Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (33)

Search Parameters:
Keywords = microwave-assisted solvothermal synthesis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4609 KiB  
Review
Covalent Organic Framework Membranes for Ion Separation: A Review
by Yutong Lou, Zhanyong Wang, Wanbei Yang, Shuchen Lang, Jiaxing Fan, Qiaomei Ke, Rui Wang, Zhen Zhang, Wentao Chen and Jian Xue
Membranes 2025, 15(7), 211; https://doi.org/10.3390/membranes15070211 - 15 Jul 2025
Viewed by 650
Abstract
Covalent organic framework (COF) membranes have garnered significant attention in ion separation due to their high surface area, tunable pore size, excellent stability, and diverse functional groups. Over the past decade, various synthesis methods, such as solvothermal synthesis, interfacial synthesis, microwave-assisted solvothermal synthesis, [...] Read more.
Covalent organic framework (COF) membranes have garnered significant attention in ion separation due to their high surface area, tunable pore size, excellent stability, and diverse functional groups. Over the past decade, various synthesis methods, such as solvothermal synthesis, interfacial synthesis, microwave-assisted solvothermal synthesis, and in situ growth, have been developed to fabricate COF membranes. COF membranes have demonstrated remarkable ion separation performance in different separation processes driven by pressure, electric field, and vapor pressure difference, showing great potential in a wide range of applications. Nevertheless, challenges in the synthesis and application of COF membranes still remain, requiring further research to fully realize their potential in ion separation. This review critically examines the development of COF membranes, from synthesis methods to ion separation applications. We evaluate the advantages and limitations of various synthesis techniques and systematically summarize COF membrane performance based on separation driving forces. Finally, we present a critical analysis of current challenges and offer perspectives on promising future research directions for advancing COF membrane technology in separation. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

22 pages, 3278 KiB  
Review
Advances in Green Synthesis and Photo-/Electrocatalytic Applications of Zirconium-Based MOFs: A Review
by Tian Zhao, Shilin Peng, Jiangrong Yu, Jiayao Chen, Fuli Luo, Pengcheng Xiao, Saiqun Nie and Yi Chen
Organics 2025, 6(2), 22; https://doi.org/10.3390/org6020022 - 9 May 2025
Cited by 1 | Viewed by 902
Abstract
Metal–organic frameworks (MOFs), particularly zirconium-based frameworks (Zr-MOFs), have gained significant attention in recent years due to their unique structural and functional properties. This review focuses on eco-friendly synthetic methods for producing Zr-MOFs, addressing the environmental impacts and costs associated with conventional synthesis, which [...] Read more.
Metal–organic frameworks (MOFs), particularly zirconium-based frameworks (Zr-MOFs), have gained significant attention in recent years due to their unique structural and functional properties. This review focuses on eco-friendly synthetic methods for producing Zr-MOFs, addressing the environmental impacts and costs associated with conventional synthesis, which often relies on hazardous reagents and harsh conditions. We explore various green synthesis strategies, including the selection of raw materials (such as using zirconium acetate), organic ligands (recycling waste materials for ligand synthesis), and synthesis methods (solvothermal, microwave-assisted, ultrasound-assisted, electrochemical, and mechanochemical approaches). Additionally, the application of Zr-MOFs in photocatalysis and electrocatalysis is examined, highlighting their potential for environmental purification and energy conversion. Despite the progress made in laboratory settings, challenges remain in achieving cost-effectiveness, material stability, and scalability for industrial applications. Future research should concentrate on enhancing synthesis efficiency, optimizing catalytic properties, investigating structure–property relationships, and expanding applications to novel catalytic reactions, thus ensuring Zr-MOFs can contribute to sustainable development in chemical science and technology. Full article
Show Figures

Figure 1

12 pages, 16337 KiB  
Article
Microwave-Assisted Solvothermal Synthesis of Cesium Tungsten Bronze Nanoparticles
by Jingyi Huang, Na Ta, Fengze Cao, Shuai He, Jianli He and Luomeng Chao
Nanomaterials 2025, 15(8), 627; https://doi.org/10.3390/nano15080627 - 20 Apr 2025
Viewed by 645
Abstract
Cesium tungsten bronzes (CsxWO3), as functional materials with excellent near-infrared shielding properties, demonstrate significant potential for applications in smart windows. However, traditional synthesis methods, such as solid-state reactions and solvothermal/hydrothermal approaches, typically require harsh conditions, including high temperatures (above [...] Read more.
Cesium tungsten bronzes (CsxWO3), as functional materials with excellent near-infrared shielding properties, demonstrate significant potential for applications in smart windows. However, traditional synthesis methods, such as solid-state reactions and solvothermal/hydrothermal approaches, typically require harsh conditions, including high temperatures (above 200 °C), high pressure, inert atmospheres, or prolonged reaction times. In this study, we propose an optimized microwave-assisted solvothermal synthesis strategy that significantly reduces the severity of reaction conditions through precise parameter control. When benzyl alcohol was employed as the solvent, CsxWO3 nanoparticles could be rapidly synthesized within a relatively short duration of 15 min at 180 °C, or alternatively obtained through 2 h at a low temperature of 140 °C. However, when anhydrous ethanol, which is cost-effective and environmentally friendly, was substituted for benzyl alcohol, successful synthesis was also achieved at 140 °C in 2 h. This method overcomes the limitations of traditional high-pressure reaction systems, achieving efficient crystallization under low-temperature and ambient-pressure conditions while eliminating safety hazards and significantly improving energy efficiency. The resulting materials retain excellent near-infrared shielding performance and visible-light transparency, providing an innovative solution for the safe, rapid, and controllable synthesis of functional nanomaterials. Full article
Show Figures

Graphical abstract

24 pages, 5572 KiB  
Review
Research Progress on Microwave Synthesis of 3d Transition Metal (Mn, Fe, Co, and Ni) Oxide Nanomaterials for Supercapacitors
by Chengqi Sun, Maosheng Ge, Shuhuang Tan, Yichen Liu, Haowei Wang, Wenhao Jiang, Shoujun Zhang and Yin Sun
Molecules 2025, 30(8), 1843; https://doi.org/10.3390/molecules30081843 - 19 Apr 2025
Cited by 1 | Viewed by 759
Abstract
3d transition metal oxides composed of Mn, Fe, Co, and Ni have emerged as promising candidates for supercapacitor electrode materials due to their high theoretical specific capacitance, abundant redox-active sites, variable oxidation states, environmental friendliness, and low cost. Various synthesis strategies have been [...] Read more.
3d transition metal oxides composed of Mn, Fe, Co, and Ni have emerged as promising candidates for supercapacitor electrode materials due to their high theoretical specific capacitance, abundant redox-active sites, variable oxidation states, environmental friendliness, and low cost. Various synthesis strategies have been developed to fabricate these nanostructures, including hydrothermal/solvothermal methods, sol–gel processing, and microwave-assisted synthesis. Among them, microwave irradiation technology, with its rapid heating characteristics and unique thermal/non-thermal effects, offers significant advantages in controlling crystallinity and particle size distribution, suppressing particle agglomeration, and enhancing material purity. Furthermore, microwave effects facilitate the self-assembly and morphological evolution of transition metal oxides, promote the formation of crystal defects, and strengthen interfacial interactions. These effects enable precise microstructural tuning, leading to an increased specific surface area and a higher density of active sites, ultimately enhancing specific capacitance, rate capability, and cycling stability. In recent years, microwave-assisted synthesis has made significant progress in constructing 3d transition metal oxides and their composites, particularly in the development of single-metal and binary-metal oxides, as well as their hybrids with carbon-based materials (e.g., graphene and carbon nanotubes) and other metal oxides. This review systematically summarizes the research progress on microwave-assisted techniques for 3d transition metal oxide-based nanomaterials, with a particular focus on the role of microwave effects in morphology control, interfacial optimization, and electrochemical performance enhancement. Additionally, key challenges in current research are critically analyzed, and potential optimization strategies are proposed. This review aims to provide new insights and perspectives for advancing microwave-assisted synthesis of 3d transition metal oxides in energy storage applications. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

17 pages, 971 KiB  
Review
University of Oslo-66: A Versatile Zr-Based MOF for Water Purification Through Adsorption and Photocatalysis
by Lei Chen, Wenbo Pan, Ke Li, Miaomiao Chen, Pan Li, Yu Liu, Zeyu Li and Hai Lu
Processes 2025, 13(4), 1133; https://doi.org/10.3390/pr13041133 - 9 Apr 2025
Viewed by 1210
Abstract
Metal–organic frameworks (MOFs) have garnered significant attention for water purification in recent years. In particular, UiO-66 (a member of the UiO-MOF family, developed at the University of Oslo) has emerged as a promising water purification material. UiO-66 exhibits excellent adsorption through electrostatic interaction, [...] Read more.
Metal–organic frameworks (MOFs) have garnered significant attention for water purification in recent years. In particular, UiO-66 (a member of the UiO-MOF family, developed at the University of Oslo) has emerged as a promising water purification material. UiO-66 exhibits excellent adsorption through electrostatic interaction, π–π stacking and Lewis acid–base coordination mechanisms. The photocatalytic degradation property was enhanced through metal doping, composite with semiconductor materials, defect engineering, etc., and the removal efficiency of pollutants was significantly improved. This review systematically describes the structure of UiO-66 and the synthesis methods of UiO-66, including solvothermal, microwave-assisted, mechanized and electrochemical methods, as well as the application of UiO-66 in the adsorption and photocatalytic degradation of various pollutants. Full article
Show Figures

Figure 1

39 pages, 5294 KiB  
Review
Large Scale Synthesis of Carbon Dots and Their Applications: A Review
by Zhujun Huang and Lili Ren
Molecules 2025, 30(4), 774; https://doi.org/10.3390/molecules30040774 - 7 Feb 2025
Cited by 10 | Viewed by 2883
Abstract
Carbon dots (CDs), a versatile class of fluorescent carbon-based nanomaterials, have attracted widespread attention due to their exceptional optical properties, biocompatibility, and cost-effectiveness. Their applications span biomedicine, optoelectronics, and smart food packaging, yet large-scale synthesis remains a significant challenge. This review categorizes large-scale [...] Read more.
Carbon dots (CDs), a versatile class of fluorescent carbon-based nanomaterials, have attracted widespread attention due to their exceptional optical properties, biocompatibility, and cost-effectiveness. Their applications span biomedicine, optoelectronics, and smart food packaging, yet large-scale synthesis remains a significant challenge. This review categorizes large-scale synthesis methods into liquid-phase (hydrothermal/solvothermal, microwave-assisted, magnetic hyperthermia, aldol condensation polymerization), gas-phase (plasma synthesis), solid-phase (pyrolysis, oxidation/carbonization, ball milling), and emerging techniques (microfluidic, ultrasonic, molten-salt). Notably, microwave-assisted and solid-state synthesis methods show promise for industrial production due to their scalability and efficiency. Despite these advances, challenges persist in optimizing synthesis reproducibility, reducing energy consumption, and developing purification methods and quality control strategies. Addressing these issues will be critical for transitioning CDs from laboratory research to real-world applications. Full article
(This article belongs to the Section Nanochemistry)
Show Figures

Figure 1

45 pages, 14895 KiB  
Review
Advances and Challenges in WO3 Nanostructures’ Synthesis
by Odeilson Morais Pinto, Rosimara Passos Toledo, Herick Ematne da Silva Barros, Rosana Alves Gonçalves, Ronaldo Spezia Nunes, Nirav Joshi and Olivia Maria Berengue
Processes 2024, 12(11), 2605; https://doi.org/10.3390/pr12112605 - 20 Nov 2024
Cited by 6 | Viewed by 3278
Abstract
In recent decades, nanoscience has experienced rapid global advancements due to its focus on materials and compounds at the nanoscale with high efficiency across diverse applications. WO3 nanostructures have proven to be a unique material in the development of new technologies due [...] Read more.
In recent decades, nanoscience has experienced rapid global advancements due to its focus on materials and compounds at the nanoscale with high efficiency across diverse applications. WO3 nanostructures have proven to be a unique material in the development of new technologies due to their electrical, optical, and catalytic properties. They have been used as raw materials for the fabrication of electrochromic devices, optoelectronic devices, hydrogenation catalysts, gas sensors, adsorbents, lithium-ion batteries, solar driven-catalysts, and phototherapy. One of the most striking characteristics of WO3 is its morphological diversity, spanning from 0D to 2D, encompassing nanoparticles, nanowires, nanofibers, nanorods, nanosheets, and nanoplates. This review discusses common synthesis methods for WO3 nanostructures, including hydrothermal and solvothermal methods, microwave-assisted synthesis, sol-gel, electrospinning, co-precipitation, and solution combustion, with emphasis on the advantages and challenges of each of them. The processes involved, the obtained morphologies, and the resulting applications are also presented. As evidenced here, the fine control of the synthesis parameters allows the production of nanostructures with controlled phase, morphology, and size, essential aspects for the production of high-performance WO3-based devices. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

16 pages, 5846 KiB  
Article
Activated Iron-Porous Carbon Nanomaterials as Adsorbents for Methylene Blue and Congo Red
by Daniel Sibera, Iwona Pełech, Piotr Staciwa, Robert Pełech, Ewa Ekiert, Gulsen Yagmur Kayalar and Urszula Narkiewicz
Molecules 2024, 29(17), 4090; https://doi.org/10.3390/molecules29174090 - 29 Aug 2024
Cited by 2 | Viewed by 1262
Abstract
The adsorption properties of microporous carbon materials modified with iron citrate were investigated. The carbon materials were produced based on resorcinol-formaldehyde resin, treated in a microwave assisted solvothermal reactor, and next carbonized in the tube furnace at a temperature of 700 °C under [...] Read more.
The adsorption properties of microporous carbon materials modified with iron citrate were investigated. The carbon materials were produced based on resorcinol-formaldehyde resin, treated in a microwave assisted solvothermal reactor, and next carbonized in the tube furnace at a temperature of 700 °C under argon atmosphere. Iron citrate was applied as a modifier, added to the material precursor before the synthesis in the reactor, in the quantity enabling to obtain the nanocomposites with C:Fe mass ratio equal to 10:1. Some samples were additionally activated using potassium oxalate or potassium hydroxide. The phase composition of the produced nanocomposites was determined using the X-ray diffraction method. Scanning and transmission electron microscopy was applied to characterize the changes in samples’ morphology resulting from the activation process and/or the introduction of iron into the carbon matrix. The adsorption of nitrogen from gas phase and dyes (methylene blue and congo red) from water solution on the obtained materials was investigated. In the case of methylene blue, the adsorption equilibrium isotherms followed the Langmuir isotherm model. However, in the case of congo red, a linear dependency of adsorption and concentration in a broad equilibrium concentration range was found and well-described using the Henry equation. The most efficient adsorption of methylene blue was noticed for the sample activated with potassium hydroxide and modified with iron citrate, and a maximum adsorption capacity of 696 mg/g was achieved. The highest congo red adsorption was noticed for the non-activated sample modified with iron citrate, and the partition coefficient for this material equaled 171 dm3/g. Full article
Show Figures

Figure 1

13 pages, 5661 KiB  
Article
New Insights into ZIF-90 Synthesis
by Jan Marčec, Alenka Ristić and Nataša Zabukovec Logar
Molecules 2024, 29(16), 3731; https://doi.org/10.3390/molecules29163731 - 6 Aug 2024
Cited by 2 | Viewed by 3246
Abstract
Zeolitic imidazolate frameworks (ZIFs) are traditionally synthesized using N, N-dimethylformamide (DMF). However, DMF is toxic and hazardous to human health and the environment, hence other alternative solvents need to be considered. Herein, three different solvents like methanol, water and acetone were used to [...] Read more.
Zeolitic imidazolate frameworks (ZIFs) are traditionally synthesized using N, N-dimethylformamide (DMF). However, DMF is toxic and hazardous to human health and the environment, hence other alternative solvents need to be considered. Herein, three different solvents like methanol, water and acetone were used to replace DMF and to explore the syntheses of ZIF-90 using a conventional and a microwave-assisted solvothermal method to obtain hydrothermally stable products, which also exhibit an increased water uptake. Pure ZIF-90 was synthesized under ambient pressure at 60 °C for 90 min using the conventional solvothermal method in an acetone–water solution, while under microwave irradiation it was formed in only 5 min at 80 °C. Altering methanol, water and acetone in the reaction mixture significantly affected the structural and water adsorption properties of ZIF-90s, which were monitored via PXRD, TGA, nitrogen and water sorption, and SEM. The highly efficient, less toxic, low-cost and activation-free microwave synthesis resulted in the formation of ZIF-90 nanoparticles that exhibited the highest maximum water adsorption capacity (0.37 g/g) and the best hydrothermal stability between water adsorption at 30 °C and desorption at 100 °C at 12.5 mbar among all the products obtained. Full article
(This article belongs to the Special Issue Recent Advances in Metal–Organic Frameworks)
Show Figures

Figure 1

19 pages, 4056 KiB  
Article
Structural Transition in the Growth of Copper Terephthalate Metal–Organic Frameworks: Understanding the Effect of the Synthetic Protocol and Its Impact on Electrochemical Behavior
by Sara L. Rodríguez, Gabriela A. Ortega-Moreno, Manuel Sánchez-Sánchez, José L. Fernández and Juan M. Zamaro
Coatings 2023, 13(12), 2065; https://doi.org/10.3390/coatings13122065 - 10 Dec 2023
Cited by 3 | Viewed by 2764
Abstract
Some copper-based metal–organic frameworks show promise for use as electrocatalysts because they allow for an electrode configuration in which copper species with redox and electron-conducting properties are immobilized in a three-dimensional arrangement. This work shows that the synthesis of copper terephthalates (Cu-BDCs) can [...] Read more.
Some copper-based metal–organic frameworks show promise for use as electrocatalysts because they allow for an electrode configuration in which copper species with redox and electron-conducting properties are immobilized in a three-dimensional arrangement. This work shows that the synthesis of copper terephthalates (Cu-BDCs) can lead to rigid structures of the copper hydroxyterephthalate-type or flexible structures that are isoreticular to the MOF-2 type, depending solely on the synthesis route. Here, a detailed analysis of the syntheses of the crystals is carried out employing protocols with different solvents as well as conventional or microwave-assisted solvothermal methods. All solids were fully characterized by a combination of characterization techniques, such as FE-SEM, T-XRD, TGA, and FTIR, and their electrochemical redox responses were also evaluated by cyclic voltammetry. A correlation between the Cu-BDCs structures and their electrochemical behaviors was established and a new version of an electroactive copper hydroxyterephthalate was synthesized by a microwave method in 3 h with a dimethylformamide-free protocol. This Cu-BDC was obtained as dispersed nanoflakes with a high amount of copper sites and the capacity to be reversibly electroreduced-oxidized and showed catalytic activity in the oxygen reduction reaction (ORR). Full article
(This article belongs to the Special Issue Advanced Research on Energy Storage Materials and Devices)
Show Figures

Figure 1

14 pages, 3850 KiB  
Article
Efficient Synthesis of 2D Mica Nanosheets by Solvothermal and Microwave-Assisted Techniques for CO2 Capture Applications
by P. Vishakha T. Weerasinghe, Shunnian Wu, W. P. Cathie Lee, Ming Lin, Franklin Anariba, Xu Li, Debbie Hwee Leng Seng, Jia Yu Sim and Ping Wu
Materials 2023, 16(7), 2921; https://doi.org/10.3390/ma16072921 - 6 Apr 2023
Cited by 3 | Viewed by 3246
Abstract
Mica, a commonly occurring mineral, has significant potential for various applications due to its unique structure and properties. However, due to its non-Van Der Waals bonded structure, it is difficult to exfoliate mica into ultrathin nanosheets. In this work, we report a rapid [...] Read more.
Mica, a commonly occurring mineral, has significant potential for various applications due to its unique structure and properties. However, due to its non-Van Der Waals bonded structure, it is difficult to exfoliate mica into ultrathin nanosheets. In this work, we report a rapid solvothermal microwave synthesis of 2D mica with short reaction time and energy conservation. The resulting exfoliated 2D mica nanosheets (eMica nanosheets) were characterized by various techniques, and their ability to capture CO2 was tested by thermogravimetric analysis (TGA). Our results showed an 87% increase in CO2 adsorption capacity with eMica nanosheets compared to conventional mica. Further characterization by Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS), as well as first-principles calculations, showed that the high specific surface area and deposited K2CO3 layer contribute to the increased CO2 adsorption on the mica nanosheets. These results speak to the potential of high-quality eMica nanosheets and efficient synthesis processes to open new avenues for new physical properties of 2D materials and the development of CO2 capture technologies. Full article
Show Figures

Figure 1

27 pages, 2947 KiB  
Review
The Properties of Microwave-Assisted Synthesis of Metal–Organic Frameworks and Their Applications
by Pham Thi Phan, Jeongsoo Hong, Ngo Tran and Thi Hoa Le
Nanomaterials 2023, 13(2), 352; https://doi.org/10.3390/nano13020352 - 15 Jan 2023
Cited by 99 | Viewed by 9035
Abstract
Metal–organic frameworks (MOF) are a class of porous materials with various functions based on their host-guest chemistry. Their selectivity, diffusion kinetics, and catalytic activity are influenced by their design and synthetic procedure. The synthesis of different MOFs has been of considerable interest during [...] Read more.
Metal–organic frameworks (MOF) are a class of porous materials with various functions based on their host-guest chemistry. Their selectivity, diffusion kinetics, and catalytic activity are influenced by their design and synthetic procedure. The synthesis of different MOFs has been of considerable interest during the past decade thanks to their various applications in the arena of sensors, catalysts, adsorption, and electronic devices. Among the different techniques for the synthesis of MOFs, such as the solvothermal, sonochemical, ionothermal, and mechanochemical processes, microwave-assisted synthesis has clinched a significant place in MOF synthesis. The main assets of microwave-assisted synthesis are the short reaction time, the fast rate of nucleation, and the modified properties of MOFs. The review encompasses the development of the microwave-assisted synthesis of MOFs, their properties, and their applications in various fields. Full article
(This article belongs to the Special Issue Advanced Metal-Organic Frameworks)
Show Figures

Figure 1

20 pages, 5006 KiB  
Article
Microwave-Assisted Solvothermal Synthesis of Mo-Doped TiO2 with Exceptional Textural Properties and Superior Adsorption Kinetics
by Yahia H. Ahmad, Aymen S. Abu Hatab, Assem T. Mohamed, Mohammed S. Al-Kuwari, Amina S. Aljaber and Siham Y. Al-Qaradawi
Nanomaterials 2022, 12(12), 2051; https://doi.org/10.3390/nano12122051 - 15 Jun 2022
Cited by 6 | Viewed by 2489
Abstract
Assigned to their outstanding physicochemical properties, TiO2-based materials have been studied in various applications. Herein, TiO2 doped with different Mo contents (Mo-TiO2) was synthesized via a microwave-assisted solvothermal approach. This was achieved using titanium (IV) butoxide and molybdenum [...] Read more.
Assigned to their outstanding physicochemical properties, TiO2-based materials have been studied in various applications. Herein, TiO2 doped with different Mo contents (Mo-TiO2) was synthesized via a microwave-assisted solvothermal approach. This was achieved using titanium (IV) butoxide and molybdenum (III) chloride as a precursor and dodecylamine as a surface directing agent. The uniform effective heating delivered by microwave heating reduced the reaction time to less than 30 min, representing several orders of magnitude lower than conventional heating methods. The average particle size ranged between 9.7 and 27.5 nm and it decreased with increasing the Mo content. Furthermore, Mo-TiO2 revealed mesoporous architectures with a high surface area ranging between 170 and 260 m2 g−1, which is superior compared to previously reported Mo-doped TiO2. The performance of Mo-TiO2 was evaluated towards the adsorption of Rhodamine B (RhB). In contrast to TiO2, which revealed negligible adsorption for RhB, Mo-doped samples depicted rapid adsorption for RhB, with a rate that increased with the increase in Mo content. Additionally, Mo-TiO2 expressed enhanced adsorption kinetics for RhB compared to state-of-the-art adsorbents. The introduced synthesis procedure holds a grand promise for the versatile synthesis of metal-doped TiO2 nanostructures with outstanding physicochemical properties. Full article
Show Figures

Figure 1

16 pages, 3108 KiB  
Article
Microwave-Assisted Solvothermal Synthesis of Nanocrystallite-Derived Magnetite Spheres
by Greta Zambzickaite, Martynas Talaikis, Jorunas Dobilas, Voitech Stankevic, Audrius Drabavicius, Gediminas Niaura and Lina Mikoliunaite
Materials 2022, 15(11), 4008; https://doi.org/10.3390/ma15114008 - 5 Jun 2022
Cited by 13 | Viewed by 3283
Abstract
The synthesis of magnetic particles triggers the interest of many scientists due to their relevant properties and wide range of applications in the catalysis, nanomedicine, biosensing and magnetic separation fields. A fast synthesis of iron oxide magnetic particles using an eco-friendly and facile [...] Read more.
The synthesis of magnetic particles triggers the interest of many scientists due to their relevant properties and wide range of applications in the catalysis, nanomedicine, biosensing and magnetic separation fields. A fast synthesis of iron oxide magnetic particles using an eco-friendly and facile microwave-assisted solvothermal method is presented in this study. Submicron Fe3O4 spheres were prepared using FeCl3 as an iron source, ethylene glycol as a solvent and reductor and sodium acetate as a precipitating and nucleating agent. The influence of the presence of polyethylene glycol as an additional reductor and heat absorbent was also evaluated. We reduce the synthesis time to 1 min by increasing the reaction temperature using the microwave-assisted solvothermal synthesis method under pressure or by adding PEG at lower temperatures. The obtained magnetite spheres are 200–300 nm in size and are composed of 10–30 nm sized crystallites. The synthesized particles were investigated using the XRD, TGA, pulsed-field magnetometry, Raman and FTIR methods. It was determined that adding PEG results in spheres with mixed magnetite and maghemite compositions, and the synthesis time increases the size of the crystallites. The presented results provide insights into the microwave-assisted solvothermal synthesis method and ensure a fast route to obtaining spherical magnetic particles composed of different sized nanocrystallites. Full article
Show Figures

Graphical abstract

30 pages, 3218 KiB  
Review
Sustainable Hydrothermal and Solvothermal Synthesis of Advanced Carbon Materials in Multidimensional Applications: A Review
by Lwazi Ndlwana, Naledi Raleie, Kgogobi M. Dimpe, Hezron F. Ogutu, Ekemena O. Oseghe, Mxolisi M. Motsa, Titus A.M. Msagati and Bhekie B. Mamba
Materials 2021, 14(17), 5094; https://doi.org/10.3390/ma14175094 - 6 Sep 2021
Cited by 117 | Viewed by 12842
Abstract
The adoption of green technology is very important to protect the environment and thus there is a need for improving the existing methods for the fabrication of carbon materials. As such, this work proposes to discuss, interrogate, and propose viable hydrothermal, solvothermal, and [...] Read more.
The adoption of green technology is very important to protect the environment and thus there is a need for improving the existing methods for the fabrication of carbon materials. As such, this work proposes to discuss, interrogate, and propose viable hydrothermal, solvothermal, and other advanced carbon materials synthesis methods. The synthesis approaches for advanced carbon materials to be interrogated will include the synthesis of carbon dots, carbon nanotubes, nitrogen/titania-doped carbons, graphene quantum dots, and their nanocomposites with solid/polymeric/metal oxide supports. This will be performed with a particular focus on microwave-assisted solvothermal and hydrothermal synthesis due to their favourable properties such as rapidity, low cost, and being green/environmentally friendly. These methods are regarded as important for the current and future synthesis and modification of advanced carbon materials for application in energy, gas separation, sensing, and water treatment. Simultaneously, the work will take cognisance of methods reducing the fabrication costs and environmental impact while enhancing the properties as a direct result of the synthesis methods. As a direct result, the expectation is to impart a significant contribution to the scientific body of work regarding the improvement of the said fabrication methods. Full article
Show Figures

Graphical abstract

Back to TopTop