Geomagnetic Storm Effect on F2-Region Ionosphere during 2012 at Low- and Mid-Latitude-Latitude Stations in the Southern Hemisphere
Abstract
:1. Introduction
2. Data and Analysis
3. Results
3.1. Ionospheric Response to the Storm of 30 September to 3 October 2012
3.2. Ionospheric Response to the Storm of 7–9 October 2012
4. Discussion
5. Conclusions
- Positive and negative storm effects (ionospheric storms) in foF2 were observed during five out of six intense storms at both low and mid-latitudes stations. The storms of which the main phase occurred in the local daytime showed only positive ionospheric storms during their main phases associated with eastward PPEFs which strengthened the equatorial plasma fountain by enhancing the E × B vertical plasma drifts;
- The recovery phase of the storms showed both positive and negative ionospheric storms with the predominant occurrence of negative ionospheric storms which were stronger and of long duration as compared to positive ionospheric storms;
- Long duration decreases in foF2 (negative ionospheric storms) during the recovery phase of storms are related DDEFs and overshielding electric field which changed the normal ionospheric E × B drifts and to the equatorward motion of storm-time thermospheric neutral winds with decreased O/N2 density ratio.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Y.; Liu, L.; Le, H.; Wan, W. Geomagnetic activity effect on the global ionosphere during the 2007–2009 deep solar minimum. J. Geophys. Res. Space Phys. 2014, 119, 3747–3754. [Google Scholar] [CrossRef] [Green Version]
- Danilov, A. Ionospheric F-region response to geomagnetic disturbances. Adv. Space Res. 2013, 52, 343–366. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, A.; Menk, F.; Maurya, A.K.; Singh, R.; Veenadhari, B. Response of the low-latitude D region ionosphere to extreme space weather event of 14–16 December 2006. J. Geophys. Res. Space Phys. 2015, 120, 788–799. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Kumar, S.R. Equatorial ionospheric TEC and scintillations under the space weather events of 4–9 September 2017: M-class solar flares and a G4 geomagnetic storm. J. Atmos. Sol.-Terr. Phys. 2020, 209, 105421. [Google Scholar] [CrossRef]
- Balan, N.; Otsuka, Y.; Nishioka, M.; Liu, J.; Bailey, G. Physical mechanisms of the ionospheric storms at equatorial and higher latitudes during the recovery phase of geomagnetic storms. J. Geophys. Res. Atmos. 2013, 118, 2660–2669. [Google Scholar] [CrossRef] [Green Version]
- Sahai, Y.; Fagundes, P.; Becker-Guedes, F.; Bolzan, M.; Abalde, J.; Pillat, V.; De Jesus, R.; Lima, W.; Crowley, G.; Shiokawa, K. Effects of the major geomagnetic storms of October 2003 on the equatorial and low-latitude F region in two longitudinal sectors. J. Geophys. Res. Space Phys. 2005, 110. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, V.V. Ionospheric response to the St. Patrick’s Day space weather events in March 2012, 2013, and 2015 at southern low and middle latitudes. J. Geophys. Res. Space Phys. 2019, 124, 584–602. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.-S.; Zhang, Y. Equatorial plasma drifts during the magnetic storm on November 7–11, 2004: Identifications of the roles of penetration and disturbance dynamo electric fields with multi instrumental measurements. J. Geophys. Res. Space Phys. 2021, 126, e2021JA029386. [Google Scholar] [CrossRef]
- Kuai, J.; Liu, L.; Liu, J.; Zhao, B.; Chen, Y.; Le, H.; Wan, W. The long-duration positive storm effects in the equatorial ionosphere over Jicamarca. J. Geophys. Res. Space Phys. 2015, 120, 1311–1324. [Google Scholar] [CrossRef]
- Bagiya, M.S.; Iyer, K.N.; Joshi, H.; Thampi, S.V.; Tsugawa, T.; Ravindran, S.; Sridharan, R.; Pathan, B.M. Low-latitude ionospheric-thermospheric response to storm time electrodynamical coupling between high and low latitudes. J. Geophys. Res. Space Phys. 2011, 116, A01303. [Google Scholar] [CrossRef] [Green Version]
- Huang, C. Disturbance dynamo electric fields in response to geomagnetic storms occurring at different universal times. J. Geophys. Res. Space Phys. 2013, 118, 496–501. [Google Scholar] [CrossRef]
- Hui, D.; Vichare, G. Variable responses of equatorial ionosphere during undershielding and overshielding conditions. J. Geophys. Res. Space Phys. 2019, 124, 1328–1342. [Google Scholar] [CrossRef]
- Huang, C.-S.; Foster, J.C.; Kelley, M.C. Long-duration penetration of the interplanetary electric field to the low-latitude ionosphere during the main phase of magnetic storms. J. Geophys. Res. 2005, 110, A11309. [Google Scholar] [CrossRef]
- Huang, C.-S.; Rich, F.J.; Burke, W.J. Storm time electric fields in the equatorial ionosphere observed near the dusk meridian. J. Geophys. Res. Space Phys. 2010, 115, A08313. [Google Scholar] [CrossRef]
- Lu, G.; Hagan, M.; Häusler, K.; Doornbos, E.; Bruinsma, S.; Anderson, B.; Korth, H. Global ionospheric and thermospheric response to the 5 April 2010 geomagnetic storm: An integrated data-model investigation. J. Geophys. Res. Space Phys. 2014, 119. [Google Scholar] [CrossRef] [Green Version]
- Uma, G.; Brahmanandam, P.; Kakinami, Y.; Dmitriev, A.; Devi, N.L.; Kiran, K.U.; Prasad, D.; Rao, P.R.; Niranjan, K.; Babu, C.S. Ionospheric responses to two large geomagnetic storms over Japanese and Indian longitude sectors. J. Atmos. Sol.-Terr. Phys. 2012, 74, 94–110. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Q.; Chi, P.; Li, C. Simultaneous observations of plasmaspheric and ionospheric variations during magnetic storms in 2011: First result from Chinese Meridian Project. J. Geophys. Res. Space Phys. 2013, 118, 99–104. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S. F2-region response to geomagnetic storms at the equatorial anomaly during 1989–2001. Phys. Scr. 2005, 72, 100. [Google Scholar] [CrossRef]
- Rawat, R.; Alex, S.; Lakhina, G. Storm-time characteristics of intense geomagnetic storms at low-latitudes and associated energetics. J. Atmos. Sol.-Terr. Phys. 2010, 72, 1364–1371. [Google Scholar] [CrossRef]
- Blanc, M.; Richmond, A.D. The ionospheric disturbance dynamo. J. Geophys. Res. 1980, 85, 1669–1686. [Google Scholar] [CrossRef]
- Fejer, B.G.; Larsen, M.F.; Farley, D.T. Equatorial disturbance dynamo electric fields. Geophy. Res. Lett. 1983, 10, 537–540. [Google Scholar] [CrossRef]
- Kikuchi, T.; Ebihara, Y.; Hashimoto, K.K.; Kataoka, R.; Hori, T.; Watari, S.; Nishitani, N. Penetration of the convection and overshielding electric fields to the equatorial ionosphere during a quasiperiodic DP 2 geomagnetic fluctuation event. J. Geophys. Res. 2010, 115, A05209. [Google Scholar] [CrossRef]
- Kobéa, A.T.; Richmond, A.D.; Emery, B.A.; Peymirat, C.; Luhr, H.; Moretto, T.; Hairston, M.; Amory-Mazaudier, C. Electrodynamic Coupling of High and Low latitudes Observations on May 27, 1993. J. Geophys. Res. 2000, 105, 22979–22989. [Google Scholar] [CrossRef] [Green Version]
- Peymirat, C.; Richmond, A.D.; Kobea, A.T. Electrodynamic coupling of high and low latitudes: Simulations of shielding and overshielding effects. J. Geophys. Res. 2000, 105, 22991–23003. [Google Scholar] [CrossRef]
- Hui, D.; Chakrabarty, D.; Sekar, R.; Reeves, G.D.; Yoshikawa, A.; Shiokawa, K. Contribution of storm time substorms to the prompt electric field disturbances in the equatorial ionosphere. J. Geophys. Res. Space Phys. 2017, 122, 5568–5578. [Google Scholar] [CrossRef]
- Fuller-Rowell, T.J.; Codrescu, M.V.; Moffett, R.J.; Quegan, S.S. Response of the thermosphere and ionosphere to geomagnetic storms. J. Geophys. Res. 1994, 99, 3893–3914. [Google Scholar] [CrossRef]
- Miyoshi, Y.; Jin, H.; Fujiwara, H.; Shinagawa, H. Numerical study of traveling ionospheric disturbances generated by an upward propagating gravity wave. J. Geophys. Res. Space Phys. 2018, 123, 2141–2155. [Google Scholar] [CrossRef]
- Prölss, G.W. Ionospheric F-region storms. In Handbook of Atmospheric Electrodynamics; Volland, H., Ed.; CRC Press: Boca Raton, FL, USA, 1995; Volume 2, pp. 195–248. [Google Scholar]
- Bolaji, O.S.; Fashae, J.B.; Adebiyi, S.J.; Owolabi, C.; Adebesin, B.O.; Kaka, R.O.; Ibanga, J.; Abass, M.; Akinola, O.O.; Adekoya, B.J.; et al. Storm time effects on latitudinal distribution of ionospheric TEC in the American and Asian-Australian sectors: August 25–26, 2018 geomagnetic storm. J. Geophys. Res. Space Phys. 2021, 126, e2020JA029068. [Google Scholar] [CrossRef]
- Baumjohann, W.; Kamide, Y. Hemispherical Joule heating and the AE indices. J. Geophys. Res. 1984, 89, 383–388. [Google Scholar] [CrossRef]
- Ahn, B.-H.; Akasofu, S.-I.; Kamide, Y. The Joule heat production rate and the particle energy injection rate as a function of the geomagnetic indices AE and AL. J. Geophys. Res. 1983, 88, 6275–6287. [Google Scholar] [CrossRef]
- Habarulema, J.B.; Katamzi, Z.T.; Sibanda, P.; Matamba, T.M. Assessing ionospheric response during some strong storms in solar cycle 24 using various data sources. J. Geophys. Res. Space Phys. 2017, 122, 1064–1082. [Google Scholar] [CrossRef]
- Rishbeth, H.; Mendillo, M. Patterns of ionospheric variability. J. Atmos. Sol. Terr. Phys. 2001, 63, 1661–1680. [Google Scholar] [CrossRef]
- Mendillo, M. Chapter 2: Day-to-Day Variability of the Ionosphere, Dynamical Ionosphere a Systems Approach to Ionospheric Irregularity; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Chen, Z.; Wang, J.S.; Deng, X.; Deng, Y.; Huang, C.M.; Li, H.M.; Wu, Z.X. Study on the relationship between the residual 27 day quasi periodicity and ionospheric Q disturbances. J. Geophys. Res. Space Phys. 2017, 122, 2542–2550. [Google Scholar] [CrossRef]
- Fejer, B.G. Low latitude storm time ionospheric electrodynamics. J. Atmos. Sol.-Terr. Phys. 2012, 64, 1401–1408. [Google Scholar] [CrossRef]
Storm | Min. Dst (nT) | Max. AE (nT) | IMF BZ (nT & h) | Darwin | Townsville | Canberra | |||
---|---|---|---|---|---|---|---|---|---|
foF2 | ∆foF2 (%) | foF2 | ∆foF2 (%) | foF2 | ∆foF2 (%) | ||||
8–9 March | −145 | 1785 | −18.48 (~10) | No change | — | No change | — | Increase | 30.0% |
23–24 April | −120 | 1383 | −15.83 (~13) | No change | — | No change | — | No change | — |
14–15 July | −139 | 1368 | −19.92 (~31) | Increase | +23.8 | Increase | +25.0% | Increase | +27.4 |
30 September–3 October | −122 | 987 | −20.40 (~16) | Increase | +35.7 | Increase | +33.0 | Increase | +45.3 |
7–9 October | −99 and −109 | 1000 and 963 | −15.75 and −15.13 (~20 and 16) | No change | — | Increase | +37.6 | Increase | +28.2 |
13–14 November | −108 | 1009 | −17.61 (~19) | No change | — | Increase | +35.1 | Increase | +40.6 |
Storm | Darwin | Townsville | Canberra | |||
---|---|---|---|---|---|---|
foF2 | ∆foF2 (%) | foF2 | ∆foF2 (%) | foF2 | ∆foF2 (%) | |
8–9 March | Increase | +42.5 | Increase | +55.9 | Increase | +50.0 |
23–24 April | No change | — | No change | — | No change | — |
14–15 July | Increase | +230.8 | Increase | +62.5 | Decrease | −48.6 |
30 September–3 October | Decrease | −42.6 | Decrease | −39.2 | Decrease | −63.5 |
7–9 October | Decrease | −61.6 | Decrease | −65.1 | Decrease | −59.6 |
13–14 November | Decrease | −20.2 | Decrease | −36.8 | Decrease | −40.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, E.A.; Kumar, S. Geomagnetic Storm Effect on F2-Region Ionosphere during 2012 at Low- and Mid-Latitude-Latitude Stations in the Southern Hemisphere. Atmosphere 2022, 13, 480. https://doi.org/10.3390/atmos13030480
Kumar EA, Kumar S. Geomagnetic Storm Effect on F2-Region Ionosphere during 2012 at Low- and Mid-Latitude-Latitude Stations in the Southern Hemisphere. Atmosphere. 2022; 13(3):480. https://doi.org/10.3390/atmos13030480
Chicago/Turabian StyleKumar, Edwin A., and Sushil Kumar. 2022. "Geomagnetic Storm Effect on F2-Region Ionosphere during 2012 at Low- and Mid-Latitude-Latitude Stations in the Southern Hemisphere" Atmosphere 13, no. 3: 480. https://doi.org/10.3390/atmos13030480