An Integrated ddPCR Lab-on-a-Disc Device for Rapid Screening of Infectious Diseases
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Collection and Preparation
2.2. Workflow of ddPCR
2.3. Design of the Integrated ddPCR-on-a-Disc Device
2.3.1. On-Disc Fluorescence Imaging System
2.3.2. Transparent Circulating Oil-Based Heat Exchanger
2.3.3. Microfluidic Chip for Droplet Generation
2.4. ddPCR Screening Test for Clinical Samples
3. Results and Discussion
3.1. Droplet Generation
3.2. System Calibration
3.3. Detection of Human Infectious Samples
3.4. On-Site Infectious Disease Detection
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Daszak, P.; Keusch, G.T.; Phelan, A.L.; Johnson, C.K.; Osterholm, M.T. Infectious Disease Threats: A Rebound To Resilience. Health Aff. 2021, 40, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Artika, I.M.; Wiyatno, A.; Ma’roef, C.N. Pathogenic viruses: Molecular detection and characterization. Infect. Genet. Evol. 2020, 81, 104215. [Google Scholar] [CrossRef] [PubMed]
- Mullis, K.; Faloona, F.; Scharf, S.; Saiki, R.; Horn, G.; Erlich, H. Specific Enzymatic Amplification of DNA Invitro—The Polymerase Chain-Reaction. Cold Spring Harb. Symp. Quant. Biol. 1986, 51, 263–273. [Google Scholar] [CrossRef] [PubMed]
- Mullis, K.B. The Unusual Origin of the Polymerase Chain-Reaction. Sci. Am. 1990, 262, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Jiang, Y.F.; Cao, X.H.; Liu, C.; Zhang, N.; Shi, D.M. Droplet digital PCR as an emerging tool in detecting pathogens nucleic acids in infectious diseases. Clin. Chim. Acta 2021, 517, 156–161. [Google Scholar] [CrossRef]
- Huggett, J.F.; Foy, C.A.; Benes, V.; Emslie, K.; Garson, J.A.; Haynes, R.; Hellemans, J.; Kubista, M.; Nolan, R.; Pfaffl, M.W.; et al. The Digital MIQE Guidelines: Minimum Information for Publication of Quantitative Digital PCR Experiments. Clin. Chem. 2013, 59, 892–902. [Google Scholar] [CrossRef]
- Badbaran, A.; Berger, C.; Riecken, K.; Kruchen, A.; Geffken, M.; Muller, I.; Kroger, N.; Ayuk, F.A.; Fehse, B. Accurate In-Vivo Quantification of CD19 CAR-T Cells after Treatment with Axicabtagene Ciloleucel (Axi-Cel) and Tisagenlecleucel (Tisa-Cel) Using Digital PCR. Cancers 2020, 12, 1970. [Google Scholar] [CrossRef]
- Lin, B.B.; Guo, Z.J.; Geng, Z.; Jakaratanopas, S.; Han, B.Q.; Liu, P. A scalable microfluidic chamber array for sample-loss-free and bubble-proof sample compartmentalization by simple pipetting. Lab Chip 2020, 20, 2981–2989. [Google Scholar] [CrossRef]
- Mathekga, B.S.P.; Nxumalo, Z.; Raj, D. Micro and nanofluidics for high throughput drug screening. Prog. Mol. Biol. Transl. Sci. 2022, 187, 93–120. [Google Scholar] [CrossRef]
- Beinhauerova, M.; Babak, V.; Bertasi, B.; Boniotti, M.B.; Kralik, P. Utilization of Digital PCR in Quantity Verification of Plasmid Standards Used in Quantitative PCR. Front. Mol. Biosci. 2020, 7, 155. [Google Scholar] [CrossRef]
- Zhang, T.T.; Niu, Z.Q.; Wu, F.; Chen, Z.K.; Xu, J.; Jiang, K.W.; Lai, Z.Y. Qualitative and quantitative detection of surgical pathogenic microorganisms Escherichia coli and Staphylococcus aureus based on ddPCR system. Sci. Rep. 2021, 11, 8771. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.S.; Choi, J.W.; Kang, T.; Chung, B.G. Deep Learning-Assisted Droplet Digital PCR for Quantitative Detection of Human Coronavirus. BioChip J. 2023, 17, 112–119. [Google Scholar] [CrossRef]
- Nyaruaba, R.; Mwaliko, C.; Dobnik, D.; Neuzil, P.; Amoth, P.; Mwau, M.; Yu, J.P.; Yang, H.; Wei, H.P. Digital PCR Applications in the SARS-CoV-2/COVID-19 Era: A Roadmap for Future Outbreaks. Clin. Microbiol. Rev. 2022, 35, e0016821. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.L.; Loganathan, N.; Agarwalla, S.; Yang, C.; Yuan, W.; Zeng, J.; Wu, R.; Wang, W.; Duraiswamy, S. Current commercial dPCR platforms: Technology and market review. Crit. Rev. Biotechnol. 2022, 43, 433–464. [Google Scholar] [CrossRef] [PubMed]
- Suo, T.; Liu, X.J.; Feng, J.P.; Guo, M.; Hu, W.J.; Guo, D.; Ullah, H.; Yang, Y.; Zhang, Q.H.; Wang, X.; et al. ddPCR: A more accurate tool for SARS-CoV-2 detection in low viral load specimens. Emerg. Microbes Infect. 2020, 9, 1259–1268. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Y.; Liu, S.Y.; Zhang, T.K.; Cong, H.J.; Wei, Y.Y.; Xu, J.B.; Ho, Y.P.; Kong, S.K.; Ho, H.P. A centrifugal microfluidic pressure regulator scheme for continuous concentration control in droplet-based microreactors. Lab Chip 2019, 19, 3870–3879. [Google Scholar] [CrossRef]
- Loo, J.F.C.; But, G.W.C.; Kwok, H.C.; Lau, P.M.; Kong, S.K.; Ho, H.P.; Shaw, P.C. A rapid sample-to-answer analytical detection of genetically modified papaya using loop-mediated isothermal amplification assay on lab-on-a-disc for field use. Food Chem. 2019, 274, 822–830. [Google Scholar] [CrossRef]
- Tang, M.H.; Huang, X.Y.; Chu, Q.; Ning, X.H.; Wang, Y.Y.; Kong, S.K.; Zhang, X.P.; Wang, G.H.; Ho, H.P. A linear concentration gradient generator based on multi-layered centrifugal microfluidics and its application in antimicrobial susceptibility testing. Lab Chip 2018, 18, 1452–1460. [Google Scholar] [CrossRef]
- Zhuang, J.J.; Yin, J.X.; Lv, S.W.; Wang, B.; Mu, Y. Advanced “lab-on-a-chip” to detect viruses—Current challenges and future perspectives. Biosens. Bioelectron. 2020, 163, 13. [Google Scholar] [CrossRef]
- Schuler, F.; Trotter, M.; Geltman, M.; Schwemmer, F.; Wadle, S.; Dominguez-Garrido, E.; Lopez, M.; Cervera-Acedo, C.; Santibanez, P.; von Stetten, F.; et al. Digital droplet PCR on disk. Lab Chip 2016, 16, 208–216. [Google Scholar] [CrossRef]
- Gou, T.; Hu, J.M.; Wu, W.S.; Ding, X.; Zhou, S.F.; Fang, W.B.; Mu, Y. Smartphone-based mobile digital PCR device for DNA quantitative analysis with high accuracy. Biosens. Bioelectron. 2018, 120, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Yeh, E.C.; Fu, C.C.; Hu, L.; Thakur, R.; Feng, J.; Lee, L.P. Self-powered integrated microfluidic point-of-care low-cost enabling (SIMPLE) chip. Sci. Adv. 2017, 3, e1501645. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Xu, P.; Luo, J.; He, H.X.; Du, W.B. Absolute Quantification of H5-Subtype Avian Influenza Viruses Using Droplet Digital Loop-Mediated Isothermal Amplification. Anal. Chem. 2017, 89, 745–750. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.T.; Liao, P.Y.; Zhang, F.L.; Jiang, M.C.; Zhu, Y.S.; Huang, Y.Y. Centrifugal micro-channel array droplet generation for highly parallel digital PCR. Lab Chip 2017, 17, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.F.; Gou, T.; Hu, J.M.; Wu, W.S.; Ding, X.; Fang, W.B.; Hu, Z.M.; Mu, Y. A highly integrated real-time digital PCR device for accurate DNA quantitative analysis. Biosens. Bioelectron. 2019, 128, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.K.; Yu, Y.H.; Gong, P.; Jin, G.Y. An integrated droplet digital PCR gene chip for absolute quantification of nucleic acid. Microfluid. Nanofluid. 2021, 25, 9. [Google Scholar] [CrossRef]
- Bu, W.T.; Li, W.; Li, J.N.; Ao, T.T.; Li, Z.H.; Wu, B.Z.; Wu, S.T.; Kong, W.J.; Pan, T.R.; Ding, Y.; et al. A low-cost, programmable, and multi-functional droplet printing system for low copy number SARS-CoV-2 digital PCR determination. Sens. Actuator B-Chem. 2021, 348, 130678. [Google Scholar] [CrossRef]
- Wei, C.Y.; Yu, C.Z.; Li, S.S.; Meng, J.Y.; Li, T.J.; Cheng, J.M.; Pan, F.; Li, J.W. Easy-to-Operate Co-flow Step Emulsification Device for Droplet Digital Polymerase Chain Reaction. Anal. Chem. 2022, 94, 3939–3947. [Google Scholar] [CrossRef]
- Yin, J.X.; Zou, Z.Y.; Hu, Z.M.; Zhang, S.; Zhang, F.P.; Wang, B.; Lv, S.W.; Mu, Y. A “sample-in-multiplex-digital-answer-out” chip for fast detection of pathogens. Lab Chip 2020, 20, 979–986. [Google Scholar] [CrossRef]
- Hsieh, S.A.; Shamsaei, D.; Eitzmann, D.R.; Anderson, J.L. Digital Droplet Loop-Mediated Isothermal Amplification Featuring a Molecular Beacon Assay, 3D Printed Droplet Generation, and Smartphone Imaging for Sequence-Specific DNA Detection. Anal. Chem. 2022, 94, 11949–11956. [Google Scholar] [CrossRef]
- Park, B.H.; Oh, S.J.; Jung, J.H.; Choi, G.; Seo, J.H.; Kim, D.H.; Lee, E.Y.; Seo, T.S. An integrated rotary microfluidic system with DNA extraction, loop-mediated isothermal amplification, and lateral flow strip based detection for point-of-care pathogen diagnostics. Biosens. Bioelectron. 2017, 91, 334–340. [Google Scholar] [CrossRef] [PubMed]
- Gowda, H.N.; Kido, H.; Wu, X.Y.; Shoval, O.; Lee, A.; Lorenzana, A.; Madou, M.; Hoffmann, M.; Jiang, S.C. Development of a proof-of-concept microfluidic portable pathogen analysis system for water quality monitoring. Sci. Total Environ. 2022, 813, 11. [Google Scholar] [CrossRef] [PubMed]
- Quan, P.L.; Sauzade, M.; Brouzes, E. dPCR: A Technology Review. Sensors 2018, 18, 1271. [Google Scholar] [CrossRef] [PubMed]
- Sreejith, K.R.; Ooi, C.H.; Jin, J.; Dao, D.V.; Nguyen, N.T. Digital polymerase chain reaction technology—Recent advances and future perspectives. Lab Chip 2018, 18, 3717–3732. [Google Scholar] [CrossRef]
- Li, X.R.; Zhang, D.F.; Ruan, W.D.; Liu, W.Z.; Yin, K.; Tian, T.; Bi, Y.P.; Ruan, Q.Y.; Zhao, Y.; Zhu, Z.; et al. Centrifugal-Driven Droplet Generation Method with Minimal Waste for Single-Cell Whole Genome Amplification. Anal. Chem. 2019, 91, 13611–13619. [Google Scholar] [CrossRef]
- Otsu, N. Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Basu, A.S. Digital Assays Part I: Partitioning Statistics and Digital PCR. SLAS Technol. 2017, 22, 369–386. [Google Scholar] [CrossRef]
- Poisson, S.D.; Poisson, S.-D. Recherches sur la Probabilité des Jugements en Matière Criminelle et en Matière Civile: Précédées des Règles Générales du Calcul des Probabilités; Bachelier: Paris, France, 1837. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Cui, L.; Wang, Y.; Xie, Z.; Wei, Y.; Zhu, S.; Nawaz, M.; Mak, W.-C.; Ho, H.-P.; Gu, D.; et al. An Integrated ddPCR Lab-on-a-Disc Device for Rapid Screening of Infectious Diseases. Biosensors 2024, 14, 2. https://doi.org/10.3390/bios14010002
Zhang W, Cui L, Wang Y, Xie Z, Wei Y, Zhu S, Nawaz M, Mak W-C, Ho H-P, Gu D, et al. An Integrated ddPCR Lab-on-a-Disc Device for Rapid Screening of Infectious Diseases. Biosensors. 2024; 14(1):2. https://doi.org/10.3390/bios14010002
Chicago/Turabian StyleZhang, Wanyi, Lili Cui, Yuye Wang, Zhenming Xie, Yuanyuan Wei, Shaodi Zhu, Mehmood Nawaz, Wing-Cheung Mak, Ho-Pui Ho, Dayong Gu, and et al. 2024. "An Integrated ddPCR Lab-on-a-Disc Device for Rapid Screening of Infectious Diseases" Biosensors 14, no. 1: 2. https://doi.org/10.3390/bios14010002
APA StyleZhang, W., Cui, L., Wang, Y., Xie, Z., Wei, Y., Zhu, S., Nawaz, M., Mak, W. -C., Ho, H. -P., Gu, D., & Zeng, S. (2024). An Integrated ddPCR Lab-on-a-Disc Device for Rapid Screening of Infectious Diseases. Biosensors, 14(1), 2. https://doi.org/10.3390/bios14010002