Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (54)

Search Parameters:
Keywords = microfluidic disc

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 8033 KB  
Review
The Application of Microfluidics in Traditional Chinese Medicine Research
by Shanxi Zhu, Xuanqi Ke, Yayuan Li, Zixuan Shu, Jiale Zheng, Zihan Xue, Wuzhen Qi and Bing Xu
Biosensors 2025, 15(12), 770; https://doi.org/10.3390/bios15120770 - 25 Nov 2025
Viewed by 770
Abstract
Microfluidics enables precise manipulation of scarce Traditional Chinese Medicine (TCM) samples while accelerating analysis and enhancing sensitivity. Device-level structures explain these gains: staggered herringbone and serpentine mixers overcome low-Reynolds-number constraints to shorten diffusion distances and reduce incubation time; flow-focusing or T-junction droplet generators [...] Read more.
Microfluidics enables precise manipulation of scarce Traditional Chinese Medicine (TCM) samples while accelerating analysis and enhancing sensitivity. Device-level structures explain these gains: staggered herringbone and serpentine mixers overcome low-Reynolds-number constraints to shorten diffusion distances and reduce incubation time; flow-focusing or T-junction droplet generators create one-droplet–one-reaction compartments that suppress cross-talk and support high-throughput screening; “Christmas-tree” gradient generators deliver quantitative dosing landscapes for mechanism-aware assays; micropillar/weir arrays and nanostructured capture surfaces raise surface-to-volume ratios and probe density, improving capture efficiency and limits of detection; porous-membrane, perfused organ-on-a-chip architectures recreate apical–basolateral transport and physiological shear, enabling metabolism-aware pharmacology and predictive toxicology; wax-patterned paper microfluidics (µPADs) use capillary networks for instrument-free metering in field settings; and lab-on-a-disc radial channels/valves exploit centrifugal pumping for parallelised workflows. Framed by key performance indicators—sensitivity (LOD/LOQ), reliability/reproducibility, time-to-result, throughput, sample volume, and sustainability/cost—this review synthesises how such structures translate into value across TCM quality/safety control, toxicology, pharmacology, screening, and delivery. Emphasis on structure–function relationships clarifies where microfluidics most effectively closes gaps between chemical fingerprints and biological potency and indicates practical routes for standardisation and deployment. Full article
(This article belongs to the Special Issue Recent Advances in Biosensors for Pharmaceutical Analysis)
Show Figures

Figure 1

30 pages, 6686 KB  
Article
Interplay of the Mass Transport and Reaction Kinetics for Lateral Flow Immunoassay Integrated on Lab-on-Disc
by Snehan Peshin, Anthony Gavin, Nakajima Rie, Aarti Jain, Philip Felgner, Marc J. Madou and Lawrence Kulinsky
Sensors 2025, 25(20), 6271; https://doi.org/10.3390/s25206271 - 10 Oct 2025
Viewed by 882
Abstract
Lateral Flow Assays (LFAs) are ubiquitous test platforms due to their affordability and simplicity but are often limited by low sensitivity and lack of flow control. The present work demonstrates the combination of LFAs with centrifugal microfluidic platforms that allows for enhancement of [...] Read more.
Lateral Flow Assays (LFAs) are ubiquitous test platforms due to their affordability and simplicity but are often limited by low sensitivity and lack of flow control. The present work demonstrates the combination of LFAs with centrifugal microfluidic platforms that allows for enhancement of LFAs’ sensitivity via the increase in the dwell time of the analyte at the test line as well as by passing a larger sample volume through the LFA strip. The rate of advancement of the liquid front in the radially positioned NC strip is retarded by the centrifugal force generated on spinning disc; therefore, the dwell time of the liquid front above the test line of LFA is increased. Additionally, integrating a waste reservoir enables passive replenishment of additional sample volume increases total probed volume by approximately 20% (from 50 μL to 60 μL). Comprehensive analysis, including COMSOL multiphysics simulation, was performed to deduce the importance of parameters such as channel height (100–300 μm), disc spin rate (0–2000 rpm), and reaction kinetics (fast vs. slow binding kinetics). The analysis was validated by the experimental observation of the slower-reacting CD79b protein on the test strip. For slower-reacting targets like CD79b, fluorescence intensity increased by ~40% compared to the static LFA. A new merit number, TRc (Transport Reaction Constant), is introduced, which refines the traditional Damköhler number (Da) by including the thickness of the liquid layer (such as the height of the microchannel), which affects the final sensitivity of the assays and is designed to reflect the role channel height plays for surface-based assays (in contrast to the bulk assays). Full article
(This article belongs to the Special Issue Sensors and Actuators for Lab-on-Chip Applications)
Show Figures

Figure 1

16 pages, 6549 KB  
Article
Integrated High-Throughput Centrifugal Microfluidic Chip Device for Pathogen Detection On-Site
by Shuyu Lu, Yuanzhan Yang, Siqi Cui, Anyi Li, Cheng Qian and Xiaoqiong Li
Biosensors 2024, 14(6), 313; https://doi.org/10.3390/bios14060313 - 19 Jun 2024
Cited by 9 | Viewed by 3344
Abstract
An integrated and high-throughput device for pathogen detection is crucial in point-of-care testing (POCT), especially for early diagnosis of infectious diseases and preventing the spread of infection. We developed an on-site testing platform that utilizes a centrifugal microfluidic chip and automated device to [...] Read more.
An integrated and high-throughput device for pathogen detection is crucial in point-of-care testing (POCT), especially for early diagnosis of infectious diseases and preventing the spread of infection. We developed an on-site testing platform that utilizes a centrifugal microfluidic chip and automated device to achieve high-throughput detection. The low-power (<32 W), portable (220 mm × 220 mm × 170 mm, 4 kg) device can complete bacterial lysis, nucleic acid extraction and purification, loop-mediated isothermal amplification (LAMP) reaction, and real-time fluorescence detection. Magnetic beads for nucleic acid adsorption can be mixed by applying electromagnetic fields and centrifugal forces, and the efficiency of nucleic acid extraction is improved by 60% compared to the no-mixing group. The automated nucleic acid extraction process achieves equivalent nucleic acid extraction efficiency in only 40% of the time consumed using the kit protocol. By designing the valve system and disc layout, the maximum speed required for the centrifugal microfluidic chip is reduced to 1500 rpm, greatly reducing the equipment power consumption and size. In detecting E. coli, our platform achieves a limit of detection (LOD) of 102 CFU/mL in 60 min. In summary, our active centrifugal microfluidic platform provides a solution for the integration of complex biological assays on turntables, with great potential in the application of point-of-care diagnosis. Full article
(This article belongs to the Special Issue Biosensing Technologies in Medical Diagnosis)
Show Figures

Figure 1

17 pages, 8404 KB  
Article
Measurement of Zinc Ions in Seawater Samples Using a Microfluidic System Based on the GR/CeO2/Nafion Material
by Wei Tao, Zexi Zeng, Chengjun Qiu, Wei Qu, Yuan Zhuang, Yang Gu, Huili Hao and Zizi Zhao
Molecules 2024, 29(12), 2867; https://doi.org/10.3390/molecules29122867 - 16 Jun 2024
Cited by 1 | Viewed by 4403
Abstract
Considering that heavy-metal contamination of seawater is getting worse, building a quick, accurate and portable device for detecting trace zinc in seawater in real time would be very beneficial. In this work, a microfluidic system was developed that includes a planar disc electrode, [...] Read more.
Considering that heavy-metal contamination of seawater is getting worse, building a quick, accurate and portable device for detecting trace zinc in seawater in real time would be very beneficial. In this work, a microfluidic system was developed that includes a planar disc electrode, a micro-cavity for detection, an electrochemical workstation, a computer, a container for waste liquid reprocessing, an external pipeline and other components as well as a graphene/cerium oxide/nano-cerium oxide/Nafion composite membrane was used to modify the planar disc electrode (GR/CeO2/Nafion/Au) to investigate the electrochemical behaviour of Zn(II) using cyclic voltammetry, square-wave voltammetry and orthogonal test methods. Under optimal experimental conditions, the peak reaction current of Zn(II) showed a good linear relationship with the concentration of Zn(II) in the range of 1–900 μg/L with a correlation coefficient of 0.998, and the detection limit of the method was 0.87 μg/L. In addition, the microfluidic system had good stability, reproducibility and anti-interference. The system was used for determining zinc ions in real seawater samples, and the results were very similar to those of inductively coupled plasma–emission spectrometry, demonstrating the practicality of the system for the detection of trace zinc. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

13 pages, 2754 KB  
Article
Long-Term Detection of Glycemic Glucose/Hypoglycemia by Microfluidic Sweat Monitoring Patch
by Wenjie Xu, Lei Lu, Yuxin He, Lin Cheng and Aiping Liu
Biosensors 2024, 14(6), 294; https://doi.org/10.3390/bios14060294 - 5 Jun 2024
Cited by 3 | Viewed by 3276
Abstract
A microfluidic sweat monitoring patch that collects human sweat for a long time is designed to achieve the effect of detecting the rise and fall of human sweat glucose over a long period of time by increasing the use time of a single [...] Read more.
A microfluidic sweat monitoring patch that collects human sweat for a long time is designed to achieve the effect of detecting the rise and fall of human sweat glucose over a long period of time by increasing the use time of a single patch. Five collection pools, four serpentine channels, and two different valves are provided. Among them, the three-dimensional valve has a large burst pressure as a balance between the internal and external air pressures of the patch. The bursting pressure of the two-dimensional diverter valve is smaller than that of the three-dimensional gas valve, and its role is to control the flow direction of the liquid. Through plasma hydrophilic treatment of different durations, the optimal hydrophilic duration is obtained. The embedded chromogenic disc detects the sweat glucose value at two adjacent time intervals and compares the information of the human body to increase or reduce glucose. The patch has good flexibility and can fit well with human skin, and because polydimethylsiloxane (PDMS) has good light transmission, it reduces the measurement error caused by the color-taking process and makes the detection results more accurate. Full article
Show Figures

Figure 1

13 pages, 3299 KB  
Article
An Integrated ddPCR Lab-on-a-Disc Device for Rapid Screening of Infectious Diseases
by Wanyi Zhang, Lili Cui, Yuye Wang, Zhenming Xie, Yuanyuan Wei, Shaodi Zhu, Mehmood Nawaz, Wing-Cheung Mak, Ho-Pui Ho, Dayong Gu and Shuwen Zeng
Biosensors 2024, 14(1), 2; https://doi.org/10.3390/bios14010002 - 21 Dec 2023
Cited by 12 | Viewed by 4270
Abstract
Digital droplet PCR (ddPCR) is a powerful amplification technique for absolute quantification of viral nucleic acids. Although commercial ddPCR devices are effective in the lab bench tests, they cannot meet current urgent requirements for on-site and rapid screening for patients. Here, we have [...] Read more.
Digital droplet PCR (ddPCR) is a powerful amplification technique for absolute quantification of viral nucleic acids. Although commercial ddPCR devices are effective in the lab bench tests, they cannot meet current urgent requirements for on-site and rapid screening for patients. Here, we have developed a portable and fully integrated lab-on-a-disc (LOAD) device for quantitively screening infectious disease agents. Our designed LOAD device has integrated (i) microfluidics chips, (ii) a transparent circulating oil-based heat exchanger, and (iii) an on-disc transmitted-light fluorescent imaging system into one compact and portable box. Thus, droplet generation, PCR thermocycling, and analysis can be achieved in a single LOAD device. This feature is a significant attribute for the current clinical application of disease screening. For this custom-built ddPCR setup, we have first demonstrated the loading and ddPCR amplification ability by using influenza A virus-specific DNA fragments with different concentrations (diluted from the original concentration to 107 times), followed by analyzing the droplets with an external fluorescence microscope as a standard calibration test. The measured DNA concentration is linearly related to the gradient–dilution factor, which validated the precise quantification for the samples. In addition to the calibration tests using DNA fragments, we also employed this ddPCR-LOAD device for clinical samples with different viruses. Infectious samples containing five different viruses, including influenza A virus (IAV), respiratory syncytial virus (RSV), varicella zoster virus (VZV), Zika virus (ZIKV), and adenovirus (ADV), were injected into the device, followed by analyzing the droplets with an external fluorescence microscope with the lowest detected concentration of 20.24 copies/µL. Finally, we demonstrated the proof-of-concept detection of clinical samples of IAV using the on-disc fluorescence imaging system in our fully integrated device, which proves the capability of this device in clinical sample detection. We anticipate that this integrated ddPCR-LOAD device will become a flexible tool for on-site disease detection. Full article
(This article belongs to the Section Biosensors and Healthcare)
Show Figures

Figure 1

12 pages, 2645 KB  
Article
An Automated Centrifugal Microfluidic Platform for Efficient Multistep Blood Sample Preparation and Clean-Up towards Small Ion-Molecule Analysis
by Yuting Hou, Rohit Mishra, Yufeng Zhao, Jens Ducrée and Jed D. Harrison
Micromachines 2023, 14(12), 2257; https://doi.org/10.3390/mi14122257 - 18 Dec 2023
Cited by 1 | Viewed by 3105
Abstract
Sample preparation for mass spectroscopy typically involves several liquid and solid phase clean-ups, extractions, and other unit operations, which are labour-intensive and error-prone. We demonstrate a centrifugal microfluidic platform that automates the whole blood sample’s preparation and clean-up by combining traditional liquid-phase and [...] Read more.
Sample preparation for mass spectroscopy typically involves several liquid and solid phase clean-ups, extractions, and other unit operations, which are labour-intensive and error-prone. We demonstrate a centrifugal microfluidic platform that automates the whole blood sample’s preparation and clean-up by combining traditional liquid-phase and multiple solid-phase extractions for applications in mass spectroscopy (MS)-based small molecule detection. Liquid phase extraction was performed using methanol to precipitate proteins in plasma separated from a blood sample under centrifugal force. The preloaded solid phase composed of C18 beads then removed lipids with a combination of silica particles, which further cleaned up any remaining proteins. We further integrated the application of this sample prep disc with matrix-assisted laser desorption/ionization (MALDI) MS by using glancing angle deposition films, which further cleaned up the processed sample by segregating the electrolyte background from the sample salts. Additionally, hydrophilic interaction liquid chromatography (HILIC) MS was employed for detecting targeted free amino acids. Therefore, several representative ionic metabolites, including several amino acids and organic acids from blood samples, were analysed by both MALDI-MS and HILIC-MS to demonstrate the performance of this sample preparation disc. The fully automated blood sample preparation procedure only took 35 mins, with a throughput of three parallel units. Full article
(This article belongs to the Section B:Biology and Biomedicine)
Show Figures

Figure 1

16 pages, 2315 KB  
Article
Disposable Microfluidic Paper-Based Device for On-Site Quantification of Urinary Creatinine
by Maria M. P. Melo, Ana Machado, António O. S. S. Rangel and Raquel B. R. Mesquita
Chemosensors 2023, 11(7), 368; https://doi.org/10.3390/chemosensors11070368 - 29 Jun 2023
Cited by 9 | Viewed by 3456
Abstract
In this work, a new microfluidic paper-based analytical device (µPAD) was developed for on-hand creatinine quantification in urine samples. When compared to conventional methods, this innovative paper device is more accessible and portable, it provides low-cost analysis (cost of consumables of 40 cents), [...] Read more.
In this work, a new microfluidic paper-based analytical device (µPAD) was developed for on-hand creatinine quantification in urine samples. When compared to conventional methods, this innovative paper device is more accessible and portable, it provides low-cost analysis (cost of consumables of 40 cents), and it is applicable to non-invasive biological fluids. Furthermore, the paper-based approach is used within an environmentally friendly assembly with no need for wax printing and small amounts of reagents resulting in low waste production and easy disposal by incineration. Its assembly method includes cutting paper discs arranged into several reading units within a plastic pouch, enabling effective creatinine quantification with accuracy based on a vertical flow approach. The method is based on the colourimetric reaction between creatinine and alkaline picric acid, where the solution colour changes from yellow to orange/red. Under optimal conditions, the developed method allowed creatinine quantification in the dynamic range of 2.20–35.0 mg/dL, with a limit of detection (LOD) of 0.66 mg/dL and a limit of quantification (LOQ) of 2.20 mg/dL. The colour intensity developed was processed in ImageJ software, based on digital image scanning, performed in 20 min (up to 4 h) after the sample insertion. The device is stable for up to one week when stored in a vacuum at 4 °C. The method was validated by comparing the results with a batch-wise procedure, where there were no statistically significant differences between both methods. Full article
Show Figures

Graphical abstract

15 pages, 4640 KB  
Article
Dissolvable Film-Controlled Buoyancy Pumping and Aliquoting on a Lab-On-A-Disc
by Niamh A. Kilcawley, Toni C. Voebel, Philip L. Early, Niamh A. McArdle, Marine Renou, Jeanne Rio, Godefroi Saint-Martin, Macdara T. Glynn, Daniel Zontar, Christian Brecher, Jens Ducrée and David J. Kinahan
Processes 2023, 11(1), 128; https://doi.org/10.3390/pr11010128 - 1 Jan 2023
Cited by 5 | Viewed by 2894
Abstract
Lab-on-a-Disc (LoaD) has great potential for applications in decentralised bioanalytical testing where speed and robustness are critical. Here, a disc-shaped microfluidic chip is rotated to pump liquid radially outwards; thus, all microfluidic structures must be fitted into the available radial length. To overcome [...] Read more.
Lab-on-a-Disc (LoaD) has great potential for applications in decentralised bioanalytical testing where speed and robustness are critical. Here, a disc-shaped microfluidic chip is rotated to pump liquid radially outwards; thus, all microfluidic structures must be fitted into the available radial length. To overcome this limitation, several centripetal pumping technologies have been developed. In this work, we combine buoyancy pumping, enabled by displacing aqueous samples and reagents centripetally inwards by a dense liquid (fluorocarbon FC-40), with dissolvable film (DF) to automate a multi-step assay. The DF dissolves in the presence of water but is not in contact with the FC-40. Therefore, the FC-40 can be stored behind the DF membranes and is autonomously released by contact with the arriving aqueous sample. Using this technology, tasks such as blood centrifugation can be located on the disc periphery where ‘disc real estate’ is less valuable and centrifugal forces are higher. To demonstrate this, we use the combination of the buoyancy-driven centripetal pumping with DF barriers to implement a fully automated multi-parameter diagnostic assay on the LoaD platform. The implemented steps include plasma extraction from a structure, automatically triggered metering/aliquoting, and the management of five onboard stored liquid reagents. Critically, we also demonstrate highly accurate aliquoting of reagents using centripetal pumping. We also provide a mathematical model to describe the pumping mechanism and apply lumped-element modelling and Monte Carlo simulation to estimate errors in the aliquoting volumes caused by manufacturing deviations. Full article
(This article belongs to the Special Issue Advances in Microfluidics Technology for Diagnostics and Detection)
Show Figures

Figure 1

36 pages, 8224 KB  
Review
Microvalves for Applications in Centrifugal Microfluidics
by Snehan Peshin, Marc Madou and Lawrence Kulinsky
Sensors 2022, 22(22), 8955; https://doi.org/10.3390/s22228955 - 18 Nov 2022
Cited by 17 | Viewed by 6703
Abstract
Centrifugal microfluidic platforms (CDs) have opened new possibilities for inexpensive point-of-care (POC) diagnostics. They are now widely used in applications requiring polymerase chain reaction steps, blood plasma separation, serial dilutions, and many other diagnostic processes. CD microfluidic devices allow a variety of complex [...] Read more.
Centrifugal microfluidic platforms (CDs) have opened new possibilities for inexpensive point-of-care (POC) diagnostics. They are now widely used in applications requiring polymerase chain reaction steps, blood plasma separation, serial dilutions, and many other diagnostic processes. CD microfluidic devices allow a variety of complex processes to transfer onto the small disc platform that previously were carried out by individual expensive laboratory equipment requiring trained personnel. The portability, ease of operation, integration, and robustness of the CD fluidic platforms requires simple, reliable, and scalable designs to control the flow of fluids. Valves play a vital role in opening/closing of microfluidic channels to enable a precise control of the flow of fluids on a centrifugal platform. Valving systems are also critical in isolating chambers from the rest of a fluidic network at required times, in effectively directing the reagents to the target location, in serial dilutions, and in integration of multiple other processes on a single CD. In this paper, we review the various available fluidic valving systems, discuss their working principles, and evaluate their compatibility with CD fluidic platforms. We categorize the presented valving systems into either “active”, “passive”, or “hybrid”—based on their actuation mechanism that can be mechanical, thermal, hydrophobic/hydrophilic, solubility-based, phase-change, and others. Important topics such as their actuation mechanism, governing physics, variability of performance, necessary disc spin rate for valve actuation, valve response time, and other parameters are discussed. The applicability of some types of valves for specialized functions such as reagent storage, flow control, and other applications is summarized. Full article
(This article belongs to the Special Issue State-of-the-Art Lab-on-a-Chip Technology)
Show Figures

Figure 1

15 pages, 3646 KB  
Article
Engineered Human Intervertebral Disc Model Inducing Degenerative Microglial Proinflammation
by Min-Ho Hwang, You Jung Kang, Hyeong-Guk Son, Hansang Cho and Hyuk Choi
Int. J. Mol. Sci. 2022, 23(20), 12216; https://doi.org/10.3390/ijms232012216 - 13 Oct 2022
Cited by 1 | Viewed by 2726
Abstract
Degeneration of the intervertebral disc (IVD) is a major contributor to low back pain (LBP). IVD degeneration is characterized by abnormal production of inflammatory cytokines secreted by IVD cells. Although the underlying molecular mechanisms of LBP have not been elucidated, increasing evidence suggests [...] Read more.
Degeneration of the intervertebral disc (IVD) is a major contributor to low back pain (LBP). IVD degeneration is characterized by abnormal production of inflammatory cytokines secreted by IVD cells. Although the underlying molecular mechanisms of LBP have not been elucidated, increasing evidence suggests that LBP is associated particularly with microglia in IVD tissues and the peridiscal space, aggravating the cascade of degenerative events. In this study, we implemented our microfluidic chemotaxis platform to investigate microglial inflammation in response to our reconstituted degenerative IVD models. The IVD models were constructed by stimulating human nucleus pulposus (NP) cells with interleukin-1β and producing interleukin-6 (129.93 folds), interleukin-8 (18.31 folds), C-C motif chemokine ligand-2 (CCL-2) (6.12 folds), and CCL-5 (5.68 folds). We measured microglial chemotaxis (p < 0.05) toward the conditioned media of the IVD models. In addition, we observed considerable activation of neurodegenerative and deactivation of protective microglia via upregulated expression of CD11b (p < 0.001) and down-regulation of CD206 protein (p < 0.001) by soluble factors from IVD models. This, in turn, enhances the inflammatory milieu in IVD tissues, causing matrix degradation and cellular damage. Our findings indicate that degenerative IVD may induce degenerative microglial proinflammation, leading to LBP development. Full article
(This article belongs to the Special Issue Advances in Organ-on-Chip)
Show Figures

Figure 1

13 pages, 3245 KB  
Article
An Asymmetric Microfluidic/Chitosan Device for Sustained Drug Release in Guided Bone Regeneration Applications
by Xin Shi, Beibei Ma, Hongyu Chen, Wei Tan, Shiqing Ma and Guorui Zhu
Biosensors 2022, 12(10), 847; https://doi.org/10.3390/bios12100847 - 9 Oct 2022
Cited by 4 | Viewed by 2634
Abstract
One of the major challenges of guided bone regeneration (GBR) is infections caused by pathogen colonization at wound sites. In this paper, an asymmetric microfluidic/chitosan device was developed to release drugs to inhibit infections and to ensure that guided bone regeneration can be [...] Read more.
One of the major challenges of guided bone regeneration (GBR) is infections caused by pathogen colonization at wound sites. In this paper, an asymmetric microfluidic/chitosan device was developed to release drugs to inhibit infections and to ensure that guided bone regeneration can be realized. The microfluidic technique was introduced into the GBR membrane for the first time, which demonstrated more controllable drug release, more flexible clinical use and had a lower cost compared with surface treatments and embedded nanoparticles. Based on the theory of diffusion and Fick’s first law, the contact area and concentration gradient were adjusted to realize sustained drug release. The standard deviation of minocycline release over 5 days was only 12.7%, which was lower than the joint effect of porous chitosan discs and nanospheres. The in vitro experiments against E. coli and Streptococcus mutans showed the excellent antibacterial performance of the device (>95%). The in vitro experiments for fibroblasts at the microfluidic side and osteoblasts at the chitosan side showed the satisfactory biocompatibility and the ability of the device to enhance bone regeneration. Therefore, this microfluidic/chitosan device is a promising therapeutic approach to prevent infection and guide bone regeneration. Full article
(This article belongs to the Special Issue Microfluidics for Biomedical Applications)
Show Figures

Figure 1

14 pages, 1855 KB  
Article
Rapid Microchip Electrophoretic Separation of Novel Transcriptomic Body Fluid Markers for Forensic Fluid Profiling
by Tiffany R. Layne, Renna L. Nouwairi, Rachel Fleming, Haley Blair and James P. Landers
Micromachines 2022, 13(10), 1657; https://doi.org/10.3390/mi13101657 - 1 Oct 2022
Cited by 3 | Viewed by 2858
Abstract
Initial screening of criminal evidence often involves serological testing of stains of unknown composition and/or origin discovered at a crime scene to determine the tissue of origin. This testing is presumptive but critical for contextualizing the scene. Here, we describe a microfluidic approach [...] Read more.
Initial screening of criminal evidence often involves serological testing of stains of unknown composition and/or origin discovered at a crime scene to determine the tissue of origin. This testing is presumptive but critical for contextualizing the scene. Here, we describe a microfluidic approach for body fluid profiling via fluorescent electrophoretic separation of a published mRNA panel that provides unparalleled specificity and sensitivity. This centrifugal microfluidic approach expedites and automates the electrophoresis process by allowing for simple, rotationally driven flow and polymer loading through a 5 cm separation channel; with each disc containing three identical domains, multi-sample analysis is possible with a single disc and multi-sample detection per disc. The centrifugal platform enables a series of sequential unit operations (metering, mixing, aliquoting, heating, storage) to execute automated electrophoretic separation. Results show on-disc fluorescent detection and sizing of amplicons to perform comparably with a commercial ‘gold standard’ benchtop instrument and permitted sensitive, empirical discrimination between five distinct body fluids in less than 10 min. Notably, our microfluidic platform represents a faster, simpler method for separation of a transcriptomic panel to be used for forensically relevant body fluid identification. Full article
(This article belongs to the Special Issue Microfluidics in Analytical Chemistry)
Show Figures

Figure 1

14 pages, 4326 KB  
Article
Microfluidic Electroceuticals Platform for Therapeutic Strategies of Intervertebral Disc Degeneration: Effects of Electrical Stimulation on Human Nucleus Pulposus Cells under Inflammatory Conditions
by Tae-Won Kim, An-Gi Kim, Kwang-Ho Lee, Min-Ho Hwang and Hyuk Choi
Int. J. Mol. Sci. 2022, 23(17), 10122; https://doi.org/10.3390/ijms231710122 - 4 Sep 2022
Cited by 7 | Viewed by 3260
Abstract
The degeneration of an intervertebral disc (IVD) is a major cause of lower back pain. IVD degeneration is characterized by the abnormal expression of inflammatory cytokines and matrix degradation enzymes secreted by IVD cells. In addition, macrophage-mediated inflammation is strongly associated with IVD [...] Read more.
The degeneration of an intervertebral disc (IVD) is a major cause of lower back pain. IVD degeneration is characterized by the abnormal expression of inflammatory cytokines and matrix degradation enzymes secreted by IVD cells. In addition, macrophage-mediated inflammation is strongly associated with IVD degeneration. However, the precise pathomechanisms of macrophage-mediated inflammation in IVD are still unknown. In this study, we developed a microfluidic platform integrated with an electrical stimulation (ES) array to investigate macrophage-mediated inflammation in human nucleus pulposus (NP). This platform provides multiple cocultures of different cell types with ES. We observed macrophage-mediated inflammation and considerable migration properties via upregulated expression of interleukin (IL)-6 (p < 0.001), IL-8 (p < 0.05), matrix metalloproteinase (MMP)-1 (p < 0.05), and MMP-3 (p < 0.05) in human NP cells cocultured with macrophages. We also confirmed the inhibitory effects of ES at 10 μA due to the production of IL-6 (p < 0.05) and IL-8 (p < 0.01) under these conditions. Our findings indicate that ES positively affects degenerative inflammation in diverse diseases. Accordingly, the microfluidic electroceutical platform can serve as a degenerative IVD inflammation in vitro model and provide a therapeutic strategy for electroceuticals. Full article
(This article belongs to the Special Issue Advances in Organ-on-Chip)
Show Figures

Figure 1

16 pages, 3922 KB  
Article
Characterization of a Centrifugal Microfluidic Orthogonal Flow Platform
by Michael Shane Woolf, Leah M. Dignan, Scott M. Karas, Hannah M. Lewis, Kevyn C. Hadley, Aeren Q. Nauman, Marcellene A. Gates-Hollingsworth, David P. AuCoin, Heather R. Green, Geoffrey M. Geise and James P. Landers
Micromachines 2022, 13(3), 487; https://doi.org/10.3390/mi13030487 - 20 Mar 2022
Cited by 3 | Viewed by 4224
Abstract
To bring to bear the power of centrifugal microfluidics on vertical flow immunoassays, control of flow orthogonally through nanoporous membranes is essential. The on-disc approach described here leverages the rapid print-cut-laminate (PCL) disc fabrication and prototyping method to create a permanent seal between [...] Read more.
To bring to bear the power of centrifugal microfluidics on vertical flow immunoassays, control of flow orthogonally through nanoporous membranes is essential. The on-disc approach described here leverages the rapid print-cut-laminate (PCL) disc fabrication and prototyping method to create a permanent seal between disc materials and embedded nanoporous membranes. Rotational forces drive fluid flow, replacing capillary action, and complex pneumatic pumping systems. Adjacent microfluidic features form a flow path that directs fluid orthogonally (vertically) through these embedded membranes during assay execution. This method for membrane incorporation circumvents the need for solvents (e.g., acetone) to create the membrane-disc bond and sidesteps issues related to undesirable bypass flow. In other recently published work, we described an orthogonal flow (OF) platform that exploited embedded membranes for automation of enzyme-linked immunosorbent assays (ELISAs). Here, we more fully characterize flow patterns and cellulosic membrane behavior within the centrifugal orthogonal flow (cOF) format. Specifically, high-speed videography studies demonstrate that sample volume, membrane pore size, and ionic composition of the sample matrix significantly impact membrane behavior, and consequently fluid drainage profiles, especially when cellulosic membranes are used. Finally, prototype discs are used to demonstrate proof-of-principle for sandwich-type antigen capture and immunodetection within the cOF system. Full article
Show Figures

Figure 1

Back to TopTop