional seeding processes play a major role in the accelerated Perkins instability and amplify ionospheric perturbations. The electrodynamic coupling process has a greatly significant effect on the growth rate of Perkins instability compared to GW activity. Full article
(This article belongs to the Section Planetary Atmospheres)
Show Figures

Figure 1

28 pages, 11667 KiB  
Article
Investigation of the Ionospheric Response on Mother’s Day 2024 Geomagnetic Superstorm over the European Sector
by Krishnendu Sekhar Paul, Haris Haralambous, Mefe Moses, Christina Oikonomou, Stelios M. Potirakis, Nicolas Bergeot and Jean-Marie Chevalier
Atmosphere 2025, 16(2), 180; https://doi.org/10.3390/atmos16020180 - 5 Feb 2025
Cited by 5 | Viewed by 1803
Abstract
The present study examines the negative ionospheric response over Europe during two geomagnetic storms on 10–13 May 2024, known as the Mother’s Day geomagnetic superstorm. The first storm, with a peak SYM-H value of −436 nT, occurred in the interval 10–11 May, while [...] Read more.
The present study examines the negative ionospheric response over Europe during two geomagnetic storms on 10–13 May 2024, known as the Mother’s Day geomagnetic superstorm. The first storm, with a peak SYM-H value of −436 nT, occurred in the interval 10–11 May, while the second, less intense storm (SYM-H~−103 nT), followed in the interval 12–13 May. Using data from four European locations, temporal and spatial variations in ionospheric parameters (TEC, foF2, and hmF2) were analyzed to investigate the morphology of the strong negative response. Sharp electron density (Ne) depletion is associated with the equatorward displacement of the Midlatitude Ionospheric Trough (MIT), confirmed by Swarm satellite data. A key finding was the absence of foF2 and hmF2 values over all ionosonde stations during the recovery phase of the storms, likely due to the coupling between the Equatorial Ionization Anomaly (EIA) crests and the auroral ionosphere influenced by the intense uplift of the F layer. Relevant distinct features such as Large-scale Travelling Ionospheric Disturbance (LSTID) signatures and Spread F were also noted, particularly during the initial and main phase of the first storm over high midlatitude regions. Regional effects varied, with high European midlatitudes exhibiting different features compared to lower European latitude areas. Full article
(This article belongs to the Special Issue Feature Papers in Upper Atmosphere (2nd Edition))
Show Figures

Figure 1

23 pages, 13422 KiB  
Article
Investigation for Possible Association of the Topside and Bottomside Ionospheric Irregularities over the Midlatitude Ionosphere
by Krishnendu Sekhar Paul and Haris Haralambous
Appl. Sci. 2025, 15(2), 506; https://doi.org/10.3390/app15020506 - 7 Jan 2025
Cited by 2 | Viewed by 709
Abstract
The present study investigates the characteristics of ionospheric irregularities at middle latitudes by examining the association between spread F (SF) events detected by Digisondes and medium-scale travelling ionospheric disturbances (MSTIDs) detected by GNSS with a special emphasis on the coupling with topside irregularities [...] Read more.
The present study investigates the characteristics of ionospheric irregularities at middle latitudes by examining the association between spread F (SF) events detected by Digisondes and medium-scale travelling ionospheric disturbances (MSTIDs) detected by GNSS with a special emphasis on the coupling with topside irregularities observed by Swarm satellites based on in situ electron density (Ne) measurements. We analyzed SF events over the European midlatitude region from 2015 to 2017, over six Digisonde stations coinciding with Swarm satellite overpasses. Swarm latitudinal Ne profiles were used to identify topside irregularities, while GNSS d-TEC and ROTI maps were used to track MSTIDs and irregularities, respectively. Based on ten selected cases demonstrating concurrent SF and topside irregularities, our findings suggest a strong association between SF in the bottomside ionosphere and fluctuations in topside Ne. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

13 pages, 3943 KiB  
Article
Investigating the Applicability of the Peak Density Thickness Parameter over the Equatorial Region
by Mohamed O. Shammat, Bodo W. Reinisch, Ivan Galkin, Philip J. Erickson, Jay A. Weitzen and William C. Rideout
Atmosphere 2025, 16(1), 10; https://doi.org/10.3390/atmos16010010 - 26 Dec 2024
Viewed by 614
Abstract
The Peak Density Thickness (PDT) refers to a vertical region in the ionosphere encompassing the F2 peak, where electron density is at its maximum, and extending upward—maintaining a constant density—for a fixed altitude beyond this peak. This study builds on the previously established [...] Read more.
The Peak Density Thickness (PDT) refers to a vertical region in the ionosphere encompassing the F2 peak, where electron density is at its maximum, and extending upward—maintaining a constant density—for a fixed altitude beyond this peak. This study builds on the previously established PDT concept, initially explored at midlatitudes using data from Millstone Hill, by evaluating its applicability and effectiveness over equatorial latitudes using data from the Jicamarca Incoherent Scatter Radar (ISR) in Lima, Peru. A comprehensive analysis of electron density profiles measured by the Jicamarca ISR, spanning 1997 to 2020, was conducted using the Madrigal database to extract the PDT parameter for the F2 layer. Findings from the Jicamarca ISR indicate that the PDT parameter peaks around solar noon, aligning with observations from Millstone Hill. For selected case studies, the Vary-Chap topside model was employed to reconstruct the ionospheric profile above the F2 peak and PDT, demonstrating the model’s enhanced effectiveness when incorporating the PDT parameter over equatorial regions. This research confirms the presence of PDT in equatorial regions, consistent with its behavior at midlatitudes, and underscores the importance of PDT in refining predictive ionospheric models across different latitudes. Full article
Show Figures

Figure 1

15 pages, 3819 KiB  
Technical Note
Statistical Characteristics of Spread F in the Northeastern Edge of the Qinghai-Tibet Plateau during 2017–2022
by Zhichao Liu, Chunhua Jiang, Tongxin Liu, Lehui Wei, Guobin Yang, Hua Shen, Wengeng Huang and Zhengyu Zhao
Remote Sens. 2024, 16(7), 1142; https://doi.org/10.3390/rs16071142 - 25 Mar 2024
Viewed by 1063
Abstract
Spread F (SF) in the ionosphere can be observed frequently in mid-latitude regions. It is suggested that atmospheric gravity waves play a significant role for the seeding of mid-latitude SF. Previous research suggested that the source of travelling ionospheric disturbances (TIDs) over China [...] Read more.
Spread F (SF) in the ionosphere can be observed frequently in mid-latitude regions. It is suggested that atmospheric gravity waves play a significant role for the seeding of mid-latitude SF. Previous research suggested that the source of travelling ionospheric disturbances (TIDs) over China is in the southeastern and northeastern edge of the Qinghai-Tibet Plateau, however, until now there have been no ground-based observations of the ionosphere in this region. Recently, an advanced digital ionosonde was installed at Zhangye station (39.2°N, 100.54°E, Dip Lat 29.6°N) in the northeastern edge of the Qinghai-Tibet Plateau. It is an opportunity to verify the effect of gravity waves on the formation of mid-latitude SF by comparing it with observations in other regions of the Chinese sector. In this study, statistical analysis of SF recorded at Zhangye station during 2017–2022 was carried out. Results show that diurnal, seasonal and solar cycle characteristics of the occurrence rate of SF are similar with previous studies. At Zhangye station, the maximum occurrence rate of SF is during the post-midnight period in summer and winter. The occurrence rate of SF events have a negative relationship with solar activity. There is no obvious relationship between the occurrence rate of SF and geomagnetic activity. Comparing observations of other stations in the mid-latitude region, we found that the occurrence rates of SF (the annual maximum rates are from 33.83% to 53.29%) are much higher at Zhangye station. Further studies show that ionospheric disturbances can be observed frequently at Zhangye station, especially in autumn and winter. Gravity waves/TIDs in the northeast of the Qinghai-Tibet Plateau are suggested to explain the abnormal higher occurrence rate of SF at Zhangye station. Full article
Show Figures

Graphical abstract

14 pages, 14429 KiB  
Technical Note
A New Approach to the Ionosphere at Middle and Low Latitudes under the Geomagnetic Quiet Time of December 2019 by ICON and GOLD Observations
by Hao Sun, Jiawei Kuai, Jiahao Zhong, Libo Liu, Ruilong Zhang, Lianhuan Hu and Qiaoling Li
Remote Sens. 2023, 15(23), 5591; https://doi.org/10.3390/rs15235591 - 1 Dec 2023
Cited by 1 | Viewed by 1943
Abstract
It has been found that the total electron content (TEC) and the ionospheric electric fields indicated by the geomagnetic data showed inconsistent changes with each other at the mid- and low latitudes in both the American and the Asian–Australian sectors during geomagnetic quiet [...] Read more.
It has been found that the total electron content (TEC) and the ionospheric electric fields indicated by the geomagnetic data showed inconsistent changes with each other at the mid- and low latitudes in both the American and the Asian–Australian sectors during geomagnetic quiet time (GQT) from 30 November to 8 December 2019 (Kpmax = 1.7). Meanwhile, the effects of thermospheric compositions are still indistinct. In this work, we analyze the mid/low-latitude ionospheric variations during this period, utilizing multi-instrument observations. The vertical drift velocities from the Ionospheric Connection Explorer (ICON) show significant variations and are in line with the changes in TEC at low latitudes in both of the two sectors. The zonal electric fields are supposed to play the main role in the TEC changes. This is also confirmed by the ionospheric F2 layer parameters data from the ionosonde stations at Sanya in the Asian–Australian sectors. The correlation between the variations in the geomagnetic H component (ΔH) and ionospheric F-layer electric fields can be affected by solar activity levels. The geomagnetic data ΔH sometimes may not indicate the magnitude of the electric fields in the F-region ionosphere under geomagnetic quiet conditions. The column density ratio of atomic oxygen (O) to molecular nitrogen (N2) (∑O/N2) from the Global Scale Observations of the Limb and Disk (GOLD) showed a strong enhancement at mid-latitudes in the American sector on 30 November. It is speculated that the neutral compositions should make a minor contribution to the changes in TEC during this event, compared with the electric fields. Full article
Show Figures

Graphical abstract

21 pages, 8222 KiB  
Article
Ionospheric Global and Regional Electron Contents in Solar Cycles 23–25
by Yury Yasyukevich, Artem Padokhin, Artem Vesnin, Alexei Bykov, Alexander Kiselev, Alexander Ivanov and Anna Yasyukevich
Symmetry 2023, 15(10), 1940; https://doi.org/10.3390/sym15101940 - 19 Oct 2023
Cited by 2 | Viewed by 1855
Abstract
The Earth’s ionosphere experiences forcing from above and below and varies in different periods. We analyzed the dynamics of the ionospheric global and regional electron contents (GEC and REC) in solar cycles 23/24 (SC23/SC24) and the first part of solar cycle 25 (SC25). [...] Read more.
The Earth’s ionosphere experiences forcing from above and below and varies in different periods. We analyzed the dynamics of the ionospheric global and regional electron contents (GEC and REC) in solar cycles 23/24 (SC23/SC24) and the first part of solar cycle 25 (SC25). We considered several methodological issues for GEC calculations and created a tool to compute GEC and made it available through SIMuRG (System for Ionosphere Monitoring and Research from GNSS). The paper shows the asymmetry of GEC dynamics in different solar cycles. The mid-latitude summer evening anomaly disrupted the diurnal REC variation in the Siberian region under solar minima. The mean GEC showed similar dependence on the F10.7 index in SC25 and SC23/SC24. The difference in solar cycles could prevent reliable forecasting for GEC for the next solar cycle. Our model, based on a neural network, could predict GEC dynamics in SC25 accurately when we input the F10.7 index. Full article
(This article belongs to the Special Issue Physics and Symmetry Section: Feature Papers 2023)
Show Figures

Figure 1

13 pages, 2652 KiB  
Article
Nonlinear Three-Dimensional Simulations of the Gradient Drift and Secondary Kelvin–Helmholtz Instabilities in Ionospheric Plasma Clouds
by Lujain Almarhabi, Chirag Skolar, Wayne Scales and Bhuvana Srinivasan
Atmosphere 2023, 14(4), 676; https://doi.org/10.3390/atmos14040676 - 3 Apr 2023
Viewed by 1824
Abstract
A newly developed three-dimensional electrostatic fluid model solving continuity and current closure equations aims to study phenomena that generate ionospheric turbulence. The model is spatially discretized using a pseudo-spectral method with full Fourier basis functions and evolved in time using a four-stage, fourth-order [...] Read more.
A newly developed three-dimensional electrostatic fluid model solving continuity and current closure equations aims to study phenomena that generate ionospheric turbulence. The model is spatially discretized using a pseudo-spectral method with full Fourier basis functions and evolved in time using a four-stage, fourth-order Runge Kutta method. The 3D numerical model is used here to investigate the behavior and evolution of ionospheric plasma clouds. This problem has historically been used to study the processes governing the evolution of the irregularities in the F region of the ionosphere. It has been shown that these artificial clouds can become unstable and structure rapidly (i.e., cascade to smaller scales transverse to the ambient magnetic field). The primary mechanism which causes this structuring of ionospheric clouds is the E×B, or the gradient drift instability (GDI). The persistence and scale sizes of the resulting structures cannot be fully explained by a two-dimensional model. Therefore, we suggest here that the inclusion of three-dimensional effects is key to a successful interpretation of mid-latitude irregularities, as well as a prerequisite for a credible simulation of these processes. We investigate the results of 2D and 3D nonlinear simulations of the GDI and secondary Kelvin–Helmholtz instability (KHI) in plasma clouds for three different regimes: highly collisional (≈200 km), collisional (≈300 km), and inertial (≈450 km). The inclusion of inertial effects permits the growth of the secondary KHI. For the three different regimes, the overall evolution of structuring of plasma cloud occurs on longer timescales in 3D simulations. The inclusion of three-dimensional effects, in particular, the ambipolar potential in the current closure equation, introduces an azimuthal “twist“ about the axis of the cloud (i.e., the magnetic field B). This azimuthal “twist” is observed in the purely collisional regime, and it causes the perturbations to have a non-flute-like character (k0). However, for the 3D inertial simulations, the cloud rapidly diffuses to a state in which the sheared azimuthal flow is substantially reduced; subsequently, the cloud becomes unstable and structures, by retaining the flute-like character of the perturbations (k=0). Full article
(This article belongs to the Special Issue Ionospheric Science and Ionosonde Applications)
Show Figures

Figure 1

23 pages, 11159 KiB  
Article
Comparative Analysis of Global and Regional Ionospheric Responses during Two Geomagnetic Storms on 3 and 4 February 2022
by Rumiana Bojilova and Plamen Mukhtarov
Remote Sens. 2023, 15(7), 1739; https://doi.org/10.3390/rs15071739 - 23 Mar 2023
Cited by 16 | Viewed by 2418
Abstract
The present work examines the spatial and temporal distribution of positive and negative TEC anomalies on the global and regional scale. To study the local response of the ionosphere, foF2 data from ground ionosonde stations and TEC data from Madrigal and CODE databases [...] Read more.
The present work examines the spatial and temporal distribution of positive and negative TEC anomalies on the global and regional scale. To study the local response of the ionosphere, foF2 data from ground ionosonde stations and TEC data from Madrigal and CODE databases have been used. The relative deviation, which also determines the type of TEC response during geomagnetic storms on 3 and 4 February 2022, is considered. In the present study, the regions of positive and negative TEC anomalies and their evolution during storms are examined in detail. As a result of the study, estimates of the following were obtained: (i) the location of the sectors of the polar regions, in where the particle precipitation from the solar wind is observed, (ii) the mid-latitude regions, in which the mechanism of influence of the O/N2 ratio dominates, and (iii) the region around the equator, in which the influence of the electric field dominates. An attempt was made to determine which mechanism of influence of geomagnetic storms on the ionospheric electron density is dominant in different regions. The following main mechanisms are considered: (a) the additional ionization from the particles’ precipitation, (b) the change of the ratio of atomic oxygen (O) to molecular nitrogen (N2) due to the heating of the neutral air, and (c) the influence on the equatorial ionospheric anomaly. Full article
Show Figures

Figure 1

19 pages, 4881 KiB  
Article
Multi-Instrumental Observations of Midlatitude Plasma Irregularities over Eastern Asia during a Moderate Magnetic Storm on 16 July 2003
by Hailun Ye, Wen Yi, Baozhu Zhou, Jianfei Wu, Bingkun Yu, Penghao Tian, Jianyuan Wang, Chi Long, Maolin Lu, Xianghui Xue, Tingdi Chen and Xiangkang Dou
Remote Sens. 2023, 15(4), 1160; https://doi.org/10.3390/rs15041160 - 20 Feb 2023
Cited by 8 | Viewed by 2543
Abstract
This study presents the observations of midlatitude plasma irregularities over Eastern Asia during a moderate magnetic storm on 16 July 2003. Multi-instrumental observations, including the ground-based ionosondes, the GNSS networks, and the CHAMP and ROCSAT-1 satellites, were utilized to investigate the occurrence and [...] Read more.
This study presents the observations of midlatitude plasma irregularities over Eastern Asia during a moderate magnetic storm on 16 July 2003. Multi-instrumental observations, including the ground-based ionosondes, the GNSS networks, and the CHAMP and ROCSAT-1 satellites, were utilized to investigate the occurrence and characteristics of midlatitude plasma irregularities. The midlatitude strong spread F (SSF) mainly occurred in the midnight–morning sector as observed by ionosondes over Japan during this storm. SSF was related to plasma depletions, which is also recorded by GNSS network in the form of the enhancement of the rate of total electron content (TEC) change index (ROTI). The possible mechanism for the generation of SSF is that the enhanced eastward electric fields, associated with the prompt penetration electric fields and disturbance dynamo electric fields, cause the uplift and latitudinal extension of equatorial plasma bubbles (EPBs) to generate the observed midlatitude SSF further. Meanwhile, plasma density increased significantly under the influence of this storm. In addition, other common type of spread F, frequency spread F (FSF), was observed over Japan on the non-storm day and/or at high latitude station WK545, which seems to be closely related to the coupling of medium-scale traveling ionospheric disturbances (MSTIDs) and sporadic E (Es) layer. The above results indicate that various types of midlatitude spread F can be produced by different physical mechanisms. It is found that SSF can significantly affect the performance of radio wave propagation compared with FSF. Our results show that space weather events have a significant influence on the day-to-day variability of the occurrence and characteristics of ionospheric F-region irregularities at midlatitudes. Full article
Show Figures

Figure 1

16 pages, 1619 KiB  
Article
Geomagnetic Storm Effect on F2-Region Ionosphere during 2012 at Low- and Mid-Latitude-Latitude Stations in the Southern Hemisphere
by Edwin A. Kumar and Sushil Kumar
Atmosphere 2022, 13(3), 480; https://doi.org/10.3390/atmos13030480 - 15 Mar 2022
Cited by 9 | Viewed by 3293
Abstract
The ionospheric effects of six intense geomagnetic storms with Dst index ≤ −100 nT that occurred in 2012 were studied at a low-latitude station, Darwin (Geomagnetic coordinates, 21.96° S, 202.84° E), a low-mid-latitude station, Townsville (28.95° S, 220.72° E), and a mid-latitude station, [...] Read more.
The ionospheric effects of six intense geomagnetic storms with Dst index ≤ −100 nT that occurred in 2012 were studied at a low-latitude station, Darwin (Geomagnetic coordinates, 21.96° S, 202.84° E), a low-mid-latitude station, Townsville (28.95° S, 220.72° E), and a mid-latitude station, Canberra (45.65° S, 226.30° E), in the Australian Region, by analyzing the storm–time variations in the critical frequency of the F2-region (foF2). Out of six storms, a storm of 23–24 April did not produce any ionospheric effect. The storms of 30 September–3 October (minimum Dst = −122 nT) and 7–10 October (minimum Dst = −109 nT) are presented as case studies and the same analysis was done for the other four storms. The storm of 30 September–3 October, during its main phase, produced a positive ionospheric storm at all three stations with a maximum percentage increase in foF2 (∆foF2%) of 45.3% at Canberra whereas during the recovery phase it produced a negative ionospheric storm at all three stations with a maximum ∆foF2% of −63.5% at Canberra associated with a decrease in virtual height of the F-layer (h’F). The storm of 7–10 October produced a strong long-duration negative ionospheric storm associated with an increase in h’F during its recovery phase at all three stations with a maximum ∆foF2% of −65.1% at Townsville. The negative ionospheric storms with comparatively longer duration were more pronounced in comparison to positive storms and occurred only during the recovery phase of storms. The storm main phase showed positive ionospheric storms for two storms (14–15 July and 30 September–3 October) and other three storms did not produce any ionospheric storm at the low-latitude station indicating prompt penetrating electric fields (PPEFs) associated with these storms did not propagate to the low latitude. The positive ionospheric storms during the main phase are accounted to PPEFs affecting ionospheric equatorial E × B drifts and traveling ionospheric disturbances due to joule heating at the high latitudes. The ionospheric effects during the recovery phase are accounted to the disturbance dynamo electric fields and overshielding electric field affecting E × B drifts and the storm-induced circulation from high latitudes toward low latitudes leading to changes in the natural gas composition [O/N2] ratio. Full article
Show Figures

Figure 1

23 pages, 5864 KiB  
Article
Summer Nighttime Anomalies of Ionospheric Electron Content at Midlatitudes: Comparing Years of Low and High Solar Activities Using Observations and Tidal/Planetary Wave Features
by Yu Yin, Guillermo González-Casado, Adrià Rovira-Garcia, José Miguel Juan, Jaume Sanz and Yixie Shao
Remote Sens. 2022, 14(5), 1237; https://doi.org/10.3390/rs14051237 - 3 Mar 2022
Cited by 4 | Viewed by 2253
Abstract
In this study, midlatitude summer nighttime anomalies (MSNAs) are analyzed via observations and tidal/planetary wave features using measurements from the Formosat-3/Constellation Observing System for Meteorology, Ionosphere, and Climate (F3C) for 2007, a year with low solar activity, and 2014, a year with high [...] Read more.
In this study, midlatitude summer nighttime anomalies (MSNAs) are analyzed via observations and tidal/planetary wave features using measurements from the Formosat-3/Constellation Observing System for Meteorology, Ionosphere, and Climate (F3C) for 2007, a year with low solar activity, and 2014, a year with high solar activity. The total ionospheric electron content, ECion, an integrated quantity derived from F3C measurements, was used to compare the observational data. The ECion values were derived from accurate radio-occultation-retrieved electron density profiles without assuming spherical symmetry and from a model that separated the ground total electron content into the plasmaspheric and the ionospheric electron content contributions. An analysis of the ECion data set confirmed that MSNAs were present in three different regions of the world for the months surrounding the local summer solstice during both 2007 and 2014. In the southern hemisphere, the so-called Weddell Sea Anomaly showed a maximum increase in ECion, measured as the difference between nighttime and midday values, that was more than three times that in the northern MSNAs. For each individual MSNA, the corresponding maximum increases in electron content were similar between the two years analyzed, so they were not significantly affected by solar activity. Then, linear least-square fit to the frequency–wave number basis functions was used to derive the tidal and planetary wave components contributing to MSNAs. The main component that appears to produce the Weddell Sea Anomaly is D0, followed by SPW1, DW2, and DE1, in this order, which make secondary but still relevant contributions. The presence of MSNAs in the northern hemisphere was clearly supported by the migrating tide SW2 in combination with DE1. SW2 also supported an early morning MSNA being observed in the northern hemisphere. The main tidal and planetary wave signatures producing the MSNAs did not significantly differ between 2007 and 2014. Full article
Show Figures

Graphical abstract

12 pages, 7258 KiB  
Article
Sporadic E Layer with a Structure of Double Cusp in the Vertical Sounding Ionogram
by Kamil M. Yusupov and Nataliya V. Bakhmetieva
Atmosphere 2021, 12(9), 1093; https://doi.org/10.3390/atmos12091093 - 25 Aug 2021
Cited by 8 | Viewed by 2997
Abstract
In this study, we analyzed a large number of vertical sounding ionograms, obtained by the mid-latitude Cyclone ionosonde (55.85° N; 48.8° E) of Kazan (Volga Region) Federal University, which operates in a rapid-run mode of ionograms (1 ionogram per minute). Ionograms with a [...] Read more.
In this study, we analyzed a large number of vertical sounding ionograms, obtained by the mid-latitude Cyclone ionosonde (55.85° N; 48.8° E) of Kazan (Volga Region) Federal University, which operates in a rapid-run mode of ionograms (1 ionogram per minute). Ionograms with a sporadic E layer type c, which have an unusual double cusp on the trace from the sporadic layer, were found among them. We attempted to simulate this unusual double cusp trace shape. Model calculations were performed to clarify the reasons for the appearance of the double cusp and to determine the shape of the lower part of the E and Es layers. The simulation was performed by fitting the profile of the electron densities of the E and Es layers, calculating the virtual reflection heights based on the refractive index using the Appleton-Hartree formula, and comparing them with the virtual heights of the layers on the ionogram. An estimate of the half-thickness of the lower part of the Es-layer was obtained. The possible reasons for the appearance of a trace with a double cusp of the Es layer are discussed. We assumed that the possible reasons for this phenomenon were the stratification of the E layer, and the interaction between the E and F layers in the form of descending or intermediate layers and atmospheric wave propagation. As an illustration of these phenomena, examples of an intermediate (descending) sporadic E layer and stratification of the E region and the Es layer are given according to observations of the lower ionosphere. These examples were obtained through the resonant scattering of probe radio waves by artificial periodic irregularities (API technique) of the ionospheric plasma, performed on the SURA mid-latitude heating facility (56.1° N; 46.1° E). The scattering of probe radio waves on the APIs generated by the heating facility made it possible to study various phenomena in the Earth’s ionosphere. Full article
Show Figures

Figure 1

Back to TopTop