Comparative Analysis of Global and Regional Ionospheric Responses during Two Geomagnetic Storms on 3 and 4 February 2022
Abstract
:1. Introduction
2. Data and Methods
2.1. Parameters Describing the Geomagnetic Storm
2.2. Types of Ionospheric Data Used in This Study
2.2.1. Ionosonde Data
2.2.2. TEC Data from Madrigal Database
2.2.3. TEC Data from CODE
2.2.4. Comparison between CODE and Madrigal Data
2.3. Data for O/N2
3. Results and Discussion
3.1. Zonal Mean Response
3.2. Regional Ionospheric Effects in foF2
3.3. Variability of the Spatial Distribution of the TEC Response for the Period 3–4 February as Shown by CODE Data
3.4. Effects in Low Latitudes
3.5. Effects in O/N2 Ratio
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saakian, A. Radio Wave Propagation Fundamentals; Artech House: Norwood, MA, USA, 2020. [Google Scholar]
- Shankar, J. Analysis of the Day Side Equatorial Anomaly; Utah State University: Logan, UT, USA, 2007; pp. 1–105. [Google Scholar]
- Gonzalez, W.D.; Joselyn, J.A.; Kamide, Y.; Kroehl, H.W.; Rostoker, G.; Tsurutani, B.T.; Vasyliunas, V.M. What is a geomagnetic storm. J. Geophys. Res. Space Phys. 1994, 99, 5771–5792. [Google Scholar] [CrossRef] [Green Version]
- Kamide, Y.; Chian, A. Handbook of the Solar-Terrestrial Environment; Springer: Berlin/Heidelberg, Germany, 2007; pp. 55–93. [Google Scholar]
- Kelley, M.C.; Fejer, B.G.; Gonzales, C.A. An explanation for anomalous ionospheric electric fields associated with a northward turning of the interplanetary magnetic field. Geophys. Res. Lett. 1979, 6, 301–304. [Google Scholar] [CrossRef]
- Fejer, B.G.; Scherliess, L. Mid- and low-latitude prompt penetration ionospheric plasma drifts. Geophys. Res. Lett. 1998, 25, 3071–3074. [Google Scholar] [CrossRef]
- Kelley, M.C.; Makela, J.J.; Chau, J.L.; Nicolls, M.J. Penetration of the solar wind electric field into the magnetosphere/ionosphere system. Geophys. Res. Lett. 2003, 30, 1158. [Google Scholar] [CrossRef]
- Tsurutani, B.T.; Verkhoglyadova, O.P.; Mannucci, A.J.; Saito, A.; Araki, T.; Yumoto, K.; Tsuda, T.; Abdu, M.A.; Sobral, J.H.A.; Gonzalez, W.D.; et al. Prompt penetration electric fields (PPEFs) and their ionospheric effects during the great magnetic storm of 30–31 October 2003. J. Geophys. Res. Space Phys. 2008, 113, A05311. [Google Scholar] [CrossRef]
- Werner, S.; Bauske, R.; Prolss, G.W. On the origin of positive ionospheric storms. Adv. Space. Res. 1999, 24, 1485–1489. [Google Scholar] [CrossRef]
- Kelley, M.C.; Vlasov, M.N.; Foster, J.C.; Coster, A.J. A quantitative explanation for the phenomenon known as storm-enhanced density. Geophys. Res. Lett. 2004, 31, LI9809. [Google Scholar] [CrossRef]
- Balan, N.; Shiokawa, K.; Otsuka, Y.; Kikuchi, T.; Vijaya Lekshmi, D.; Kawamura, S.; Yamamoto, M.; Bailey, G.J. A physical mechanism of positive ionospheric storms at low latitudes and midlatitudes. J. Geophys. Res. 2010, 115, A2304. [Google Scholar] [CrossRef]
- Mendillo, M.; Klobuchar, J. Investigations of the ionospheric F region using multistation total electron content observations. J. Geophys. Res. 1975, 80, 643–650. [Google Scholar] [CrossRef]
- Foster, J.C. Storm-time plasma transport at middle and high latitudes. J. Geophys. Res. 1993, 98, 1675–1689. [Google Scholar] [CrossRef]
- Foster, J.C.; Erickson, P.J.; Coster, A.J.; Goldstein, J.; Rich, F.J. Ionospheric signatures of plasmaspheric tails. Geophys. Res. Lett. 2002, 29, 1623–1626. [Google Scholar] [CrossRef] [Green Version]
- Foster, J.C.; Rideout, W. Storm enhanced density: Magnetic conjugacy effects. Ann. Geophys. 2007, 25, 1791–1799. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Wang, W.; Burns, A.; Yue, X.; Zhang, S.; Zhang, Y.; Huang, C. Profiles of ionospheric storm-enhanced density during the 17 March 2015 great storm. J. Geophys. Res. Space Phys. 2016, 121, 727–744. [Google Scholar] [CrossRef]
- Knudsen, W.C. Magnetospheric convection and the high-latitude F2 ionosphere. J. Geophys. Res. 1974, 79, 1046–1055. [Google Scholar] [CrossRef] [Green Version]
- Foster, J.C.; Coster, A.J.; Erickson, P.J.; Holt, J.M.; Lind, F.D.; Rideout, W.; McCready, M.; van Eyken, A.; Barnes, R.J.; Greenwald, R.A.; et al. Multiradar observations of the polar tongue of ionization. J. Geophys. Res. 2005, 110, A09S31. [Google Scholar] [CrossRef] [Green Version]
- Pokhotelov, D.; Fernandez-Gomez, I.; Borries, C. Polar tongue of ionisation during geomagnetic superstorm. Ann. Geophys. 2021, 39, 833–847. [Google Scholar] [CrossRef]
- Prölss, G.W. Ionospheric F-region storms. In Handbook of Atmospheric Electrodynamics, 1st ed.; Volland, H., Ed.; CRC Press: Boca Raton, FL, USA, 1995; Volume 2, pp. 195–248. [Google Scholar]
- Goncharenko, L.P.; Foster, J.C.; Coster, A.J.; Huang, C.; Aponte, N.; Paxton, L.J. Observations of a positive storm phase on September 10, 2005. J. Atmos. Sol. Terr. Phys. 2007, 69, 1253–1272. [Google Scholar] [CrossRef]
- Rishbeth, H. How the thermospheric circulation affects the ionospheric F2-layer. J. Atmos. Sol. Terr. Phys. 1998, 60, 1385–1402. [Google Scholar] [CrossRef]
- Torr, M.R.; Torr, D.G. The seasonal behavior of the F2-layer of the ionosphere. J. Atmos. Terr. Phys. 1973, 35, 2237–2251. [Google Scholar] [CrossRef]
- Millward, G.H.; Rishbeth, H.; Fuller-Rowell, T.J.; Aylward, A.D.; Quegan, S.; Moffett, R.J. Ionospheric F2 layer seasonal and semiannual variations. J. Geophys. Res. 1996, 101, 5149–5156. [Google Scholar] [CrossRef]
- Luan, X.; Wang, W.; Burns, A.; Dou, X. Solar cycle variations of thermospheric O/N2 longitudinal pattern from TIMED/GUVI. J. Geophys. Res. Space Phys. 2017, 122, 2605–2618. [Google Scholar] [CrossRef]
- Snyder, C.W.; Neugebauer, M.; Rao, U. The solar wind velocity and its corelation with cosmic ray variations and with solar and geomagnetic activity. J. Geophys. Res. 1963, 68, 6361–6370. [Google Scholar] [CrossRef]
- Wilcox, J.M.; Shatten, H.; Ness, N. Influence of interplanetary magnetic field plasma on geomagnetic activity during quiet—Sun conditions. J. Geophys. Res. 1967, 72, 19–26. [Google Scholar] [CrossRef]
- Gold, T. Magnetic storms. Space Sci. Rev. 1962, 1, 100–114. [Google Scholar] [CrossRef]
- Tsurutani, B.T.; Gonzalez, W.D.; Kamide, Y. Magnetic storms. Surv. Geophys. 1997, 18, 363–383. [Google Scholar] [CrossRef]
- Loewe, C.A.; Prölss, G.W. Classification and mean behavior of magnetic storms. J. Geophys. Res. Space Phys. 1997, 102, 14209–14213. [Google Scholar] [CrossRef]
- Reinisch, B.W.; Galkin, I.A. Global ionospheric radio observatory (GIRO). Earth Planets Space 2011, 63, 377–381. [Google Scholar] [CrossRef] [Green Version]
- Danilov, A.D.; Lastovicka, J. Effects of geomagnetic storms on the ionosphere and atmosphere. Int. J. Geomagn. Aeron. 2001, 2, 209–224. [Google Scholar]
- Kutiev, I.; Muhtarov, P. Modeling of midlatitude F region response to geomagnetic activity. J. Geophys. Res. Space Phys. 2001, 106, 15501–15509. [Google Scholar] [CrossRef]
- Peng, Y.; Scales, W.A. Satellite Formation Flight Simulation Using Multi-Constellation GNSS and Applications to Ionospheric Remote Sensing. Remote Sens. 2019, 11, 2851. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Huang, C.S.; Eastes, R.W.; Coster, A.J. Temporal evolution of low-latitude plasma blobs identified from multiple measurements: ICON, GOLD, and Madrigal TEC. J. Geophys. Res. Space Phys. 2022, 127, e2021JA029992. [Google Scholar] [CrossRef]
- Rideout, W.; Coster, A. Automated GPS processing for global total electron content data. GPS Solut. 2006, 10, 219–228. [Google Scholar] [CrossRef]
- Ciraolo, L.; Azpilicueta, F.; Brunini, C.; Meza, A.; Radicella, S.M. Calibration errors on experimental slant total electron content (TEC) determined with GPS. J. Geod. 2007, 81, 111–120. [Google Scholar] [CrossRef]
- Schaer, S. Mapping and Predicting the Earths Ionosphere Using the Global Positioning System. Ph.D. Thesis, University of Bern, Bern, Switzerland, 1999; 205p. [Google Scholar]
- Astafyeva, E.; Yasyukevich, Y.V.; Maletckii, B.; Oinats, A.; Vesnin, A.; Yasyukevich, A.S.; Syrovatskii, S.; Guendouz, N. Ionospheric Disturbances and Irregularities during the 25–26 August 2018 Geomagnetic Storm. J. Geophys. Res. Space Phys. 2022, 127, e2021JA029843. [Google Scholar] [CrossRef]
- Andonov, B.; Mukhtarov, P.; Pancheva, D. Empirical model of the TEC response to the geomagnetic activity over the North American region. Adv. Space Res. 2011, 48, 1041–1048. [Google Scholar] [CrossRef]
- Mukhtarov, P.; Andonov, B.; Pancheva, D. Empirical model of TEC response to geomagnetic and solar forcing over Balkan Peninsula. J. Atmos. Sol. Terr. Phys. 2018, 167, 80–95. [Google Scholar] [CrossRef]
- Huang, Z.; Yuan, H. Research on regional ionospheric TEC modeling using RBF neural network. Sci. China Technol. Sci. 2014, 57, 1198–1205. [Google Scholar] [CrossRef]
- Feng, J.; Wang, Z.; Jiang, W.; Zhao, Z.; Zhang, B. A new regional total electron content empirical model in northeast China. Adv. Space Res. 2016, 58, 1155–1167. [Google Scholar] [CrossRef]
- Feng, J.; Jiang, W.; Wang, Z.; Zhao, Z.; Nie, L. Regional TEC model under quiet geomagnetic conditions and low-to-moderate solar activity based on CODE GIMs. J. Atmos. Sol.-Terr. Phys. 2017, 161, 88–97. [Google Scholar] [CrossRef]
- Badeke, R.; Borries, C.; Hoque, M.M.; Minkwitz, D. Empirical forecast of quiet time ionospheric Total Electron Content maps over Europe. Adv. Space Res. 2018, 61, 2881–2890. [Google Scholar] [CrossRef]
- Jakowski, N.; Hoque, M.M.; Mayer, C. A new global TEC model for estimating transionospheric radio wave propagation errors. J. Geod. 2011, 85, 965–974. [Google Scholar] [CrossRef]
- Liu, L.; Zou, S.; Yao, Y.; Wang, Z. Forecasting global ionospheric TEC using deep learning approach. Space Weather. 2020, 18, e2020SW002501. [Google Scholar] [CrossRef]
- Pancheva, D.; Mukhtarov, P.; Andonov, B. Global structure of ionospheric TEC anomalies driven by geomagnetic storms. J. Atmos. Sol. Terr. Phys. 2016, 145, 170–182. [Google Scholar] [CrossRef] [Green Version]
- Guerrero, A.; Palacios, J.; Rodríguez-Bouza, M.; Rodríguez-Bilbao, I.; Aran, A.; Cid, C.; Herraiz, M.; Saiz, E.; Rodríguez-Caderot, G.; Cerrato, Y. Storm and substorm causes and effects at midlatitude location for the St. Patrick’s 2013 and 2015 events. J. Geophys. Res. Space Phys. 2017, 122, 9994–10011. [Google Scholar] [CrossRef] [Green Version]
- Mukhtarov, P.; Andonov, B.; Pancheva, D. Global empirical model of TEC response to geomagnetic activity. J. Geophys. Res. Space Phys. 2013, 118, 6666–6685. [Google Scholar] [CrossRef]
- Stolle, C.; Schlüter, S.; Heise, S.; Jacobi, C.; Jakowski, N.; Friedel, S.; Kürschner, D.; Lühr, H. GPS ionospheric imaging of the north polar ionosphere on 30 October 2003. Adv. Space Res. 2005, 36, 2201–2206. [Google Scholar] [CrossRef]
- Foster, J.C.; St.-Maurice, J.P.; Abreu, V.J. Joule heating at high latitudes. J. Geophys. Res. Space Phys. 1983, 88, 4885–4897. [Google Scholar] [CrossRef]
- Danilov, A.D. Ionospheric F-region response to geomagnetic disturbances. Adv. Space Res. 2013, 52, 343–366. [Google Scholar] [CrossRef]
- Kutiev, I.; Muhtarov, P. Empirical modeling of global ionospheric foF2 response to geomagnetic activity. J. Geophys. Res. Space Phys. 2003, 108, SIA-5. [Google Scholar] [CrossRef]
- Andonov, B.; Bojilova, R.; Mukhtarov, P. Global Distribution of Total Electron Content Response to Weak Geomagnetic Activity. CR Acad. Bulg. Sci. 2021, 74, 1032–1042. [Google Scholar]
- Rishbeth, H. F-region storms and thermospheric dynamics. J. Geomagn. Geoelectr. 1991, 43, 513–524. [Google Scholar] [CrossRef]
- Edemskiy, I.K. Localized total electron content enhancements in the Southern Hemisphere. Ann. Geophys. 2020, 38, 591–601. [Google Scholar] [CrossRef]
- Prölss, G.W.; Von Zahn, U. Esro 4 Gas Analyzer results 2. Direct measurements of changes in the neutral composition during an ionospheric storm. J. Geophys. Res. 1974, 79, 2535–2539. [Google Scholar] [CrossRef]
- Mukhtarov, P.; Pancheva, D. Thermosphere–ionosphere coupling in response to recurrent geomagnetic activity. J. Atmos. Sol. Terr. Phys. 2012, 90, 132–145. [Google Scholar] [CrossRef]
- Mikhailov, A.V.; Skoblin, M.G.; Forster, M. Daytime F2-layer positive storm effect at middle and lower latitudes. Ann. Geophys. 1995, 13, 532–540. [Google Scholar] [CrossRef]
- Zhang, Y.; Paxton, L.J.; Morrison, D.; Schaefer, B. Storm-time variations of atomic nitrogen 149.3 nm emission. J. Atmos. Sol. Terr. Phys. 2018, 169, 78–82. [Google Scholar] [CrossRef]
- Ramsingh; Sripathi, S.; Sreekumar, S.; Banola, S.; Emperumal, K.; Tiwari, P.; Kumar, B.S. Low-latitude ionosphere response to super geomagnetic storm of 17/18 March 2015: Results from a chain of ground-based observations over Indian sector. J. Geophys. Res. Space Phys. 2015, 120, 10–864. [Google Scholar]
- Gadzhev, G.; Syrakov, D.; Ganev, K.; Brandiyska, A.; Miloshev, N.; Georgiev, G.; Prodanova, M. Atmospheric composition of the Balkan region and Bulgaria. Study of the contribution of biogenic emissions. AIP Conf. Proc. 2011, 1404, 200–209. [Google Scholar]
- Zhu, M.; Xu, T.; Sun, S.; Zhou, C.; Hu, Y.; Ge, S.; Li, N.; Deng, Z.; Zhang, Y.; Liu, X. Physical Model of D-Region Ionosphere and Preliminary Comparison with IRI and Data of MF Radar at Kunming. Atmosphere 2023, 14, 235. [Google Scholar] [CrossRef]
- Gadzhev, G.; Kostadin, G.; Miloshev, N. Numerical study of the atmospheric composition climate of Bulgaria-Validation of the computer simulation results. Int. J. Environ. Pollut. 2015, 57, 189–201. [Google Scholar] [CrossRef]
Station Code | Station Name | Lat | Long | Mlat | Mlon |
---|---|---|---|---|---|
JR055 | JULIUSRUH | 54.6 | 13.4 | 54.19 | 99.03 |
DB049 | DOURBES | 50.1 | 4.6 | 51.26 | 88.51 |
PQ052 | PRUHONICE | 50 | 14.6 | 49.55 | 98.23 |
RO041 | ROME | 41.9 | 12.5 | 42.01 | 93.51 |
EB040 | ROQUETES | 40.8 | 0.5 | 42.88 | 81.27 |
VT139 | SAN VITO | 40.6 | 17.8 | 39.89 | 98.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bojilova, R.; Mukhtarov, P. Comparative Analysis of Global and Regional Ionospheric Responses during Two Geomagnetic Storms on 3 and 4 February 2022. Remote Sens. 2023, 15, 1739. https://doi.org/10.3390/rs15071739
Bojilova R, Mukhtarov P. Comparative Analysis of Global and Regional Ionospheric Responses during Two Geomagnetic Storms on 3 and 4 February 2022. Remote Sensing. 2023; 15(7):1739. https://doi.org/10.3390/rs15071739
Chicago/Turabian StyleBojilova, Rumiana, and Plamen Mukhtarov. 2023. "Comparative Analysis of Global and Regional Ionospheric Responses during Two Geomagnetic Storms on 3 and 4 February 2022" Remote Sensing 15, no. 7: 1739. https://doi.org/10.3390/rs15071739
APA StyleBojilova, R., & Mukhtarov, P. (2023). Comparative Analysis of Global and Regional Ionospheric Responses during Two Geomagnetic Storms on 3 and 4 February 2022. Remote Sensing, 15(7), 1739. https://doi.org/10.3390/rs15071739