Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (81)

Search Parameters:
Keywords = microwave cutting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1288 KiB  
Review
Counteracting the Harms of Microplastics on Humans: An Overview from the Perspective of Exposure
by Kuok Ho Daniel Tang
Microplastics 2025, 4(3), 47; https://doi.org/10.3390/microplastics4030047 - 1 Aug 2025
Viewed by 326
Abstract
Microplastics are pervasive environmental pollutants that pose risks to human health through ingestion and inhalation. This review synthesizes current practices to reduce exposure and toxicity by examining major exposure routes and dietary interventions. More than 130 papers were analyzed to achieve this aim. [...] Read more.
Microplastics are pervasive environmental pollutants that pose risks to human health through ingestion and inhalation. This review synthesizes current practices to reduce exposure and toxicity by examining major exposure routes and dietary interventions. More than 130 papers were analyzed to achieve this aim. The findings show that microplastics contaminate a wide range of food products, with particular concern over seafood, drinking water, plastic-packaged foods, paper cups, and tea filter bags. Inhalation exposure is mainly linked to indoor air quality and smoking, while dermal contact poses minimal risk, though the release of additives from plastics onto the skin remains an area of concern. Recommended strategies to reduce dietary exposure include consuming only muscle parts of seafood, moderating intake of high-risk items like anchovies and mollusks, limiting canned seafood liquids, and purging mussels in clean water before consumption. Avoiding plastic containers, especially for hot food or microwaving, using wooden cutting boards, paper tea bags, and opting for tap or filtered water over bottled water are also advised. To mitigate inhalation exposure, the use of air filters with HyperHEPA systems, improved ventilation, regular vacuuming, and the reduction of smoking are recommended. While antioxidant supplementation shows potential in reducing microplastic toxicity, further research is needed to confirm its effectiveness. This review provides practical, evidence-based recommendations for minimizing daily microplastic exposure. Full article
Show Figures

Figure 1

25 pages, 26404 KiB  
Review
Review of Deep Learning Applications for Detecting Special Components in Agricultural Products
by Yifeng Zhao and Qingqing Xie
Computers 2025, 14(8), 309; https://doi.org/10.3390/computers14080309 - 30 Jul 2025
Viewed by 339
Abstract
The rapid evolution of deep learning (DL) has fundamentally transformed the paradigm for detecting special components in agricultural products, addressing critical challenges in food safety, quality control, and precision agriculture. This comprehensive review systematically analyzes many seminal studies to evaluate cutting-edge DL applications [...] Read more.
The rapid evolution of deep learning (DL) has fundamentally transformed the paradigm for detecting special components in agricultural products, addressing critical challenges in food safety, quality control, and precision agriculture. This comprehensive review systematically analyzes many seminal studies to evaluate cutting-edge DL applications across three core domains: contaminant surveillance (heavy metals, pesticides, and mycotoxins), nutritional component quantification (soluble solids, polyphenols, and pigments), and structural/biomarker assessment (disease symptoms, gel properties, and physiological traits). Emerging hybrid architectures—including attention-enhanced convolutional neural networks (CNNs) for lesion localization, wavelet-coupled autoencoders for spectral denoising, and multi-task learning frameworks for joint parameter prediction—demonstrate unprecedented accuracy in decoding complex agricultural matrices. Particularly noteworthy are sensor fusion strategies integrating hyperspectral imaging (HSI), Raman spectroscopy, and microwave detection with deep feature extraction, achieving industrial-grade performance (RPD > 3.0) while reducing detection time by 30–100× versus conventional methods. Nevertheless, persistent barriers in the “black-box” nature of complex models, severe lack of standardized data and protocols, computational inefficiency, and poor field robustness hinder the reliable deployment and adoption of DL for detecting special components in agricultural products. This review provides an essential foundation and roadmap for future research to bridge the gap between laboratory DL models and their effective, trusted application in real-world agricultural settings. Full article
(This article belongs to the Special Issue Deep Learning and Explainable Artificial Intelligence)
Show Figures

Figure 1

25 pages, 1985 KiB  
Review
Synthesis, Application and Prospects of Carbon Dots as A Medicine Food Homology
by Siqi Huang, Huili Ren, Hongyue Chen, Nuan Wen, Libo Du, Chaoyu Song and Yuguang Lv
Nanomaterials 2025, 15(12), 906; https://doi.org/10.3390/nano15120906 - 11 Jun 2025
Viewed by 547
Abstract
Against the background of the vigorous development of materials science and the deep cross-infiltration in many fields, a new medicine food homology, carbon dots (herein combined and abbreviated as MFH-CDs), has sprung up, showing great potential. This review used ChatGPT 4.0 to collect [...] Read more.
Against the background of the vigorous development of materials science and the deep cross-infiltration in many fields, a new medicine food homology, carbon dots (herein combined and abbreviated as MFH-CDs), has sprung up, showing great potential. This review used ChatGPT 4.0 to collect background information related to carbon dots, focusing on the common rich medicinal and food resources such as Lycium barbarum, Chinese yam, honeysuckle, and Ganoderma lucidum. These carbon dots are synthesized by hydrothermal synthesis, microwave radiation, and pyrolysis, which have the advantages of small particle size, high quantum yield, and low cytotoxicity. Recent studies have found that MFH-CDs have great application potential in biosensors, biological imaging, and drug delivery. In this paper, the characteristics of preparing carbon dots from different medicinal and edible resources and their applications in biology in recent years are reviewed, which provides in-depth guidance for the research and application of carbon dots from medicinal and edible biomass, helps it shine in multidisciplinary fields, and opens a brand-new journey from traditional medicinal and edible culture to cutting-edge technology application. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

17 pages, 3002 KiB  
Article
Microwave-Assisted Dried Cells of the Fungus Arthrinium malaysianum as a Potential Biomaterial with Sustainable Bioremediation of Toxic Heavy Metals
by Swagata Roy Chowdhury, Arpita Das, Sanmitra Ghosh, Saptarshi Chatterjee and Rajib Majumder
Appl. Microbiol. 2025, 5(2), 55; https://doi.org/10.3390/applmicrobiol5020055 - 11 Jun 2025
Viewed by 516
Abstract
Significant heavy metals contamination is often caused by rapid industrialization, which is devastating to both public health and the environment. Conventional processes of metal removal also result in the accumulation of secondary waste. This work proposes the use of a novel fungal biomass [...] Read more.
Significant heavy metals contamination is often caused by rapid industrialization, which is devastating to both public health and the environment. Conventional processes of metal removal also result in the accumulation of secondary waste. This work proposes the use of a novel fungal biomass (microwave heat dried) from Arthrinium malaysianum for the biosorption of toxic chromium. We have meticulously explored and investigated the interactions of hexavalent chromium with dried biomass using several cutting-edge techniques like FTIR for studying the involvement of functional groups on the biomass surface, XRD for the surface architecture changes after metal binding, XPS to unravel the reduction of hexavalent chromium into its non-toxic form, and FESEM-EDX for the visualization of the ultra-structure of fungal cell surface. The Langmuir isotherm demonstrates that the maximum removal capacity Qmax of Cr(VI) is 102.310 mgg−1, at a pH of 3.5 with 100% removal of Cr(VI). There were substantial changes in the surface architecture during adsorption, confirmed by FESEM and AFM studies. FTIR and XPS data analysis indicated that carbonyl, hydroxyl, phosphate, and amine groups were responsible for the conversion of Cr(VI) (toxic) to Cr(III) (non-toxic). The IR spectra of biomass treated with Cr showed a decreased C-O stretching intensity and slight shriveling of the -OH band, and the bands in the FTIR spectra at 1642 cm−1 to 1635 cm−1 and at 1549 cm−1 to 1547 cm−1 shifted and appeared quite distinct. XRD revealed that the chromium-treated biomass had greater crystalline features and also the appearance of a wide peak where 2θ = 20°, approximately, indicating an amorphous nature at 576.0 eV and in highly loaded chromium (500 mg/L) biomass, with the Cr2p level displaying a slight shift, eventually terminating in a (576.0 eV) Cr2O3 to Cr(III) peak. Since the FTIR and XPS data obtained revealed that Cr(VI) reduces to Cr(III), this fungal biomass can also be used for generating metallic nanoparticles during biosorption. Thus, we suggest that the above-mentioned fungal biomass could be a very useful biomaterial for future translational research. We are in the process of fabricating beads with powdered biomass for further studies. Full article
Show Figures

Figure 1

35 pages, 8311 KiB  
Review
Efficient Exploitation of Lepidolite Resources: A Review on Beneficiation Techniques, Extraction Methods, and Synergistic Optimization
by Jiangang Ku, Xiao Shi, Qian Wang, Hanyu Lin, Hongliang Shang and Zhengchang Shen
Separations 2025, 12(5), 130; https://doi.org/10.3390/separations12050130 - 16 May 2025
Cited by 2 | Viewed by 972
Abstract
Lithium is a critical mineral resource. With the development of high-end manufacturing industry, the demand for high-performance lithium-containing chemical raw materials continues to grow. At present, lithium needs to be acquired from a large amount of lepidolite ore, constrained by the existing lithium [...] Read more.
Lithium is a critical mineral resource. With the development of high-end manufacturing industry, the demand for high-performance lithium-containing chemical raw materials continues to grow. At present, lithium needs to be acquired from a large amount of lepidolite ore, constrained by the existing lithium resource supply limitation quandary, and the industry urgently needs to develop more efficient beneficiation and extraction methods for lepidolite. Findings have suggested mixed collectors (e.g., DDA/SDBS) achieve a 4.99% Li2O grade and 98% recovery at neutral pH, reducing reagent use by 20–30%. Microwave-assisted roasting boosts Li recovery to 95.9% and cuts energy use by 26.9%. Bioleaching with Acidithiobacillus ferrooxidans (A.F.) and rhamnolipid releases 6.8 mg/L Li with a lower environmental impact. Sulfuric acid baking recovers Li (97.1%), Rb (96.0%), and Cs (95.1%) efficiently. Despite challenges in fine-particle recovery and reagent costs, integrated strategies like nanobubble flotation, green collectors, and AI optimization offer sustainable, high-efficiency extraction. This work provides insights for advancing lepidolite processing, balancing economics and environmental stewardship. Full article
Show Figures

Figure 1

15 pages, 24537 KiB  
Article
An Investigation into Fe3O4 Nanoparticle-Based Composites for Enhanced Electromagnetic Radiation Shielding
by Aidos Lesbayev, Doszhan Akalim, Bakhytzhan Kalauov and Darkhan Yerezhep
J. Compos. Sci. 2025, 9(5), 226; https://doi.org/10.3390/jcs9050226 - 30 Apr 2025
Cited by 1 | Viewed by 613
Abstract
In both fundamental and applied scientific exploration, nanostructured protective materials have garnered substantial interest owing to their multifaceted utilization in the fields of medicine, pharmaceuticals, and electronics, among others. This study investigated the evolution of cutting-edge materials for electromagnetic radiation attenuation, with a [...] Read more.
In both fundamental and applied scientific exploration, nanostructured protective materials have garnered substantial interest owing to their multifaceted utilization in the fields of medicine, pharmaceuticals, and electronics, among others. This study investigated the evolution of cutting-edge materials for electromagnetic radiation attenuation, with a specific emphasis on the incorporation of superparamagnetic magnetite nanoparticles, Fe3O4, into composite systems. The nanoparticles were generated through chemical condensation, meticulously adjusting the proportions of iron salts, specifically FeSO4·7H2O and FeCl3·6H2O, in conjunction with a 25% aqueous solution of ammonia, NH4OH·H2O. This study examined the intricate details of the crystalline structure, the precise composition of phases, and the intricate physicochemical attributes of these synthesized Fe3O4 nanoparticles. The analysis was conducted employing a suite of advanced techniques, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and energy-dispersive analysis (EDAX). The key findings of this research suggest that the magnetic nanoparticles generated through chemical condensation have an average size between 10 and 11 nm. This size was determined using BET surface area measurements, which were precise to within 0.1 nm. Moreover, this study demonstrated that incorporating superparamagnetic nanoparticles into composite materials significantly reduces microwave radiation. In particular, an optimal concentration of 0.25% by weight leads to a maximum decrease of 21.7 dB in cement specimens measuring 10 mm in thickness. Moreover, a critical threshold concentration of 0.5 weight percent is established, beyond which the interactions of nanoparticles inhibit the process of remagnetization. These investigations demonstrate that it is feasible to pursue a route towards the development of highly effective electromagnetic shielding materials tailored to specific requirements for diverse applications. Full article
(This article belongs to the Section Composites Applications)
Show Figures

Figure 1

25 pages, 14457 KiB  
Article
New Mcconnellite Ceramic Pigment as a Selective Solar Absorber: Effects of Microwave Firing and Rare Earth Doping
by Guillermo Monrós, José Antonio Badenes, Carolina Delgado, Guillem Monrós-Andreu and Mario Llusar
Materials 2025, 18(7), 1520; https://doi.org/10.3390/ma18071520 - 28 Mar 2025
Cited by 1 | Viewed by 385
Abstract
CuCrO2 (mcconnellite) was synthesized using both the solid-state method and microwave dielectric firing. It was characterized as a novel black ceramic pigment for use in various industrial glazes. For the first time, the application of mcconnellite (CuCrO2) and its coloured [...] Read more.
CuCrO2 (mcconnellite) was synthesized using both the solid-state method and microwave dielectric firing. It was characterized as a novel black ceramic pigment for use in various industrial glazes. For the first time, the application of mcconnellite (CuCrO2) and its coloured glazes as selective solar absorbers (SSA) for integral ceramic solar collectors has been reported. The addition of quartz or anatase as colour modifiers was investigated to prevent the bluing of the pigment in Zn-containing glazes, a phenomenon associated with the exsolution of copper. Furthermore, doping with lanthanide oxides was explored to address two key challenges: controlling the formation of pinhole defects in porcelain glazes, which are linked to the destabilization of Cu+, and adjusting the IR cut-off wavelength to improve its performance as SSA. Full article
Show Figures

Graphical abstract

26 pages, 4600 KiB  
Review
A Comprehensive Review on the Recent Technological Advancements in the Processing, Safety, and Quality Control of Ready-to-Eat Meals
by Zhi Zhang, Guangzhi Xu and Shengqun Hu
Processes 2025, 13(3), 901; https://doi.org/10.3390/pr13030901 - 19 Mar 2025
Cited by 3 | Viewed by 2084
Abstract
Ready-to-eat meals (RTEMs) are increasingly popular due to their convenience, but ensuring their safety and quality presents significant challenges. This comprehensive review analyzes recent technological advancements in RTEM safety control throughout the entire supply chain, from raw material sourcing to consumer consumption. We [...] Read more.
Ready-to-eat meals (RTEMs) are increasingly popular due to their convenience, but ensuring their safety and quality presents significant challenges. This comprehensive review analyzes recent technological advancements in RTEM safety control throughout the entire supply chain, from raw material sourcing to consumer consumption. We examine cutting-edge detection methods, including chromatography–mass spectrometry, real-time PCR, and CRISPR-based techniques for contaminants such as pesticide residues, veterinary drugs, heavy metals, and microorganisms. The review also explores innovative sterilization processes, such as irradiation, microwave, and radio frequency technologies, emphasizing their impact on microbial safety and product quality. Furthermore, we discuss the crucial role of packaging innovations, including modified atmosphere packaging, functional antimicrobial materials, and intelligent packaging systems, in preserving RTEM freshness and extending shelf life. This review provides valuable insights into current trends and future directions in RTEM safety and quality control, aiming to contribute to sustainable growth and consumer confidence in this rapidly expanding industry. Full article
(This article belongs to the Section Food Process Engineering)
Show Figures

Figure 1

32 pages, 3860 KiB  
Review
Green Analytical Chemistry—Recent Innovations
by Anil Kumar Meher and Akli Zarouri
Analytica 2025, 6(1), 10; https://doi.org/10.3390/analytica6010010 - 11 Mar 2025
Cited by 6 | Viewed by 6063
Abstract
Green analytical chemistry represents a transformative approach to analytical science, emphasizing sustainability and environmental stewardship while maintaining high standards of accuracy and precision. This review highlights recent innovations in green analytical chemistry, including the use of green solvents, such as water, supercritical carbon [...] Read more.
Green analytical chemistry represents a transformative approach to analytical science, emphasizing sustainability and environmental stewardship while maintaining high standards of accuracy and precision. This review highlights recent innovations in green analytical chemistry, including the use of green solvents, such as water, supercritical carbon dioxide, ionic liquids, and bio-based alternatives, as well as energy-efficient techniques like microwave-assisted, ultrasound-assisted, and photo-induced processes. Advances in green instrumentation, including miniaturized and portable devices, and the integration of automation and chemometric tools, have further enhanced efficiency and reduced the environmental footprint of analytical workflows. Despite these advancements, challenges remain, including the need to balance analytical performance with eco-friendliness and the lack of global standards to measure and promote sustainable practices consistently. However, the future of green analytical chemistry looks promising, with emerging technologies like artificial intelligence and digital tools offering new ways to optimize workflows, minimize waste, and streamline analytical processes. By focusing on these areas, green analytical chemistry is transforming analytical methodologies into tools that not only achieve high performance but also align with global sustainability goals. This review underscores how green analytical chemistry is more than just a scientific discipline, but a pathway for reducing the ecological impact of analytical processes while driving innovation in science and industry. With the continued commitment to research, collaboration, and the adoption of cutting-edge technologies, green analytical chemistry has the potential to shape a greener and more sustainable future for analytical chemistry and its diverse applications. Full article
Show Figures

Figure 1

14 pages, 4800 KiB  
Article
Design and Analysis of Compact High–Performance Lithium–Niobate Electro–Optic Modulator Based on a Racetrack Resonator
by Zixin Chen, Jianping Li, Weiqin Zheng, Hongkang Liu, Quandong Huang, Ya Han and Yuwen Qin
Photonics 2025, 12(1), 85; https://doi.org/10.3390/photonics12010085 - 17 Jan 2025
Viewed by 1582
Abstract
With the ever-growing demand for high-speed optical communications, microwave photonics, and quantum key distribution systems, compact electro-optic (EO) modulators with high extinction ratios, large bandwidth, and high tuning efficiency are urgently pursued. However, most integrated lithium–niobate (LN) modulators cannot achieve these high performances [...] Read more.
With the ever-growing demand for high-speed optical communications, microwave photonics, and quantum key distribution systems, compact electro-optic (EO) modulators with high extinction ratios, large bandwidth, and high tuning efficiency are urgently pursued. However, most integrated lithium–niobate (LN) modulators cannot achieve these high performances simultaneously. In this paper, we propose an improved theoretical model of a chip-scale electro-optic (EO) microring modulator (EO-MRM) based on X-cut lithium–niobate-on-insulator (LNOI) with a hybrid architecture consisting of a 180-degree Euler bend in the coupling region, double-layer metal electrode structure, and ground–signal–signal–ground (G-S-S-G) electrode configuration, which can realize highly comprehensive performance and a compact footprint. After parameter optimization, the designed EO-MRM exhibited an extinction ratio of 38 dB. Compared to the structure without Euler bends, the increase was 35 dB. It also had a modulation bandwidth of 29 GHz and a tunability of 8.24 pm/V when the straight waveguide length was 100 μm. At the same time, the proposed device footprint was 1.92 × 104 μm2. The proposed MRM model provides an efficient solution to high-speed optical communication systems and microwave photonics, which is helpful for the fabrication of high-performance and multifunctional photonic integrated devices. Full article
Show Figures

Figure 1

34 pages, 2788 KiB  
Review
Recent Developments in Citrus aurantium L.: An Overview of Bioactive Compounds, Extraction Techniques, and Technological Applications
by Joaquín Fernández-Cabal, Kevin Alejandro Avilés-Betanzos, Juan Valerio Cauich-Rodríguez, Manuel Octavio Ramírez-Sucre and Ingrid Mayanin Rodríguez-Buenfil
Processes 2025, 13(1), 120; https://doi.org/10.3390/pr13010120 - 5 Jan 2025
Cited by 6 | Viewed by 5353
Abstract
This review provides an overview of recent developments in Citrus aurantium L. (sour or bitter orange), focusing on its bioactive compounds, innovative extraction techniques, and technological applications. C. aurantium is rich in bioactive compounds such as flavonoids (naringin, hesperidin, kaempferol, quercetin), essential oils [...] Read more.
This review provides an overview of recent developments in Citrus aurantium L. (sour or bitter orange), focusing on its bioactive compounds, innovative extraction techniques, and technological applications. C. aurantium is rich in bioactive compounds such as flavonoids (naringin, hesperidin, kaempferol, quercetin), essential oils (β-pinene, limonene), and vitamin C, which represents significant biological activities including antioxidant, antimicrobial, anti-inflammatory, and anticancer effects. The review discusses traditional extraction methods, such as solvent extraction and hydrodistillation, alongside newer, eco-friendly approaches like ultrasound-assisted extraction, microwave-assisted extraction, supercritical fluid extraction, and natural deep eutectic solvents. It also highlights cutting-edge techniques, including molecular imprinting polymer-based extraction, which enable the more efficient enrichment and purification of specific compounds like synephrine. Finally, the review examines the diverse industrial applications of these bioactive compounds in sectors such as foods, pharmaceuticals, and cosmetics, while emphasizing the growing need for sustainable and efficient extraction technologies. Full article
Show Figures

Figure 1

20 pages, 9396 KiB  
Article
Characterization of the Plasma Generated by a Compact Theta Pinch
by Sagi Turiel, Alexander Gribov, Daniel Maler and Yakov E. Krasik
Plasma 2024, 7(4), 978-997; https://doi.org/10.3390/plasma7040053 - 20 Dec 2024
Cited by 1 | Viewed by 1473
Abstract
Theta Pinch is one of the promising methods for the generation of hot and dense plasma. In this paper, we describe the results of experimental research on a small-scale Theta Pinch created with Helium or Hydrogen plasmas. Different plasma diagnostics, namely, optical, microwave [...] Read more.
Theta Pinch is one of the promising methods for the generation of hot and dense plasma. In this paper, we describe the results of experimental research on a small-scale Theta Pinch created with Helium or Hydrogen plasmas. Different plasma diagnostics, namely, optical, microwave cut-off, laser interferometry, visible spectroscopy, Thomson scattering, and Laser-Induced Fluorescence were used to characterize the time- and space-resolved evolution of the plasma parameters, and the specific features of these diagnostic results obtained are discussed. The measured plasma density and the electron and ion temperature evolution, obtained by these various diagnostic tools, agree to a satisfactory level. These methods will be applied for studies of the parameters of the plasma in the device that is being developed by the nT-Tao company towards fusion energy. Full article
Show Figures

Graphical abstract

15 pages, 8205 KiB  
Article
Antifungal Activity of Newly Formed Polymethylmethacrylate (PMMA) Modification by Zinc Oxide and Zinc Oxide–Silver Hybrid Nanoparticles
by Marek Witold Mazur, Anna Grudniak, Urszula Szałaj, Marcin Szerszeń, Jan Mizeracki, Mariusz Cierech, Elżbieta Mierzwińska-Nastalska and Jolanta Kostrzewa-Janicka
Polymers 2024, 16(24), 3512; https://doi.org/10.3390/polym16243512 - 17 Dec 2024
Cited by 1 | Viewed by 1004
Abstract
Incorporating nanoparticles into denture materials shows promise for the prevention of denture-associated fungal infections. This study investigates the antifungal properties of acrylic modified with microwave-sintered ZnO-Ag nanoparticles. ZnO-Ag nanoparticles (1% and 2.5% wt.) were synthesized via microwave solvothermal synthesis (MSS). Nanoparticles were characterized [...] Read more.
Incorporating nanoparticles into denture materials shows promise for the prevention of denture-associated fungal infections. This study investigates the antifungal properties of acrylic modified with microwave-sintered ZnO-Ag nanoparticles. ZnO-Ag nanoparticles (1% and 2.5% wt.) were synthesized via microwave solvothermal synthesis (MSS). Nanoparticles were characterized for phase purity, specific surface area (SSA), density, morphology, and elemental composition. ZnO and ZnO-Ag nanoparticles were added to acrylic material (PMMA) at concentrations of 1% and 2.5% and polymerized. Pure PMMA (control) and obtained PMMA-nanocomposites were cut into homogeneous 10 × 10 mm samples. Antifungal activity of nanoparticles and PMMA-nanocomposites against C. albicans was tested using minimal inhibitory concentration (MIC) determination, and biofilm formation was assessed using crystal violet staining followed by absorbance measurements. Laboratory tests confirmed phase purity and uniform, spherical particle distribution. MIC results show antifungal activity of 1% Ag nanoparticles and the PMMA-2.5% (ZnO-1% Ag) nanocomposite. PMMA-1% (ZnO-1% Ag) nanocomposite and 1% ZnO-Ag nanoparticles are efficient in preventing biofilm formation. However, ZnO nanoparticles showed antibiofilm activity, and the PMMA-ZnO nanocomposite does not protect against biofilm deposition. Incorporating hybrid ZnO-Ag nanoparticles into PMMA is a promising antibiofilm method, especially with ZnO-1% Ag nanoparticles. Full article
(This article belongs to the Special Issue Polymer Composites with Reinforcement for Dental Applications)
Show Figures

Figure 1

59 pages, 4856 KiB  
Review
Extraction and Analytical Methods for the Characterization of Polyphenols in Marine Microalgae: A Review
by Gabriela Bermudez, Cristina Terenzi, Francesca Medri, Vincenza Andrisano and Serena Montanari
Mar. Drugs 2024, 22(12), 538; https://doi.org/10.3390/md22120538 - 30 Nov 2024
Cited by 5 | Viewed by 2932
Abstract
Marine microalgae are emerging as promising sources of polyphenols, renowned for their health-promoting benefits. Recovering polyphenols from microalgae requires suitable treatment and extraction techniques to ensure their release from the biomass and analytical methodologies to assess their efficiency. This review provides a comprehensive [...] Read more.
Marine microalgae are emerging as promising sources of polyphenols, renowned for their health-promoting benefits. Recovering polyphenols from microalgae requires suitable treatment and extraction techniques to ensure their release from the biomass and analytical methodologies to assess their efficiency. This review provides a comprehensive comparison of traditional and cutting-edge extraction and analytical procedures applied for polyphenolic characterization in marine microalgae over the past 26 years, with a unique perspective on optimizing their recovery and identification. It addresses (I) cell disruption techniques, including bead milling, high-speed homogenization, pulsed electric field, ultrasonication, microwave, freeze-thawing, and enzymatic/chemical hydrolysis; (II) extraction techniques, such as solid–liquid extraction, ultrasound and microwave-assisted extraction, pressurized-liquid extraction, and supercritical CO2; (III) analytical methods, including total phenolic and flavonoid content assays and advanced chromatographic techniques like GC-MS, HPLC-DAD, and HPLC-MS. Key findings showed bead milling and chemical hydrolysis as effective cell disruption techniques, pressurized-liquid extraction and microwave-assisted extraction as promising efficient extraction methods, and HPLC-MS as the finest alternative for precise phenolic characterization. Unlike previous reviews, this study uniquely integrates both extractive and analytical approaches in one work, focusing exclusively on marine microalgae, a relatively underexplored area compared to freshwater species, offering actionable insights to guide future research and industrial applications. Full article
(This article belongs to the Special Issue High-Value Algae Products)
Show Figures

Figure 1

16 pages, 10741 KiB  
Article
Wear of End Mills with Carbon Coatings When Aluminum Alloy A97075 High-Speed Processing
by Evgeny E. Ashkinazi, Sergey V. Fedorov, Artem K. Martyanov, Dmitry N. Sovyk, Victor G. Ralchenko, Artem P. Litvinov, Artem A. Ershov and Vitaly I. Konov
Metals 2024, 14(12), 1344; https://doi.org/10.3390/met14121344 - 26 Nov 2024
Viewed by 740
Abstract
It is recommended to use high-speed milling to maintain an effective material removal rate and the required cutting-edge geometry. However, on the other hand, high speed increases wear, so the surface of the cutters is modified by deposition functional coatings. The wear of [...] Read more.
It is recommended to use high-speed milling to maintain an effective material removal rate and the required cutting-edge geometry. However, on the other hand, high speed increases wear, so the surface of the cutters is modified by deposition functional coatings. The wear of end mills made of CTS12D and H10F tungsten carbides during the high-speed processing of aluminum A97075 (B95T1) was compared. To increase the durability of the tools, well-proven technologies for deposition diamond-like and polycrystalline diamond coatings in microwave plasma with different film structures, which were determined by the coating growth conditions, were used. The milling cutter corner was mostly worn out, but the nature of the wear had its characteristics. It was revealed that at a forced cutting mode of about 1000 m/min, cutters made of CTS12D alloy with a nanocrystalline diamond coating with a “cauliflower” structure and with a diamond-like film showed 10% higher resistance. The primary wear mechanism was adhesive. Images of worn cutting edges were obtained using a 3D optical digital image processing system. Full article
Show Figures

Figure 1

Back to TopTop