Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = microsomal prostaglandin E synthase 2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2299 KB  
Article
Beneficial Impact of Eicosapentaenoic Acid on the Adverse Effects Induced by Palmitate and Hyperglycemia on Healthy Rat Chondrocyte
by Chaohua Deng, Nathalie Presle, Anne Pizard, Cécile Guillaume, Arnaud Bianchi and Hervé Kempf
Int. J. Mol. Sci. 2024, 25(3), 1810; https://doi.org/10.3390/ijms25031810 - 2 Feb 2024
Viewed by 2602
Abstract
Osteoarthritis (OA) is the most prevalent form of arthritis and a major cause of pain and disability. The pathology of OA involves the whole joint in an inflammatory and degenerative process, especially in articular cartilage. OA may be divided into distinguishable phenotypes including [...] Read more.
Osteoarthritis (OA) is the most prevalent form of arthritis and a major cause of pain and disability. The pathology of OA involves the whole joint in an inflammatory and degenerative process, especially in articular cartilage. OA may be divided into distinguishable phenotypes including one associated with the metabolic syndrome (MetS) of which dyslipidemia and hyperglycemia have been individually linked to OA. Since their combined role in OA pathogenesis remains to be elucidated, we investigated the chondrocyte response to these metabolic stresses, and determined whether a n-3 polyunsaturated fatty acid (PUFA), i.e., eicosapentaenoic acid (EPA), may preserve chondrocyte functions. Rat chondrocytes were cultured with palmitic acid (PA) and/or EPA in normal or high glucose conditions. The expression of genes encoding proteins found in cartilage matrix (type 2 collagen and aggrecan) or involved in degenerative (metalloproteinases, MMPs) or in inflammatory (cyclooxygenase-2, COX-2 and microsomal prostaglandin E synthase, mPGES) processes was analyzed by qPCR. Prostaglandin E2 (PGE2) release was also evaluated by an enzyme-linked immunosorbent assay. Our data indicated that PA dose-dependently up-regulated the mRNA expression of MMP-3 and -13. PA also induced the expression of COX-2 and mPGES and promoted the synthesis of PGE2. Glucose at high concentrations further increased the chondrocyte response to PA. Interestingly, EPA suppressed the inflammatory effects of PA and glucose, and strongly reduced MMP-13 expression. Among the free fatty acid receptors (FFARs), FFAR4 partly mediated the EPA effects and the activation of FFAR1 markedly reduced the inflammatory effects of PA in high glucose conditions. Our findings demonstrate that dyslipidemia associated with hyperglycemia may contribute to OA pathogenesis and explains why an excess of saturated fatty acids and a low level in n-3 PUFAs may disrupt cartilage homeostasis. Full article
Show Figures

Figure 1

17 pages, 1291 KB  
Article
STITCH, Physicochemical, ADMET, and In Silico Analysis of Selected Mikania Constituents as Anti-Inflammatory Agents
by Narayanaswamy Radhakrishnan, Vasantha-Srinivasan Prabhakaran, Mohammad Ahmad Wadaan, Almohannad Baabbad, Ramachandran Vinayagam and Sang Gu Kang
Processes 2023, 11(6), 1722; https://doi.org/10.3390/pr11061722 - 5 Jun 2023
Cited by 20 | Viewed by 2712
Abstract
The Mikania genus has been known to possess numerous pharmacological activities. In the present study, we aimed to evaluate the interaction of 26 selected constituents of Mikania species with (i) cyclooxygenase 2 (COX 2), (ii) human neutrophil elastase (HNE), (iii) lipoxygenase (LOX), matrix [...] Read more.
The Mikania genus has been known to possess numerous pharmacological activities. In the present study, we aimed to evaluate the interaction of 26 selected constituents of Mikania species with (i) cyclooxygenase 2 (COX 2), (ii) human neutrophil elastase (HNE), (iii) lipoxygenase (LOX), matrix metalloproteinase ((iv) MMP 2 and (v) MMP 9), and (vi) microsomal prostaglandin E synthase 2 (mPGES 2) inhibitors using an in silico approach. The 26 selected constituents of Mikania species, namely mikamicranolide, kaurenoic acid, stigmasterol, grandifloric acid, kaurenol, spathulenol, caryophyllene oxide, syringaldehyde, dihydrocoumarin, o-coumaric acid, taraxerol, melilotoside, patuletin, methyl-3,5-di-O-caffeoyl quinate, 3,3′,5-trihydroxy-4′,6,7-trimethoxyflavone, psoralen, curcumene, herniarin, 2,6-dimethoxy quinone, bicyclogermacrene, α-bisabolol, γ-elemene, provincialin, dehydrocostus lactone, mikanin-3-O-sulfate, and nepetin, were assessed based on the docking action with COX 2, HNE, LOX, MMP 2, MMP 9, and mPGES 2 using Discovery Studio (in the case of LOX, the Autodock method was utilized). Moreover, STITCH (Search Tool for Interacting Chemicals), physicochemical, drug-likeness, and ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) analyses were conducted utilizing the STITCH web server, the Mol-inspiration web server, and Discovery Studio, respectively. In the present study, STITCH analysis revealed only six ligands (dihydrocoumarin, patuletin, kaurenol, psoralen, curcumene, and nepetin) that showed interactions with human proteins. Physicochemical analysis showed that seventeen ligands complied well with Lipinski’s rule. ADMET analysis showed eleven ligands to possess hepatotoxic effects. Significantly, the binding free energy estimation displayed that the ligand methyl-3, 5-di-O-caffeoyl quinate revealed the highest binding energy for all the target enzymes, excluding LOX, suggesting that this may have efficacy as a non-steroidal anti-inflammatory drug (NSAID). The current study presents a better understanding of how Mikania is used as a traditional medicinal plant. Specifically, the 26 ligands of the Mikania plant are potential inhibitor against COX 2, HNE, LOX, MMP 2, MMP 9, and mPGES 2 for treatments for acute and/or chronic inflammatory diseases. Full article
(This article belongs to the Special Issue Natural Compounds Applications in Drug Discovery and Development)
Show Figures

Figure 1

16 pages, 1841 KB  
Review
Cooperation between Prostaglandin E2 and Epidermal Growth Factor Receptor in Cancer Progression: A Dual Target for Cancer Therapy
by Federica Finetti, Lucrezia Paradisi, Clizia Bernardi, Margherita Pannini and Lorenza Trabalzini
Cancers 2023, 15(8), 2374; https://doi.org/10.3390/cancers15082374 - 19 Apr 2023
Cited by 20 | Viewed by 5423
Abstract
It is recognized that prostaglandin E2 (PGE2) is one key lipid mediator involved in chronic inflammation, and it is directly implicated in tumor development by regulating cancer cell growth and migration, apoptosis, epithelial–mesenchymal transition, angiogenesis, and immune escape. In addition, the expression of [...] Read more.
It is recognized that prostaglandin E2 (PGE2) is one key lipid mediator involved in chronic inflammation, and it is directly implicated in tumor development by regulating cancer cell growth and migration, apoptosis, epithelial–mesenchymal transition, angiogenesis, and immune escape. In addition, the expression of the enzymes involved in PGE2 synthesis, cyclooxygenase 2 (COX-2) and microsomal prostaglandin E synthase 1 (mPGES1), positively correlates with tumor progression and aggressiveness, clearly indicating the crucial role of the entire pathway in cancer. Moreover, several lines of evidence suggest that the COX2/mPGES1/PGE2 inflammatory axis is involved in the modulation of epidermal growth factor receptor (EGFR) signaling to reinforce the oncogenic drive of EGFR activation. Similarly, EGFR activation promotes the induction of COX2/mPGES1 expression and PGE2 production. In this review, we describe the interplay between COX2/mPGES1/PGE2 and EGFR in cancer, and new therapeutic strategies that target this signaling pathway, to outline the importance of the modulation of the inflammatory process in cancer fighting. Full article
Show Figures

Figure 1

16 pages, 1194 KB  
Article
Role of Noradrenaline and Adrenoreceptors in Regulating Prostaglandin E2 Synthesis Cascade in Inflamed Endometrium of Pigs
by Barbara Jana, Jarosław Całka, Michał Bulc and Krzysztof Witek
Int. J. Mol. Sci. 2023, 24(6), 5856; https://doi.org/10.3390/ijms24065856 - 20 Mar 2023
Cited by 5 | Viewed by 2770
Abstract
In the inflamed uterus, the production and secretion of prostaglandins (PGs) and noradrenergic innervation pattern are changed. Receptor-based control of prostaglandin E2 (PGE2) production and secretion by noradrenaline during uterine inflammation is unknown. The aim of this study was to determine the role [...] Read more.
In the inflamed uterus, the production and secretion of prostaglandins (PGs) and noradrenergic innervation pattern are changed. Receptor-based control of prostaglandin E2 (PGE2) production and secretion by noradrenaline during uterine inflammation is unknown. The aim of this study was to determine the role of α1-, α2- and β-adrenoreceptors (ARs) in noradrenaline-influenced PG-endoperoxidase synthase-2 (PTGS-2) and microsomal PTGE synthase-1 (mPTGES-1) protein levels in the inflamed pig endometrium, and in the secretion of PGE2 from this tissue. E. coli suspension (E. coli group) or saline (CON group) was injected into the uterine horns. Eight days later, severe acute endometritis developed in the E. coli group. Endometrial explants were incubated with noradrenaline and/or α1-, α2- and β-AR antagonists. In the CON group, noradrenaline did not significantly change PTGS-2 and mPTGES-1 protein expression and increased PGE2 secretion compared to the control values (untreated tissue). In the E. coli group, both enzyme expression and PGE2 release were stimulated by noradrenaline, and these values were higher versus the CON group. The antagonists of α1- and α2-AR isoforms and β-AR subtypes do not significantly alter the noradrenaline effect on PTGS-2 and mPTGES-1 protein levels in the CON group, compared to noradrenaline action alone. In this group, α1A-, α2B- and β2-AR antagonists partly eliminated noradrenaline-stimulated PGE2 release. Compared to the noradrenaline effect alone, α1A-, α1B-, α2A-, α2B-, β1-, β2- and β3-AR antagonists together with noradrenaline reduced PTGS-2 protein expression in the E. coli group. Such effects were also exerted in this group by α1A-, α1D-, α2A-, β2- and β3-AR antagonists with noradrenaline on mPTGES-1 protein levels. In the E. coli group, the antagonists of all isoforms of α1-ARs and subtypes of β-ARs as well as α2A-ARs together with noradrenaline decreased PGE2 secretion versus noradrenaline action alone. Summarizing, in the inflamed pig endometrium, α1(A, B)-, α2(A, B)- and β(1, 2, 3)-ARs mediate the noradrenaline stimulatory effect on PTGE-2 protein expression, while noradrenaline via α1(A, D)-, α2A- and β(2, 3)-ARs increases mPTGES-1 protein expression and α1(A, B, D)-, α2A- and β(1, 2, 3)-ARs are involved in PGE2 release. Data suggest that noradrenaline may indirectly affect the processes regulated by PGE2 by influencing its production. Pharmacological modulation of particular AR isoforms/subtypes can be used to change PGE2 synthesis/secretion to alleviate inflammation and improve uterine function. Full article
Show Figures

Figure 1

16 pages, 606 KB  
Review
Microsomal Prostaglandin E Synthase-1 and -2: Emerging Targets in Non-Alcoholic Fatty Liver Disease
by Dimitrios Kotsos and Konstantinos Tziomalos
Int. J. Mol. Sci. 2023, 24(3), 3049; https://doi.org/10.3390/ijms24033049 - 3 Feb 2023
Cited by 4 | Viewed by 4396
Abstract
Nonalcoholic fatty liver disease (NAFLD) affects a substantial proportion of the general population and is even more prevalent in obese and diabetic patients. NAFLD, and particularly the more advanced manifestation of the disease, nonalcoholic steatohepatitis (NASH), increases the risk for both liver-related and [...] Read more.
Nonalcoholic fatty liver disease (NAFLD) affects a substantial proportion of the general population and is even more prevalent in obese and diabetic patients. NAFLD, and particularly the more advanced manifestation of the disease, nonalcoholic steatohepatitis (NASH), increases the risk for both liver-related and cardiovascular morbidity. The pathogenesis of NAFLD is complex and multifactorial, with many molecular pathways implicated. Emerging data suggest that microsomal prostaglandin E synthase-1 and -2 might participate in the development and progression of NAFLD. It also appears that targeting these enzymes might represent a novel therapeutic approach for NAFLD. In the present review, we discuss the association between microsomal prostaglandin E synthase-1 and -2 and NAFLD. Full article
Show Figures

Figure 1

12 pages, 1219 KB  
Article
Green, Black and Rooibos Tea Inhibit Prostaglandin E2 Formation in Human Monocytes by Inhibiting Expression of Enzymes in the Prostaglandin E2 Pathway
by Alexander Hedbrant, Ingrid Persson, Ann Erlandsson and Jonny Wijkander
Molecules 2022, 27(2), 397; https://doi.org/10.3390/molecules27020397 - 8 Jan 2022
Cited by 10 | Viewed by 3075
Abstract
The formation of prostaglandin E2 (PGE2) is associated with adverse inflammatory effects. However, long-term treatment with nonsteroidal anti-inflammatory drugs (NSAIDs) comes with risk of severe side effects. Therefore, alternative ways to inhibit PGE2 are warranted. We have investigated the effects of tea extracts [...] Read more.
The formation of prostaglandin E2 (PGE2) is associated with adverse inflammatory effects. However, long-term treatment with nonsteroidal anti-inflammatory drugs (NSAIDs) comes with risk of severe side effects. Therefore, alternative ways to inhibit PGE2 are warranted. We have investigated the effects of tea extracts and the polyphenols epigallocatechin gallate (EGCG) and quercetin on PGE2 formation, determined by immunoassay, and protein expression, determined by immunoblotting, of cytosolic phospholipase A2 (cPLA2), cyclooxygenase 2 (COX-2) and microsomal PGE synthase-1 (mPGES-1) in human monocytes. Green and black tea extracts, and with a lower potency, Rooibos tea extract, inhibited lipopolysaccharide (LPS) and calcium ionophore-induced PGE2 formation. In addition, all tea extracts inhibited the LPS-induced expression of mPGES-1, and the green and black tea extracts also inhibited, to a lesser extent, COX-2 expression. The tea extracts only marginally reduced cPLA2 expression and had no effect on COX-1 expression. EGCG, present in green and black tea, and quercetin, present in all three teas, also inhibited PGE2 formation and expression of mPGES-1, COX-2 and cPLA2. Cell-based and cell-free assays were also performed to evaluate direct effects on the enzymatic activity of COX and PGE synthases. Mainly, the cell-free assay demonstrated partial inhibition by the tea extracts and polyphenols. However, the inhibition required higher doses compared to the effects demonstrated on protein expression. In conclusion, green and black tea, and to a lesser extent Rooibos tea, are potent inhibitors of PGE2 formation in human monocytes, and mediate their effects by inhibiting the expression of the enzymes responsible for PGE2 formation, especially mPGES-1. Full article
Show Figures

Figure 1

20 pages, 3044 KB  
Article
The Effect of Age and Intrinsic Aerobic Exercise Capacity on the Expression of Inflammation and Remodeling Markers in Rat Achilles Tendons
by Runa Kinitz, Estelle Heyne, Lauren G. Koch, Steven L. Britton, Manuela Thierbach and Britt Wildemann
Int. J. Mol. Sci. 2022, 23(1), 79; https://doi.org/10.3390/ijms23010079 - 22 Dec 2021
Cited by 7 | Viewed by 4585
Abstract
Old age, adiposity, and metabolic disorders are known as risk factors for chronic tendinopathy, which is a common problem in both athletes and the general population. However, the importance of these influencing factors has not yet been well understood. This study investigated alterations [...] Read more.
Old age, adiposity, and metabolic disorders are known as risk factors for chronic tendinopathy, which is a common problem in both athletes and the general population. However, the importance of these influencing factors has not yet been well understood. This study investigated alterations in gene expression and histology of Achilles tendons of young (10 weeks) and old (100 weeks) rats bred for low (low capacity runners, LCR) and high (high capacity runners, HCR) intrinsic aerobic exercise capacity. In this rat model, LCR displayed a phenotype of reduced exercise capacity, higher body weight, and metabolic dysfunctions compared to HCR. We hypothesized that the risk factors for tendinopathy in old LCR could lead to more pronounced impairments in Achilles tendon tissue. In quantitative real-time PCR (qPCR), age-related downregulation of tenocyte markers e.g., tenomodulin, genes related to matrix modeling and remodeling (e.g., collagens, elastin, biglycan, fibronectin, tenascin C) as well as transforming growth factor beta 3 (Tgfb3) have been detected. Inflammation marker cyclooxygenase 2 (Cox2) was downregulated in old rats, while microsomal prostaglandin E synthase 2 (Ptges2) was upregulated in old HCR and old LCR. In all groups, interleukin 6 (Il6), interleukin 1 beta (Il1b), and tumor necrosis factor alpha (Tnfa) showed no significant alteration. In histological evaluation, tendons of old rats had fewer and more elongated tenocyte nuclei than young rats. Even though a higher content of glycosaminoglycans, a sign of degeneration, was found in old HCR and LCR, no further signs of tendinopathy were detectable in tendons of old rats by histological evaluation. Low intrinsic aerobic exercise capacity and the associated phenotype did not show significant effects on gene expression and tendon histology. These findings indicate that aging seems to play a prominent role in molecular and structural alterations of Achilles tendon tissue and suggests that other risk factors associated with intrinsic aerobic exercise capacity are less influential in this rat model. Full article
(This article belongs to the Special Issue Research Progress on Molecular Repair of Tendon/Ligament)
Show Figures

Graphical abstract

17 pages, 2796 KB  
Article
A Metalloproteinase Induces an Inflammatory Response in Preadipocytes with the Activation of COX Signalling Pathways and Participation of Endogenous Phospholipases A2
by Priscila Motta Janovits, Elbio Leiguez, Viviane Portas and Catarina Teixeira
Biomolecules 2021, 11(7), 921; https://doi.org/10.3390/biom11070921 - 22 Jun 2021
Cited by 6 | Viewed by 3178
Abstract
Matrix metalloproteinases (MMPs) are proteolytic enzymes that have been associated with the pathogenesis of inflammatory diseases and obesity. Adipose tissue in turn is an active endocrine organ capable of secreting a range of proinflammatory mediators with autocrine and paracrine properties, which contribute to [...] Read more.
Matrix metalloproteinases (MMPs) are proteolytic enzymes that have been associated with the pathogenesis of inflammatory diseases and obesity. Adipose tissue in turn is an active endocrine organ capable of secreting a range of proinflammatory mediators with autocrine and paracrine properties, which contribute to the inflammation of adipose tissue and adjacent tissues. However, the potential inflammatory effects of MMPs in adipose tissue cells are still unknown. This study investigates the effects of BmooMPα-I, a single-domain snake venom metalloproteinase (SVMP), in activating an inflammatory response by 3T3-L1 preadipocytes in culture, focusing on prostaglandins (PGs), cytokines, and adipocytokines biosynthesis and mechanisms involved in prostaglandin E2 (PGE2) release. The results show that BmooMPα-I induced the release of PGE2, prostaglandin I2 (PGI2), monocyte chemoattractant protein-1 (MCP-1), and adiponectin by preadipocytes. BmooMPα-I-induced PGE2 biosynthesis was dependent on group-IIA-secreted phospholipase A2 (sPLA2-IIA), cytosolic phospholipase A2-α (cPLA2-α), and cyclooxygenase (COX)-1 and -2 pathways. Moreover, BmooMPα-I upregulated COX-2 protein expression but not microsomal prostaglandin E synthase-1 (mPGES-1) expression. In addition, we demonstrate that the enzymatic activity of BmooMPα-I is essential for the activation of prostanoid synthesis pathways in preadipocytes. These data highlight preadipocytes as important targets for metalloproteinases and provide new insights into the contribution of these enzymes to the inflammation of adipose tissue and tissues adjacent to it. Full article
(This article belongs to the Collection Bioactive Lipids in Inflammation, Diabetes and Cancer)
Show Figures

Figure 1

16 pages, 2416 KB  
Article
Effects of a Novel GPR55 Antagonist on the Arachidonic Acid Cascade in LPS-Activated Primary Microglial Cells
by Soraya Wilke Saliba, Franziska Gläser, Anke Deckers, Albrecht Keil, Thomas Hurrle, Matthias Apweiler, Florian Ferver, Nicole Volz, Dominique Endres, Stefan Bräse and Bernd L. Fiebich
Int. J. Mol. Sci. 2021, 22(5), 2503; https://doi.org/10.3390/ijms22052503 - 2 Mar 2021
Cited by 23 | Viewed by 4487
Abstract
Neuroinflammation is a crucial process to maintain homeostasis in the central nervous system (CNS). However, chronic neuroinflammation is detrimental, and it is described in the pathogenesis of CNS disorders, including Alzheimer’s disease (AD) and depression. This process is characterized by the activation of [...] Read more.
Neuroinflammation is a crucial process to maintain homeostasis in the central nervous system (CNS). However, chronic neuroinflammation is detrimental, and it is described in the pathogenesis of CNS disorders, including Alzheimer’s disease (AD) and depression. This process is characterized by the activation of immune cells, mainly microglia. The role of the orphan G-protein-coupled receptor 55 (GPR55) in inflammation has been reported in different models. However, its role in neuroinflammation in respect to the arachidonic acid (AA) cascade in activated microglia is still lacking of comprehension. Therefore, we synthesized a novel GPR55 antagonist (KIT 10, 0.1–25 µM) and tested its effects on the AA cascade in lipopolysaccharide (LPS, 10 ng / mL)-treated primary rat microglia using Western blot and EIAs. We show here that KIT 10 potently prevented the release of prostaglandin E2 (PGE2), reduced microsomal PGE2 synthase (mPGES-1) and cyclooxygenase-2 (COX-2) synthesis, and inhibited the phosphorylation of Ikappa B-alpha (IκB-α), a crucial upstream step of the inflammation-related nuclear factor-kappaB (NF-κB) signaling pathway. However, no effects were observed on COX-1 and -2 activities and mitogen-activated kinases (MAPK). In summary, the novel GPR55 receptor antagonist KIT 10 reduces neuroinflammatory parameters in microglia by inhibiting the COX-2/PGE2 pathway. Further experiments are necessary to better elucidate its effects and mechanisms. Nevertheless, the modulation of inflammation by GPR55 might be a new therapeutic option to treat CNS disorders with a neuroinflammatory background such as AD or depression. Full article
Show Figures

Graphical abstract

19 pages, 4919 KB  
Article
Microsomal Prostaglandin E Synthase-1 Deficiency Exacerbates Pulmonary Fibrosis Induced by Bleomycin in Mice
by Bo Wei, Linhong Cai, Dan Sun, Yanhua Wang, Cairui Wang, Xiaoyu Chai, Feng Xie, Ming Su, Fangrui Ding, Jie Liu, Jichun Yang, Youfei Guan and Xinmin Liu
Molecules 2014, 19(4), 4967-4985; https://doi.org/10.3390/molecules19044967 - 21 Apr 2014
Cited by 13 | Viewed by 8565
Abstract
Microsomal prostaglandin E2 synthase-1 (mPGES-1), an inducible enzyme that converts prostaglandin H2 (PGH2) to prostaglandin E2 (PGE2), plays an important role in a variety of diseases. So far, the role of mPGES-1 in idiopathic pulmonary fibrosis (IPF) remained unknown. [...] Read more.
Microsomal prostaglandin E2 synthase-1 (mPGES-1), an inducible enzyme that converts prostaglandin H2 (PGH2) to prostaglandin E2 (PGE2), plays an important role in a variety of diseases. So far, the role of mPGES-1 in idiopathic pulmonary fibrosis (IPF) remained unknown. The current study aimed to investigate the role of mPGES-1 in pulmonary fibrosis induced by bleomycin in mice. We found that mPGES-1 deficient (mPGES-1/−) mice exhibited more severe fibrotic lesions with a decrease in PGE2 content in lungs after bleomycin treatment when compared with wild type (mPGES-1+/+) mice. The mPGES-1 expression levels and PGE2 content were also decreased in bleomycin-treated mPGES-1+/+ mice compared to saline-treated mPGES-1+/+ mice. Moreover, in both mPGES-1/− and mPGES-1+/+ mice, bleomycin treatment reduced the expression levels of E prostanoid receptor 2 (EP2) and EP4 receptor in lungs, whereas had little effect on EP1 and EP3. In cultured human lung fibroblast cells (MRC-5), siRNA-mediated knockdown of mPGES-1 augmented transforming growth factor-β1 (TGF-β1)-induced α-smooth muscle actin (α-SMA) protein expression, and the increase was reversed by treatment of PGE2, selective EP2 agonist and focal adhesion kinase (FAK) inhibitor. In conclusion, these findings revealed mPGES-1 exerts an essential effect against pulmonary fibrogenesis via EP2-mediated signaling transduction, and activation of mPGES-1-PGE2-EP2-FAK signaling pathway may represent a new therapeutic strategy for treatment of IPF patients. Full article
Show Figures

Figure 1

Back to TopTop