Synthesis, Application and Prospects of Carbon Dots as A Medicine Food Homology
Abstract
:1. Introduction
2. Materials and Methods
3. Synthesis Method of MFH-CDs
3.1. Hydrothermal Method
3.2. Solvothermal Method
3.3. Pyrolysis Method
3.4. Microwave-Assisted Method
3.5. Other Methods
4. Application of MFH-CDs
4.1. Disease Treatment
4.1.1. Anti-Gout and Anti-Inflammation
4.1.2. Treatment of Gastric Ulcer
4.1.3. Tumor Treatment
4.1.4. Oxidation Resistance
4.2. Fluorescence Probe Detection
4.2.1. Drug Detection
4.2.2. Detection of Heavy Metal Ions
4.3. Biological Imaging
4.3.1. Cell Imaging
4.3.2. In Vivo Imaging
4.4. Nanocatalysis
5. Advantages of MFH-CDs
6. Summary and Prospect
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Trache, D.; Hussin, M.H.; Haafiz, M.M.; Thakur, V.K. Recent progress in cellulose nanocrystals: Sources and production. Nanoscale 2017, 9, 1763–1786. [Google Scholar] [CrossRef] [PubMed]
- Testa, C.; Zammataro, A.; Pappalardo, A.; Sfrazzetto, G.T. Catalysis with carbon nanoparticles. RSC Adv. 2019, 9, 27659–27664. [Google Scholar] [CrossRef]
- Ianoș, R.; Moacă, E.A.; Căpraru, A.; Lazău, R.; Păcurariu, C. Maghemite, γ-Fe2O3, nanoparticles preparation via carbon-templated solution combustion synthesis. Ceram. Int. 2018, 44, 14090–14094. [Google Scholar] [CrossRef]
- Rastegar, S.F.; Pilar, R.; Moravkova, J.; Sadovska, G.; Parvulescu, V.I.; Pastvova, J.; Plsek, J.; Kaucky, D.; Kostkova, N.; Sazama, P. Platinum nanoparticles on 3D graphene-like zeolite-templated carbon for benzene hydrogenation. Catal. Sci. Technol. 2023, 13, 5120–5130. [Google Scholar] [CrossRef]
- Xu, X.; Ray, R.; Gu, Y.; Ploehn, H.J.; Gearheart, L.; Raker, K.; Scrivens, W.A. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 2004, 126, 12736–12737. [Google Scholar] [CrossRef]
- Levine, M.; Margulies, D. Fluorescent Molecular Probes and Fluorescence-Based Chemical Sensing. Isr. J. Chem. 2021, 61, 158. [Google Scholar] [CrossRef]
- Wu, Z.; Guo, Y.; Jiang, W.; Yang, Y.; Wei, P.; Yi, T. Recent process in organic small molecular fluorescent probes for tracking markers of tumor redox balance. TrAC Trends Anal. Chem. 2024, 170, 117461. [Google Scholar] [CrossRef]
- Ji, X.; Ji, K.; Chittavong, V.; Aghoghovbia, R.E.; Zhu, M.; Wang, B. Click and fluoresce: A bioorthogonally activated smart probe for wash-free fluorescent labeling of biomolecules. J. Org. Chem. 2017, 82, 1471–1476. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, W.; Wang, Q.; Wang, J.; Ren, G.; Wang, X. Quadruply-labeled serum albumin as a biodegradable nanosensor for simultaneous fluorescence imaging of intracellular pH values, oxygen and temperature. Microchim. Acta 2019, 186, 584. [Google Scholar] [CrossRef]
- Sun, Y.P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K.S.; Pathak, P. Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 2006, 128, 7756–7757. [Google Scholar] [CrossRef]
- Baker, S.N.; Baker, G.A. Luminescent carbon nanodots: Emergent nanolights. Angew. Chem. Int. Ed. 2010, 49, 6726–6744. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.T.; Cao, L.; Luo, P.G.; Lu, F.; Wang, X.; Wang, H.; Sun, Y.P. Carbon dots for optical imaging in vivo. J. Am. Chem. Soc. 2009, 131, 11308–11309. [Google Scholar] [CrossRef]
- Yang, S.T.; Wang, X.; Wang, H.; Lu, F.; Luo, P.G.; Cao, L.; Sun, Y.P. Carbon dots as nontoxic and high-performance fluorescence imaging agents. J. Phys. Chem. C 2009, 113, 18110–18114. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, Y.; Zhang, Y. One-step green synthesized fluorescent carbon nanodots from bamboo leaves for copper (II) ion detection. Sens. Actuators B Chem. 2014, 196, 647–652. [Google Scholar] [CrossRef]
- Qu, S.; Yu, S.; Ma, X.; Wang, R. “Medicine food homology” plants promote periodontal health: Antimicrobial, anti-inflammatory, and inhibition of bone resorption. Front. Nutr. 2023, 10, 1193289. [Google Scholar] [CrossRef]
- Zhang, Y.; Lin, X.; Xia, L.; Xiong, S.; Xia, B.; Xie, J.; Lin, Y.; Lin, L.; Wu, P. Progress on the Anti-Inflammatory Activity and Structure–Efficacy Relationship of Polysaccharides from Medical and Edible Homologous Traditional Chinese Medicines. Molecules 2024, 29, 3852. [Google Scholar] [CrossRef]
- Saravanan, A.; Maruthapandi, M.; Das, P.; Luong, J.H.T.; Gedanken, A. Green Synthesis of Multifunctional Carbon Dots with Antibacterial Activities. Nanomaterials 2021, 11, 369. [Google Scholar] [CrossRef] [PubMed]
- Li, C.L.; Ou, C.M.; Huang, C.C.; Wu, W.C.; Chen, Y.P.; Lin, T.E.; Chang, H.T. Carbon dots prepared from ginger exhibiting efficient inhibition of human hepatocellular carcinoma cells. J. Mater. Chem. B 2014, 2, 4564–4571. [Google Scholar] [CrossRef]
- Yu, J.; Song, N.; Zhang, Y.K.; Zhong, S.X.; Wang, A.J.; Chen, J. Green preparation of carbon dots by Jinhua bergamot for sensitive and selective fluorescent detection of Hg2+ and Fe3+. Sens. Actuators B Chem. 2015, 214, 29–35. [Google Scholar] [CrossRef]
- Guo, X.; Ji, W.-Q.; Wang, C.-F.; Chen, S. Herbages-derived fluorescent carbon dots and Cdte/carbon ensembles for patterning. J. Mater. Sci. 2016, 51, 8108–8115. [Google Scholar] [CrossRef]
- Sun, X.; He, J.; Yang, S.; Zheng, M.; Wang, Y.; Ma, S.; Zheng, H. Green synthesis of carbon dots originated from lycii fructus for effective fluorescent sensing of ferric ion and multicolor cell imaging. J. Photochem. Photobiol. B 2017, 175, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Supchocksoonthorn, P.; Thongsai, N.; Moonmuang, H.; Kladsomboon, S.; Jaiyong, P.; Paoprasert, P. Label-free carbon dots from black sesame seeds for real-time detection of ammonia vapor via optical electronic nose and density functional theory calculation. Colloids Surf. A Physicochem. Eng. Asp. 2019, 575, 118–128. [Google Scholar] [CrossRef]
- Li, L.; Shi, L.; Jia, J.; Chang, D.; Dong, C.; Shuang, S. Fe3+ detection, bioimaging, and patterning based on bright blue-fluorescent n-doped carbon dots. Analyst 2020, 145, 5450–5457. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, M.; Cheng, J.; Zhang, Y.; Kong, H.; Zhao, Y.; Qu, H. Novel carbon dots derived from glycyrrhizae radix et rhizoma and their anti-gastric ulcer effect. Molecules 2021, 26, 1512. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, Y.; Kong, H.; Cheng, G.; Qu, H.; Zhao, Y. Protective effects of carbon dots derived from armeniacae semen amarum carbonisata against acute lung injury induced by lipopolysaccharides in rats. Int. J. Nanomed. 2022, 17, 1–14. [Google Scholar] [CrossRef]
- Chen, R.; Ma, H.; Li, X.; Wang, M.; Yang, Y.; Wu, T.; Zhang, Y.; Kong, H.; Qu, H.; Zhao, Y. A novel drug with potential to treat hyperbilirubinemia and prevent liver damage induced by hyperbilirubinemia: Carbon dots derived from platycodon grandiflorum. Molecules 2023, 28, 2720. [Google Scholar] [CrossRef]
- Long, X.; Liao, S.; Wang, J.; Ma, Y.; Wu, S. Synthesis and chromatographic isolation of blue, green, and orange emissive carbon dots with high quantum yields from taraxacum. Dye. Pigment. 2024, 228, 112211. [Google Scholar] [CrossRef]
- Tian, R.; Guo, Y.; Luo, F.; Yang, T.; Zhou, Z.; Wang, Z.; Xie, Y. Green synthesis of multifunctional carbon dots from Crataegi Fructus for pH sensing, cell imaging and hemostatic effects. J. Photochem. Photobiol. A Chem. 2023, 438, 114531. [Google Scholar] [CrossRef]
- Wang, L.; Guo, X.; Liu, X.; Zhang, Q.; Liu, S. Papaya-Derived Carbon-Dot-Loaded Fluorescent Hydrogel for NIR-Stimulated Photochemotherapy and Antibacterial Activity. ACS Appl. Mater. Interfaces 2023, 15, 20344–20355. [Google Scholar]
- Hu, C.P.; Polintan, C.K.; Tayo, L.L.; Chou, S.C.; Tsai, H.A.; Hung, W.S.; Hu, C.C.; Lee, K.R.; Lai, J.Y. The gas separation performance adjustment of carbon molecular sieve membrane by resin doping and its mechanism. Carbon 2019, 143, 343–351. [Google Scholar] [CrossRef]
- Yuan, S.; Luo, Y.; Jiang, Y.; Xu, W.; Cheng, B.; Peng, Z. Poria cocos-derived carbon dots for cellular imaging, free radical scavenging and pH sensing. Diam. Relat. Mater. 2023, 137, 110121. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Zhang, M.; Kong, H.; Wang, S.; Cheng, J.; Qu, H.; Zhao, Y. Novel Carbon Dots Derived from Puerariae lobatae Radix and Their Anti-Gout Effects. Molecules 2019, 24, 4152. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Y.; Kong, H.; Zhang, M.; Cheng, J.; Wang, X.; Lu, F.; Qu, H.; Zhao, Y. Antihyperuricemic and anti-gouty arthritis activities of Aurantii Fructus Immaturus Carbonisata-derived carbon dots. Nanomedicine 2019, 14, 2925–2939. [Google Scholar] [CrossRef] [PubMed]
- Isnaeni, R.; Intan, R.; Zakaria, M. Photoluminescence study of carbon dots from ginger and galangal herbs using microwave technique. J. Phys. Conf. Ser. 2018, 985, 1742–6588. [Google Scholar] [CrossRef]
- Deng, X.; Huang, X.M. Study on synthesis of fluorescent carbon nanodots from fingered citron by hydrothermal method. Appl. Chem. Ind. 2016, 45, 1089–1091. [Google Scholar]
- Wu, D.; Huang, X.; Deng, X.; Wang, K.; Liu, Q. Preparation of photoluminescent carbon nanodots by traditional Chinese medicine and application as a probe for Hg2+. Anal. Methods 2013, 5, 3023–3027. [Google Scholar] [CrossRef]
- Zhao, X.; Liao, S.; Wang, L.; Liu, Q.; Chen, X. Facile green and one-pot synthesis of purple perilla derived carbon quantum dot as a fluorescent sensor for silver ion. Talanta 2019, 201, 1–8. [Google Scholar] [CrossRef]
- Tang, S.; Chen, D.; Guo, G.; Li, X.; Wang, C.; Li, T.; Wang, G. A smartphone-integrated optical sensing platform based on Lycium ruthenicum derived carbon dots for real-time detection of Ag+. Sci. Total Environ. 2022, 825, 153913. [Google Scholar] [CrossRef]
- Jiang, X.; Qin, D.; Mo, G.; Feng, J.; Yu, C.; Mo, W.; Deng, B. Ginkgo leaf-based synthesis of nitrogen-doped carbon quantum dots for highly sensitive detection of salazosulfapyridine in mouse plasma. J. Pharm. Biomed. Anal. 2019, 164, 514–519. [Google Scholar] [CrossRef]
- Amin, N.; Afkhami, A.; Hosseinzadeh, L. Green and cost-effective synthesis of carbon dots from date kernel and their application as a novel switchable fluorescence probe for sensitive assay of zoledronic acid drug in human serum and cellular imaging. Anal. Chim. Acta 2019, 1030, 183–193. [Google Scholar] [CrossRef]
- Li, X.; Li, J.; Li, Y.Y.; Feng, S.L. Highly Sensitive Detection of Hg2+ Using Nitrogen-Doped Fluorescent Carbon Quantum Dots Derived from Wild Ziziphus jujuba var. spinosa. Chin. J. Anal. Lab. 2020, 39, 82–85. [Google Scholar]
- Tian, M.; Wang, D.; Liu, Q.; Wang, L.; Tao, Y.; Wang, J.; Gao, D. Deep eutectic solvent assisted synthesis of N, Cl co-doped carbon dots using longan shell waste: Applications in antioxidant, anti-inflammatory and Fe2+ detection. J. Mol. Liq. 2024, 397, 124131. [Google Scholar] [CrossRef]
- Chen, Q.; Liu, S.; Wang, Y.; Tong, M.; Sun, H.; Dong, M.; Wang, L. Yam Carbon Dots Promote Bone Defect Repair by Modulating Histone Demethylase 4B. Int. J. Nanomed. 2024, 19, 10415–10434. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, Q.; Han, X.; Li, M.; Yuan, J.; Wei, R.; Zhao, W. Nitrogen-doped carbon dots derived from hawthorn for the rapid determination of chlortetracycline in pork samples. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 255, 119736. [Google Scholar] [CrossRef]
- Wang, B.; Lan, J.; Ou, J.; Bo, C.; Gong, B. Ganoderma lucidum bran-derived blue-emissive and green-emissive carbon dots for detection of copper ions. RSC Adv. 2023, 13, 14506–14516. [Google Scholar] [CrossRef]
- Zhu, Z.; Lin, X.; Wu, L.; Zhao, C.; Li, S.; Liu, A.; Lin, L. Nitrogen-doped carbon dots as a ratiometric fluorescent probe for determination of the activity of acid phosphatase, for inhibitor screening, and for intracellular imaging. Microchim. Acta 2019, 186, 558. [Google Scholar] [CrossRef]
- Bu, L.; Luo, T.; Peng, H.; Li, L.; Long, D.; Peng, J.; Huang, J. One-step synthesis of N-doped carbon dots, and their applications in curcumin sensing, fluorescent inks, and super-resolution nanoscopy. Microchim. Acta 2019, 186, 675. [Google Scholar] [CrossRef]
- Luo, W.; Zhang, L.; Li, X.; Zheng, J.; Chen, Q.; Yang, Z.; Wang, Y. Green functional carbon dots derived from herbal medicine ameliorate blood—Brain barrier permeability following traumatic brain injury. Nano Res. 2022, 15, 9274–9285. [Google Scholar] [CrossRef]
- Prasannan, A.; Imae, T. One-pot synthesis of fluorescent carbon dots from orange waste peels. Ind. Eng. Chem. Res. 2013, 52, 15673–15678. [Google Scholar] [CrossRef]
- Chang, D.; Zhao, Z.; Shi, L.; Liu, W.; Yang, Y. Lysosome-targeted carbon dots for colorimetric and fluorescent dual mode detection of iron ion, in vitro and in vivo imaging. Talanta 2021, 232, 122423. [Google Scholar] [CrossRef]
- Wang, C.; Xu, J.; Zhang, R.; Zhao, W. Facile and low-energy-consumption synthesis of dual-functional carbon dots from Cornus walteri leaves for detection of p-nitrophenol and photocatalytic degradation of dyes. Colloids Surf. A Physicochem. Eng. Asp. 2022, 640, 128351. [Google Scholar] [CrossRef]
- Mei, X.; Wang, D.; Zhang, L.; Li, J.; Dong, C. Synthesis of carbon dots for Al3+ sensing in water by fluorescence assay. Luminescence 2021, 36, 1469–1475. [Google Scholar] [CrossRef]
- Zhao, D.; Huang, Y.; Shi, B.; Li, S.; Zhao, S. Facile fluorescent differentiation of aminophenol isomers based on Ce-doped carbon dots. ACS Sustain. Chem. Eng. 2021, 9, 8136–8141. [Google Scholar] [CrossRef]
- Venugopalan, P.; Vidya, N.; Maya, C. Cassia fistula flower extract derived carbon dots for photocatalytic degradation of methylene blue. Int. J. Environ. Anal. Chem. 2024, 104, 7743–7753. [Google Scholar] [CrossRef]
- Kaur, A.; Gupta, U.; Hasan, I.; Muhammad, R.; Khan, R.A. Synthesis of highly fluorescent carbon dots from spices for determination of sunset yellow in beverages. Microchem. J. 2021, 170, 106720. [Google Scholar] [CrossRef]
- Guo, X.X.; Zhang, G.M.; Zheng, Y.H. Synthesis of fluorescent carbon dots from saffron as a carbon source for the detection of vb12. J. Shanxi Univ. 2022, 1326–1332. [Google Scholar]
- Li, C.Y. Detection of Drug Molecules by Fluorescent Sensing Probes Based on Biomass Carbon Quantum Dots. Master’s Thesis, Yan’an University, Yan’an, China, 2024. [Google Scholar]
- Ma, P.R. Research on Antioxidant Active Components of Hippophae rhamnoides and Utilization of Its Residue. Master’s Thesis, Inner Mongolia University, Hohhot, China, 2023. [Google Scholar]
- Dai, L.T. Synthesis, Characterization and Application of Fluorescent Carbon Dots Derived from Natural Substances. Master’s Thesis, Shanxi University, Shanxi, China, 2018. [Google Scholar]
- Liao, S.; Long, X.; Ma, Y.; Wu, S.; Wang, J. Synthesis of multicolor fluorescent carbon dots from zanthoxylum bungeanum and their application in fluorescent anti-counterfeiting ink. J. Photochem. Photobiol. A Chem. 2023, 445, 115066. [Google Scholar] [CrossRef]
- Chen, B.L.; Jiarong, M.O.; Zhang, R.Y.; Wang, H.; Wang, Q.X.; Li, J. Preparation, characterization, and protective effects of Gardenia Fructus carbon dots against oxidative damage induced by LPS in IPEC-J2 cells. Front. Cell. Infect. Microbiol. 2024, 14, 1423760. [Google Scholar] [CrossRef]
- Shen, C.; Jiang, T.; Lou, Q.; Zhao, W.; Lv, C.; Zheng, G.; Shan, C. Near-infrared chemiluminescent carbon nanogels for oncology imaging and therapy. SmartMat 2022, 3, 269–285. [Google Scholar] [CrossRef]
- Tang, C.; Long, R.; Tong, X.; Guo, Y.; Tong, C.; Shi, S. Dual-emission biomass carbon dots for near-infrared ratiometric fluorescence determination and imaging of ascorbic acid. Microchem. J. 2021, 164, 106000. [Google Scholar] [CrossRef]
- Gu, D.; Zhang, P.; Zhang, L.; Liu, H.; Pu, Z.; Shang, S. Nitrogen and phosphorus co-doped carbon dots derived from lily bulbs for copper ion sensing and cell imaging. Opt. Mater. 2018, 83, 272–278. [Google Scholar] [CrossRef]
- Liu, H.; Ding, J.; Zhang, K.; Ding, L. Fabrication of carbon dots@ restricted access molecularly imprinted polymers for selective detection of metronidazole in serum. Talanta 2020, 209, 120508. [Google Scholar] [CrossRef]
- George, H.S.; Selvaraj, H.; Ilangovan, A.; Chandrasekaran, K.; Kannan, V.R.; Parthipan, P.; Balu, R. Green synthesis of biomass derived carbon dots via microwave-assisted method for selective detection of Fe3+ ions in an aqueous medium. Inorg. Chem. Commun. 2023, 157, 111348. [Google Scholar] [CrossRef]
- Laddha, H.; Yadav, P.; Sharma, M.; Agarwal, M.; Gupta, R. Waste to value transformation: Converting Carica papaya seeds into green fluorescent carbon dots for simultaneous selective detection and degradation of tetracycline hydrochloride in water. Environ. Res. 2023, 227, 115820. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Liu, J.; Chen, X.; Meng, J.; Wei, S.; Wu, T.; Zhang, X. Ganoderma Lucidum-derived erythrocyte-like sustainable materials. Carbon 2022, 196, 70–77. [Google Scholar] [CrossRef]
- kanthi Gudimella, K.; Gedda, G.; Kumar, P.S.; Babu, B.K.; Yamajala, B.; Rao, B.V.; Sharma, A. Novel synthesis of fluorescent carbon dots from bio-based Carica Papaya Leaves: Optical and structural properties with antioxidant and anti-inflammatory activities. Environ. Res. 2022, 204, 111854. [Google Scholar] [CrossRef]
- Gao, W.; Mu, B.; Yang, F.; Li, Y.; Wang, X.; Wang, A. Multifunctional honeysuckle extract/attapulgite/chitosan composite films containing natural carbon dots for intelligent food packaging. Int. J. Biol. Macromol. 2024, 280, 136042. [Google Scholar] [CrossRef]
- Su, Y.; Shi, B.; Liao, S.; Zhao, J.; Chen, L.; Zhao, S. Silver nanoparticles/N-doped carbon-dots nanocomposites derived from siraitia grosvenorii and its logic gate and surface-enhanced raman scattering characteristics. ACS Sustain. Chem. Eng. 2016, 4, 1728–1735. [Google Scholar] [CrossRef]
- Shu, Z.; Li, M.Q.; Gan, L.; Wan, L.; Chen, X.; Zhang, X.; Gui, W. A strategy to synthesize highly luminescent GdVO4: Eu3+/CDs nanocomposite based on hydrothermal deposition method and its application in anti-counterfeiting. J. Alloys Compd. 2022, 919, 165881. [Google Scholar] [CrossRef]
- Guan, X.; Xu, X.; Wu, Y.; Yang, R.; Chen, X.; Kong, F.; Xiao, Q. One-Pot Hydrothermal Synthesis of mSiO2-N-CDs with High Solid-State Photoluminescence as a Fluorescent Probe for Detecting Dopamine. Nanomaterials 2023, 13, 2989. [Google Scholar] [CrossRef]
- Yan, F.Y.; Zou, Y.; Wang, M.; Dai, L.F.; Zhou, X.G.; Chen, L. Preparation and application of fluorescent carbon dots. Prog. Chem. 2014, 26, 61. [Google Scholar]
- Liu, Y.S.; Li, W.; Wu, P.; Liu, S.X. Preparation and application of carbon quantum dots by hydrothermal carbonization. Prog. Chem. 2018, 30, 16. [Google Scholar]
- Atchudan, R.; Edison, T.N.J.I.; Aseer, K.R.; Perumal, S.; Lee, Y.R. Hydrothermal conversion of Magnolia liliiflora into nitrogen-doped carbon dots as an effective turn-off fluorescence sensing, multi-colour cell imaging and fluorescent ink. Colloids Surf. B Biointerfaces 2018, 169, 321–328. [Google Scholar] [CrossRef]
- Qiu, Y.; Gao, D.; Yin, H.; Zhang, K.; Zeng, J.; Wang, L.; Fu, Q. Facile, green and energy-efficient preparation of fluorescent carbon dots from processed traditional Chinese medicine and their applications for on-site semi-quantitative visual detection of Cr (VI). Sens. Actuators B Chem. 2020, 324, 128722. [Google Scholar] [CrossRef]
- Pichler, M.; Haddadi, B.; Jordan, C.; Norouzi, H.; Harasek, M. Influence of particle residence time distribution on the biomass pyrolysis in a rotary kiln. J. Anal. Appl. Pyrolysis 2021, 158, 105171. [Google Scholar] [CrossRef]
- Li, L.; Li, L.; Chen, C.P.; Cui, F. Green synthesis of nitrogen-doped carbon dots from ginkgo fruits and the application in cell imaging. Inorg. Chem. Commun. 2017, 86, 227–231. [Google Scholar] [CrossRef]
- Raveendran, V.; Kizhakayil, R.N. Fluorescent Carbon Dots as Biosensor, Green Reductant, and Biomarker. ACS Omega 2021, 6, 23475. [Google Scholar] [CrossRef]
- Ishii, Y.; Fujii, Y. Effects of FM100, a fraction of licorice root, on serum gastrin concentration in rats and dogs. Jpn. J. Pharmacol. 1982, 32, 23–27. [Google Scholar] [CrossRef]
- Yang, X.P.; Liu, M.X.; Yin, Y.R. Green, hydrothermal synthesis of fluorescent carbon nanodots from gardenia, enabling the detection of metronidazole in pharmaceuticals and rabbit plasma. Sensors 2018, 18, E964. [Google Scholar] [CrossRef]
- Bhatt, N.P.; Deshpande, A.V.; Starkey, M.R. Pharmacological interventions for the management of cystinuria: A systematic review. J. Nephrol. 2024, 37, 293–308. [Google Scholar] [CrossRef]
- Kumar, A.; Estes Bright, L.M.; Garren, M.R.S.; Manuel, J.; Shome, A.; Handa, H. Chemical Modification of Tiopronin for Dual Management of Cystinuria and Associated Bacterial Infections. ACS Appl. Mater. Interfaces 2023, 15, 43332–43344. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Lin, M.; Liu, M. Evaluate the value of prolonging the duration of tiopronin for injection administration in preventing hepatotoxicity. Sci. Rep. 2024, 14, 3674. [Google Scholar] [CrossRef]
- Sun, Z.; Chen, Z.; Luo, J.; Zhu, Z.; Zhang, X.; Liu, R.; Wu, Z. A yellow-emitting nitrogen-doped carbon dots for sensing of vitamin B12 and their cell-imaging. Dye. Pigment. 2020, 176, 108227. [Google Scholar] [CrossRef]
- Guo, Y.; Feng, H.; Zhang, L. Insights into the Mechanism of Selective Removal of Heavy Metal Ions by the Pulsed/Direct Current Electrochemical Method. Environ. Sci. Technol. 2024, 58, 5589–5597. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, D.; Yu, H. Advances in colorimetric aptasensors for heavy metal ion detection utilizing nanomaterials: A comprehensive review. Anal. Methods 2023, 15, 6320–6343. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.J.; Kim, Y.S.; Kumar, V. Heavy metal toxicity: An update of chelating therapeutic strategies. J. Trace Elem. Med. Biol. 2019, 54, 226–231. [Google Scholar] [CrossRef]
- Feng, L.; Zhang, L.; Gong, Y. Hollow C@ MoS2 nanotubes with Hg2+-triggered oxidase-like catalysis: A colorimetric method for detection of Hg2+ ions in wastewater. Sens. Actuators B Chem. 2022, 361, 131725. [Google Scholar] [CrossRef]
- Sun, D.; Liu, T.; Wang, C. Hydrothermal synthesis of fluorescent carbon dots from gardenia fruit for sensitive on-off-on detection of Hg2+ and cysteine. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 240, 118598. [Google Scholar] [CrossRef]
- Xue, M.; Zhan, Z.; Zou, M. Green synthesis of stable and biocompatible fluorescent carbon dots from peanut shells for multicolor living cell imaging. New J. Chem. 2016, 40, 1698–1703. [Google Scholar] [CrossRef]
- Lu, M.; Duan, Y.; Song, Y. Green preparation of versatile nitrogen-doped carbon quantum dots from watermelon juice for cell imaging, detection of Fe3+ ions and cysteine, and optical thermometry. J. Mol. Liq. 2018, 269, 766–774. [Google Scholar] [CrossRef]
- Shahid, S.; Mohiyuddin, S.; Packirisamy, G. Synthesis of multi-color fluorescent carbon dots from mint leaves: A robust bioimaging agent with potential antioxidant activity. J. Nanosci. Nanotechnol. 2020, 20, 6305–6316. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, H.; Ma, C. Seeking value from biomass materials: Preparation of coffee bean shell-derived fluorescent carbon dots via molecular aggregation for antioxidation and bioimaging applications. Mater. Chem. Front. 2018, 2, 1269–1275. [Google Scholar] [CrossRef]
- Rosso, C.; Filippini, G.; Prato, M. Carbon dots as nano-organocatalysts for synthetic applications. ACS Catal. 2020, 10, 8090–8105. [Google Scholar] [CrossRef]
- Edakkaparamban, S.; Kitamura, M.; Ide, Y.; Umemura, K.; Ishizawa, A. Photocatalytic degradation study of methylene blue using carbon quantum dots synthesized from coconut husk. Mater. Lett. 2023, 345, 134508. [Google Scholar] [CrossRef]
- Choudhary, M.; Saini, P.; Chakinala, N.; Surolia, P.K.; Chakinala, A.G. Carbon dots decorated cadmium sulfide nanomaterials for boosting photocatalytic activity for ciprofloxacin degradation. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 319, 124572. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, J.; Sang, Y.; Wei, Y.; Chen, X.; Wang, Y.; Xue, H. Polysaccharides from medicine and food homology materials: A review on their extraction, purification, structure, and biological activities. Molecules 2022, 27, 3215. [Google Scholar] [CrossRef]
- Zhang, L.Y.; Han, Y.L.; Yang, J.J.; Deng, S.L.; Wang, B.Y. Construction and photocatalysis of carbon quantum dots/layered mesoporous titanium dioxide (CQDs/LM-TiO2) composites. Appl. Surf. Sci. 2021, 546, 149089. [Google Scholar] [CrossRef]
- Wang, C.; Shi, H.; Yang, M.; Yao, Z.; Zhang, B.; Liu, E.; Hu, X.; Xue, W.; Fan, J. Biocompatible sulfur nitrogen co-doped carbon quantum dots for highly sensitive and selective detection of dopamine. Colloids Surf. B Biointerfaces 2021, 205, 111874. [Google Scholar] [CrossRef]
Precursor | Synthetic Method | Application | Quantum Yield (%) | Size (nm) | Fluorescent Color | Ref. |
---|---|---|---|---|---|---|
Ziziphus jujuba var. spinosa | Hydrothermal | Fluorescence detection of Hg2+ | 16.9% | 1.2 nm | Blue | [41] |
Hibiscus trionum L. | Hydrothermal | Detecting ammonia vapor | 2% | - | Blue | [22] |
Dimocarpus longana Lour. | Hydrothermal | Antioxidant, anti-inflammatory and Fe2+ detection | 15.2% | 4.55 nm | Blue | [42] |
Ipomoea batatas | Hydrothermal | Promote the repair of bone defect | 4.44% | 2–6 nm | Blue | [43] |
Crataegus pinnatifida Bunge | Hydrothermal | Detection of chlortetracycline in pork samples | 22.96% | 3.17 nm | Blue | [44] |
Lycium chinense Mill. | Hydrothermal | Ag+ detection | 21.8% | 3.0–6.5 nm | Green | [38] |
Lycium chinense Mill. | Hydrothermal | Fe3+ detection | 17.2% | 2–5 nm | Blue | [21] |
Ganoderma lucidum | Hydrothermal | Determination of copper ion | 4.6% 2.6% | 1.57–2.83 nm, 2.03–3.85 nm | Blue green | [45] |
Nelumbo nucifera | Hydrothermal | Determination of acid phosphatase | 8.6% | 2.92 ± 0.30 nm | Green | [46] |
Chrysanthemum morifolium Ramat. | Hydrothermal | Curcumin sensor, fluorescent ink | 28.5% | 1.7–3.3 nm | Blue | [47] |
Prunus persica, Carthamus tinctorius | Hydrothermal | Improve the permeability of blood–brain barrier | 3.84% | 3.12 ± 0.95 nm | Blue | [48] |
Citrus reticulata | Hydrothermal | Degradable dye | 12.3% | 2−7 nm | Blue | [49] |
Curcuma longa | Hydrothermal | Antibiosis | - | 2.6 nm | Blue | [17] |
Mentha haplocalyx | Hydrothermal | Iron ion detection | 6.9% | 6.66 ± 0.83 nm | Yellow | [50] |
Astragalus membranaceus | Hydrothermal | Fe3+ detection, biological imaging | 35.6% | 4.22 ± 0.23 nm | Blue | [23] |
Cornus officinalis | Hydrothermal | Detection of p-nitrophenol and photocatalytic degradation of dyes | 18.3% | 3.53 nm | Green | [51] |
Eucommia ulmoides | Hydrothermal | Detection of Al3+ in water | 42.3% | 3.55 ± 1.45 nm | Blue | [52] |
Dendrobium officinale | Hydrothermal | Detection of MAP and OAP in real water samples | - | 16–24 nm | - | [53] |
Poria cocos | Hydrothermal | Cell imaging, free radical scavenging and pH sensing | 1% | 1.5–4.5 nm | Blue | [31] |
Zingiber officinale | Hydrothermal | Inhibition of liver cancer cells | - | 4.3 ± 0.8 nm | Blue | [18] |
Citrus medica var. sarcodactylis | Hydrothermal | Detect Hg2+ and Fe3+ | 50.78% | 10 nm | Blue | [19] |
Cassia obtusifolia | Hydrothermal | Photocatalytic degradation of methylene blue | - | 1.23 nm | Kelly | [54] |
Trigonella foenum-graecum, Syzygium aromaticum, Cuminum cyminum | Hydrothermal | Determination of sunset yellow in drinks by yellow–green color | - | 5–10 nm | - | [55] |
Crocus sativus L. | Hydrothermal | VB12 detection | - | 4.1 ± 0.3 nm | Blue | [56] |
Mel | Hydrothermal | Detection of tiopronin | 2.02 ± 0.11 nm | Blue | [57] | |
Hippophae rhamnoides L. | Hydrothermal | Cell imaging | - | 3–5 nm | Blue | [58] |
Semen armeniacae amarum | Hydrothermal | Cell imaging and Fe3+ biosensing | - | 5 ±0.6 nm | Blue | [59] |
Zanthoxylum bungeanum Maxim. | Hydrothermal | Fluorescent anti-counterfeiting ink | 13.1%, 11.2% and 9.8% | 3.5 nm, 4.0 nm and 7.5 nm | Blue, green and red | [60] |
Gardenia jasminoides | Hydrothermal | Protective effect of cell oxidative damage | 4.8 ± 0.52 nm | Blue | [61] | |
Taraxacum mongolicum | Solvothermal | Fluorescence detection of Fe3+, Pb2+ and Sn4+ | 43.8%, 32.9%, 48.1% | 3.5 nm, 2.6 nm, 2.3 nm | Blue, green, orange | [27] |
Chaenomeles sinensis | NIR-stimulated photochemotherapy and antibacterial activity | 12.34% | 5−9 nm | Blue | [29] | |
Houttuynia cordata, Lonicera japonica, Artemisia argyi, Perilla frutescens, Taxus chinensis | Solvothermal | Tumor imaging and therapy | 0.59%, 0.42%, 1.13%, 0.55%, 1.01% | - | Red | [62] |
Piper nigrum | Solvothermal | Determination and ascorbic acid imaging | 10.25% | 4.7 nm | - | [63] |
Lilium brownii var. viridulum | Microwave | Cu2+ ion detection | 17.6% | 1.34–5.23 nm | - | [64] |
Dimocarpus longan | Microwave | Detection of metronidazole | - | 2.8–4.2 nm | - | [65] |
Chaenomeles sinensis | Microwave | Fe3+ ion detection | 9.7% | 1.45 nm | Blue | [66] |
Chaenomeles sinensis | Microwave | Detection and degradation of tetracycline hydrochloride in water | 10.05% | 2–6.5 nm | Blue | [67] |
Platycodon grandiflorus | Pyrolysis | Treat hyperbilirubinemia | - | 1.2–3.6 nm | - | [26] |
Ganoderma lucidum | Pyrolysis | Electrochemistry | [68] | |||
Glycyrrhiza uralensis | Pyrolysis | Antigastric ulcer effect | 2.51% | 1–5 nm | - | [24] |
Pueraria lobata | Pyrolysis | Treat gout | 3.2% | 3.0–10.0 nm | - | [32] |
Chaenomeles sinensis | Sand bath | Antioxidant and anti-inflammatory effects | - | - | Blue | [69] |
Lonicera japonica | Mechanical milling | Food packaging | - | - | Blue | [70] |
Siraitia grosvenorii | - | - | 0.05% | 9.0 nm | - | [71] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, S.; Ren, H.; Chen, H.; Wen, N.; Du, L.; Song, C.; Lv, Y. Synthesis, Application and Prospects of Carbon Dots as A Medicine Food Homology. Nanomaterials 2025, 15, 906. https://doi.org/10.3390/nano15120906
Huang S, Ren H, Chen H, Wen N, Du L, Song C, Lv Y. Synthesis, Application and Prospects of Carbon Dots as A Medicine Food Homology. Nanomaterials. 2025; 15(12):906. https://doi.org/10.3390/nano15120906
Chicago/Turabian StyleHuang, Siqi, Huili Ren, Hongyue Chen, Nuan Wen, Libo Du, Chaoyu Song, and Yuguang Lv. 2025. "Synthesis, Application and Prospects of Carbon Dots as A Medicine Food Homology" Nanomaterials 15, no. 12: 906. https://doi.org/10.3390/nano15120906
APA StyleHuang, S., Ren, H., Chen, H., Wen, N., Du, L., Song, C., & Lv, Y. (2025). Synthesis, Application and Prospects of Carbon Dots as A Medicine Food Homology. Nanomaterials, 15(12), 906. https://doi.org/10.3390/nano15120906