Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (40)

Search Parameters:
Keywords = micro-pores in single crystals

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2972 KiB  
Article
The Formation of the Heat-Wave Effect in Hessonite
by Tao Chen, Mengyuan Wang, Jinyu Zheng, Jinglin Tian, Lili Lou, Jingcheng Pei and Xing Xu
Minerals 2025, 15(6), 601; https://doi.org/10.3390/min15060601 - 3 Jun 2025
Viewed by 422
Abstract
Hessonite, a special variety of grossularite, is well-known for the heat-wave effect, which is a characteristic swirled or roiled interior appearance within the crystal. Although the heat-wave effect has been observed for a long time, it has not been studied in depth. In [...] Read more.
Hessonite, a special variety of grossularite, is well-known for the heat-wave effect, which is a characteristic swirled or roiled interior appearance within the crystal. Although the heat-wave effect has been observed for a long time, it has not been studied in depth. In this study, the gemological properties, mineral compositions, fabric characteristics, and grain sizes of hessonite samples were investigated using infrared spectroscopy, electron backscatter diffraction (EBSD), and energy-dispersive X-ray spectroscopy (EDS). Hessonite exhibits the heat-wave effect and is found to be polycrystal rather than single-crystal, composed of submillimeter-sized granules with random orientation and limited variations in Fe and Al contents. Abundant micropores exist among the granules, indicating imperfect contact among them. Due to these structural features, incident light is interrupted and undergoes changes in direction and speed as it passes through the hessonite granules, grain borders, and micropores. Light reflects off the granules’ surfaces and refracts within the granules, respectively, causing the incident light to swirl and roil within the hessonite and form the heat-wave effect. This study considers that the heat-wave effect is a special optical phenomenon not caused by impurity minerals or inclusions. Full article
Show Figures

Figure 1

15 pages, 3580 KiB  
Article
Calcium Precipitates as Novel Agents for Controlling Steam Channeling in Steam Injection Processes for Heavy Oil Recovery
by Guolin Shao, Zhuang Shi, Yunfei Jia, Qian Cheng, Ning Kang and Xiaoqiang Wang
Processes 2025, 13(5), 1319; https://doi.org/10.3390/pr13051319 - 25 Apr 2025
Viewed by 402
Abstract
Unconventional heavy oil reservoirs are particularly susceptible to steam breakthrough, which significantly reduces crude oil production. Profile control is a crucial strategy used for stabilizing oil production and minimizing production costs in these reservoirs. Conventional plugging agent systems used in the thermal recovery [...] Read more.
Unconventional heavy oil reservoirs are particularly susceptible to steam breakthrough, which significantly reduces crude oil production. Profile control is a crucial strategy used for stabilizing oil production and minimizing production costs in these reservoirs. Conventional plugging agent systems used in the thermal recovery of heavy oil currently fail to meet the high-temperature, high-strength, and deep profile control requirements of this process. Precipitation-type calcium salt blocking agents demonstrate long-term stability at 300 °C and concentrations up to 250,000 mg/L, making them highly effective for profile control and channeling blockage during the steam injection stages of heavy oil recovery. This study proposes two types of precipitation-type calcium salt blocking agents: CaSO4 and CaCO3 crystals. The precipitation behavior of these agents was investigated, and their dynamic growth patterns were examined. The calcium sulfate blocking agent exhibits a slower crystal precipitation rate, allowing for a single-solution injection, while the calcium carbonate blocking agent precipitates rapidly, requiring a dual-solution injection. Both systems incorporate scale inhibitors to delay the growth of calcium salt crystals, which aids in deep profile control. Through microscopic visualization experiments, the micro-blocking characteristics of the calcium salt blocking agent systems within pores were compared, elucidating the blocking positions of the precipitated calcium salts under porous conditions. Calcium sulfate crystals preferentially precipitate in and block larger pore channels, whereas calcium carbonate crystals are more evenly distributed throughout the pore channels, reducing the reservoir’s heterogeneity. The final single-core displacement experiment demonstrated the sealing properties of the precipitation-type calcium salt blocking agent systems. The developed precipitation-type calcium salt blocking agent systems exhibit excellent profile control performance. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Graphical abstract

14 pages, 5883 KiB  
Article
Solvatomorphic Diversity in Coordination Compounds of Copper(II) with l-Homoserine and 1,10-Phenanthroline: Syntheses, Crystal Structures and ESR Study
by Darko Vušak, Marta Šimunović Letić, Marina Tašner, Dubravka Matković-Čalogović, Jurica Jurec, Dijana Žilić and Biserka Prugovečki
Molecules 2024, 29(23), 5621; https://doi.org/10.3390/molecules29235621 - 27 Nov 2024
Viewed by 1182
Abstract
In this study, we report the syntheses, crystal structures and magnetic properties of ternary copper(II) coordination compounds with l-homoserine (l-Hhser) and 1,10-phenanthroline (phen). Six new coordination compounds were obtained: [Cu(l-hser)(H2O)(phen)]2SO4·5H2O [...] Read more.
In this study, we report the syntheses, crystal structures and magnetic properties of ternary copper(II) coordination compounds with l-homoserine (l-Hhser) and 1,10-phenanthroline (phen). Six new coordination compounds were obtained: [Cu(l-hser)(H2O)(phen)]2SO4·5H2O (1·5H2O), [Cu(μ-l-hser)(H2O)(phen)][Cu(l-hser)(H2O)(phen)]3(SO4)2∙12H2O (2·12H2O), {[Cu(μ-l-hser)(H2O)(phen)][Cu(μ-l-hser)(phen)]SO4·6H2O}n (3·6H2O), {[Cu(μ-l-hser)(H2O)(phen)]2SO4·3H2O}n (4·3H2O), [Cu(l-hser)(H2O)(phen)][Cu(l-hser)(CH3OH)(phen)]SO4·4H2O (5·4H2O) and {[Cu(l-hser)(CH3OH)(phen)][Cu(μ-l-hser)(phen)]SO4·5CH3OH}n (6·5CH3OH). It was shown that slight differences in water content in the synthetic mixtures highly influence the final product, so in some cases, two or three different products were obtained. The compounds were characterized by single-crystal X-ray diffraction and ESR spectroscopy. Crystal packings are based on intensive networks of hydrogen bonds and π interactions. Most water solvent molecules in these microporous compounds are found in discrete pockets (1∙5H2O, 2∙12H2O, 3∙6H2O, 4∙3H2O). In 5∙4H2O, water molecules are packed in pockets and 1D channels and in 6∙5CH3OH methanol solvent molecules form 1D channels. ESR spectroscopy measured from room down to liquid nitrogen temperature was used for local magnetic characterization of copper centers. The spin Hamiltonian parameters obtained from the spectral simulation revealed copper coordination geometry that is in agreement with the structural results. Furthermore, ESR spectra revealed no significant exchange coupling between copper ions. 3·6H2O showed pronounced antiproliferative activity toward human colon cancer cell lines (HCT116), human breast cancer cell line (MCF-7) and human lung cancer cell lines (H460). Full article
Show Figures

Graphical abstract

20 pages, 10274 KiB  
Article
High-Cycle Fatigue Fracture Behavior and Stress Prediction of Ni-Based Single-Crystal Superalloy with Film Cooling Hole Drilled Using Femtosecond Laser
by Zhen Li, Yuanming Xu, Xinling Liu, Changkui Liu and Chunhu Tao
Metals 2024, 14(12), 1354; https://doi.org/10.3390/met14121354 - 27 Nov 2024
Viewed by 1091
Abstract
A high-temperature, high-cycle fatigue test was conducted on a nickel-based single-crystal superalloy with a pore structure. Optical and scanning electron microscopy were utilized to examine the crack propagation paths and fatigue fracture surfaces at the macro and micro scales. The analysis of crack [...] Read more.
A high-temperature, high-cycle fatigue test was conducted on a nickel-based single-crystal superalloy with a pore structure. Optical and scanning electron microscopy were utilized to examine the crack propagation paths and fatigue fracture surfaces at the macro and micro scales. The analysis of crack initiation and propagation related to the pore structure facilitated the development of a crack shape factor reflecting these distinct fracture behaviors. Predictions about the high-cycle fatigue stress experienced by the specimen were made, accompanied by an error analysis, providing critical insights for precise stress calculations and structural optimization in engine blade design. The results reveal that high-cycle fatigue cracks originate from corner cracks at pore edges, with the initial propagation displaying smooth crystallographic plane features. Subsequent stages show clear fatigue arc patterns in the propagation zones. The fracture surface exhibits the significant layering of oxide layers, primarily composed of NiO, with traces of CoO displaying columnar growth. AL2O3 is predominantly found at the interfaces between the matrix and oxide layers. Short and straight dislocations near the oxide layers and within the matrix suggest that dislocation multiplication and planar slip dominate the slip mechanisms in this alloy. The orientation of the fracture surface is mainly perpendicular to the load direction, with minor inclined facets in localized areas. Correlations were established between the plastic zone dimensions at the crack tips and the corresponding fatigue stresses. Without grain boundaries in single-crystal alloys, these dimensions are easily derived as parameters for fatigue stress analysis. The selected crack shape factor, “elliptical corner crack at pore edges”, captures the initiation and propagation traits relevant to porous structures. Subsequent calculations, accounting for the impact of oxide layers on stress assessments, indicated an error ratio ranging from 1.00 to 1.21 compared to nominal stress values. Full article
Show Figures

Figure 1

15 pages, 8875 KiB  
Article
The Customized Heat Treatment for Enhancing the High-Temperature Durability of Laser-Directed Energy Deposition-Repaired Single-Crystal Superalloys
by Yimo Guo, Nannan Lu, Pengfei Yang, Jingjing Liang, Guangrui Zhang, Chuanyong Cui, Ting-An Zhang, Yizhou Zhou, Xiaofeng Sun and Jinguo Li
Materials 2024, 17(22), 5665; https://doi.org/10.3390/ma17225665 - 20 Nov 2024
Cited by 2 | Viewed by 1015
Abstract
The high-temperature durability performance plays a crucial role in the applications of single-crystal (SX) superalloys repaired by laser-directed energy deposition (L-DED). A specialized heat treatment process for L-DED-repaired SX superalloys was developed in this study. The effect of the newly customized heat treatment [...] Read more.
The high-temperature durability performance plays a crucial role in the applications of single-crystal (SX) superalloys repaired by laser-directed energy deposition (L-DED). A specialized heat treatment process for L-DED-repaired SX superalloys was developed in this study. The effect of the newly customized heat treatment on the microstructure and high-temperature mechanical properties of DD32 SX superalloy repaired by L-DED was investigated. Results indicate that the repaired area of the newly customized heat treatment specimen still maintained a SX structure, the average size of the γ′ phase was 236 nm, and the volume fraction was 69%. Obviously recrystallized grains were formed in the repair area of the standard heat treatment specimens, and carbide precipitated along the grain boundary. The size of the γ′ phase was about 535 nm. The high-temperature durable life of the newly custom heat treatment specimen was about 19.09 h at 1000 °C/280 MPa, the fracture mode was microporous aggregation fracture, and the fracture location was in the repair area. The durable life of the standard heat treatment specimen was about 8.70 h, the fracture mode was cleavage fracture, and the fracture location was in the matrix area. The crack source of both specimens was interdendrite carbide. Full article
Show Figures

Figure 1

21 pages, 8810 KiB  
Article
Synthesis and Crystal Structures of Two Crystalline Silicic Acids: Hydrated H-Apophyllite, H16Si16O40 • 8–10 H2O and H-Carletonite, H32Si64O144
by Bernd Marler and Isabel Grosskreuz
Crystals 2024, 14(4), 326; https://doi.org/10.3390/cryst14040326 - 30 Mar 2024
Viewed by 1548
Abstract
Hydrated H-Apophyllite (HH-Apo) and H-carletonite (H-Car) were synthesized at 0 °C by leaching an apophyllite and a carletonite single crystal in a large surplus of 1.2 molar hydrochloric acid. The XRD powder patterns of HH-Apo and H-Car were indexed with space group symmetries [...] Read more.
Hydrated H-Apophyllite (HH-Apo) and H-carletonite (H-Car) were synthesized at 0 °C by leaching an apophyllite and a carletonite single crystal in a large surplus of 1.2 molar hydrochloric acid. The XRD powder patterns of HH-Apo and H-Car were indexed with space group symmetries of P4/ncc and I4/mcm and lattice parameters of a = 8.4872(2) Å, c = 16.8684(8) Å and a = 13.8972(3) Å, c = 20.4677(21) Å, respectively. The crystal structures were solved based on model building of the structures of the precursors and a physico-chemical characterization. Rietveld structure refinements confirmed the structure models. HH-Apo and H-Car are among the very few crystalline silicic acids whose structures have been determined and confirmed based on a structure refinement. The structure of HH-Apo contains thin silicate monolayers that can be regarded as constructed by rings of interconnected [SiO3OH] tetrahedra which form a puckered silicate layer. A sheet of water molecules is intercalated between the silicate layers. There are no direct hydrogen bonds between the silanol groups, but there are hydrogen bonds of different strengths between the terminal O atoms of the silicate layers and the intercalated water molecules. The 1H MAS NMR spectrum presents a strong signal at 4.9 ppm related to the aforementioned bonds and interactions between the water molecules, as well as a small signal at 22.5 ppm corresponding to an extremely strong hydrogen bond with d(O...O) ≈ 2.2 Å. The structure of H-Car is free of structural water and consists exclusively of microporous silicate double-layers with 4-connected [SiO4] and 3-connected [SiO3OH] tetrahedra in a ratio of 1:1 and a thickness of 9.2 Å. Neighboring layers are connected to each other by medium–strong hydrogen bonds with O...O distances of 2.56 Å. The structure of HH-Apo decays within several hours while H-Car is stable. A topotactic condensation reaction applied to H-Car forms an irregularly condensed silicate which still contains the layers in a distorted form as building blocks. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

49 pages, 8480 KiB  
Article
Upcycling of the Used Cigarette Butt Filters through Pyrolysis Process: Detailed Kinetic Mechanism with Bio-Char Characterization
by Bojan Janković, Marija Kojić, Milena Milošević, Milena Rosić, Hadi Waisi, Bojana Božilović, Nebojša Manić and Vladimir Dodevski
Polymers 2023, 15(14), 3054; https://doi.org/10.3390/polym15143054 - 15 Jul 2023
Cited by 14 | Viewed by 5177
Abstract
Thermo-chemical conversion via the pyrolysis of cigarette butt (CB) filters was successfully valorized and upcycled in the pre-carbonization and carbonization stages. The pre-carbonization stage (devolatilization) of the precursor material (cellulose acetate filter, r-CAcF) was analyzed by micro-scale experiments under non-isothermal conditions using TG-DTG-DTA [...] Read more.
Thermo-chemical conversion via the pyrolysis of cigarette butt (CB) filters was successfully valorized and upcycled in the pre-carbonization and carbonization stages. The pre-carbonization stage (devolatilization) of the precursor material (cellulose acetate filter, r-CAcF) was analyzed by micro-scale experiments under non-isothermal conditions using TG-DTG-DTA and DSC techniques. The results of a detailed kinetic study showed that the decomposition of r-CAcF takes place via complex mechanisms, including consecutive reaction steps and two single-step reactions. Consecutive stages include the α-transition referred to as a cellulose polymorphic transformation (cellulose I → II) through crystallization mechanism changes, where a more thermodynamically ordered system was obtained. It was found that the transformation rate of cellulose I → II (‘cellulose regeneration’) is strongly affected by the presence of alkali metals and the deacetylation process. Two single-step reactions showed significant overlapping behavior, which involves a nucleation-controlled scission mechanism (producing levoglucosan, gaseous products, and abundant radicals) and hydrolytic decomposition of cellulose by catalytic cleavage of glycosidic bonds with the presence of an acidic catalyst. A macro-scale experiment showed that the operating temperature and heating rate had the most notable effects on the total surface area of the manufactured carbon. A substantial degree of mesoporosity with a median pore radius of 3.1695 nm was identified. The presence of macroporosity on the carbon surface and acidic surface functional groups was observed. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

12 pages, 3433 KiB  
Article
Nano-Cavities within Nano-Zeolites: The Influencing Factors of the Fabricating Process on Their Catalytic Activities
by Kairui Fu, Geng Li, Fulin Xu, Tiantong Dai, Wen Su, Hao Wang, Tianduo Li, Yunan Wang and Jingui Wang
Nanomaterials 2023, 13(13), 1923; https://doi.org/10.3390/nano13131923 - 23 Jun 2023
Cited by 4 | Viewed by 2006
Abstract
Titanium silicalite-1 (TS-1) is a milestone heterogeneous catalyst with single-atom tetrahedral titanium incorporated into silica framework for green oxidation reactions. Although TS-1 catalysts have been industrialized, the strategy of direct hydrothermal synthesis usually produces catalysts with low catalytic activities, which has still puzzled [...] Read more.
Titanium silicalite-1 (TS-1) is a milestone heterogeneous catalyst with single-atom tetrahedral titanium incorporated into silica framework for green oxidation reactions. Although TS-1 catalysts have been industrialized, the strategy of direct hydrothermal synthesis usually produces catalysts with low catalytic activities, which has still puzzled academic and industrial scientists. Post-treatment processes were widely chosen and were proven to be an essential process for the stable production of the high-activity zeolites with hollow structures. However, the reasons why post-treatment processes could improve catalytic activity are still not clear enough. Here, high-performance hollow TS-1 zeolites with nano-sized crystals and nano-sized cavities were synthesized via post-treatment of direct-synthesis nano-sized TS-1 zeolites. The influencing factors of the fabricating processes on their catalytic activities were investigated in detail, including the content of alkali metal ions, the state of titanium centers, hydrophilic/hydrophobic properties, and accessibility of micropores. The post-treatment processes could effectively solve these adverse effects to improve catalytic activity and to stabilize production. These findings contribute to the stable preparation of high-performance TS-1 catalysts in both factories and laboratories. Full article
Show Figures

Figure 1

11 pages, 2930 KiB  
Article
PZT Composite Film Preparation and Characterization Using a Method of Sol-Gel and Electrohydrodynamic Jet Printing
by Yan Cui, Hao Yu, Zeshan Abbas, Zixiang Wang, Lunxiang Wang and Dazhi Wang
Micromachines 2023, 14(5), 918; https://doi.org/10.3390/mi14050918 - 24 Apr 2023
Cited by 7 | Viewed by 3318
Abstract
Lead zircon titanate (PZT) composite films were advantageously prepared by a novel hybrid method of sol-gel and electrohydrodynamic jet (E-jet) printing. PZT thin films with thicknesses of 362 nm, 725 nm and 1092 nm were prepared on Ti/Pt bottom electrode via Sol-gel method, [...] Read more.
Lead zircon titanate (PZT) composite films were advantageously prepared by a novel hybrid method of sol-gel and electrohydrodynamic jet (E-jet) printing. PZT thin films with thicknesses of 362 nm, 725 nm and 1092 nm were prepared on Ti/Pt bottom electrode via Sol-gel method, and then the PZT thick films were printed on the base of the PZT thin films via E-jet printing to form PZT composite films. The physical structure and electrical properties of the PZT composite films were characterized. The experimental results showed that, compared with PZT thick films prepared via single E-jet printing method, PZT composite films had fewer micro-pore defects. Moreover, the better bonding with upper and lower electrodes and higher preferred orientation of crystals were examined. The piezoelectric properties, dielectric properties and leakage currents of the PZT composite films were obviously improved. The maximum piezoelectric constant of the PZT composite film with a thickness of 725 nm was 69.4 pC/N, the maximum relative dielectric constant was 827 and the leakage current was reduced to 1.5 × 10−6A at a test voltage of 200V. This hybrid method can be widely useful to print PZT composite films for the application of micro-nano devices. Full article
(This article belongs to the Special Issue Micro/Nano Printing Technology and Devices)
Show Figures

Figure 1

12 pages, 32644 KiB  
Article
Influence of Strain Amplitude on Low-Cycle Fatigue Behaviors of a Fourth-Generation Ni-Based Single-Crystal Superalloy at 980 °C
by Pengfei Wang, Xinbao Zhao, Quanzhao Yue, Wanshun Xia, Qingqing Ding, Hongbin Bei, Yuefeng Gu, Yuefei Zhang and Ze Zhang
Crystals 2023, 13(4), 686; https://doi.org/10.3390/cryst13040686 - 17 Apr 2023
Cited by 4 | Viewed by 2723
Abstract
Total strain-control, low-cycle fatigue experiments of a fourth-generation Ni-based single-crystal superalloy were performed at 980 °C. Scanning electron microscopy and transmission electron microscopy are employed to determine fracture morphologies and dislocation characteristics of the samples. As the strain amplitude increased from 0.6 to [...] Read more.
Total strain-control, low-cycle fatigue experiments of a fourth-generation Ni-based single-crystal superalloy were performed at 980 °C. Scanning electron microscopy and transmission electron microscopy are employed to determine fracture morphologies and dislocation characteristics of the samples. As the strain amplitude increased from 0.6 to 1.0%, the cyclic stress and plastic strain per cycle increased, the cyclic lifetime decreased, more interfacial dislocation networks were formed, and the formation rate accelerated. Cyclic hardening is associated with the reaction of accumulated dislocations and dislocation networks, which hinder the movement of dislocations. The presence of interfacial dislocations reduces the lattice mismatch between the γ and γ′ phases, and the presence of dislocation networks that absorb mobile dislocations results in cyclic softening. At a strain amplitude of 1.0%, the reaction of a high density of dislocations results in initial cyclic hardening, and the dislocation cutting into the γ′ phase is one of the reasons for cyclic softening. The crack initiation site changed from a near-surface defect to a surface defect when the strain amplitude increased from 0.6 to 0.8 to 1.0%. The number of secondary cracks initiated from the micropores decreased during the growth stage as the strain amplitude increased. Full article
(This article belongs to the Special Issue Experiments and Simulations of Superalloys)
Show Figures

Figure 1

32 pages, 7140 KiB  
Review
The Plant Leaf: A Biomimetic Resource for Multifunctional and Economic Design
by Anita Roth-Nebelsick and Matthias Krause
Biomimetics 2023, 8(2), 145; https://doi.org/10.3390/biomimetics8020145 - 3 Apr 2023
Cited by 11 | Viewed by 9038
Abstract
As organs of photosynthesis, leaves are of vital importance for plants and a source of inspiration for biomimetic developments. Leaves are composed of interconnected functional elements that evolved in concert under high selective pressure, directed toward strategies for improving productivity with limited resources. [...] Read more.
As organs of photosynthesis, leaves are of vital importance for plants and a source of inspiration for biomimetic developments. Leaves are composed of interconnected functional elements that evolved in concert under high selective pressure, directed toward strategies for improving productivity with limited resources. In this paper, selected basic components of the leaf are described together with biomimetic examples derived from them. The epidermis (the “skin” of leaves) protects the leaf from uncontrolled desiccation and carries functional surface structures such as wax crystals and hairs. The epidermis is pierced by micropore apparatuses, stomata, which allow for regulated gas exchange. Photosynthesis takes place in the internal leaf tissue, while the venation system supplies the leaf with water and nutrients and exports the products of photosynthesis. Identifying the selective forces as well as functional limitations of the single components requires understanding the leaf as an integrated system that was shaped by evolution to maximize carbon gain from limited resource availability. These economic aspects of leaf function manifest themselves as trade-off solutions. Biomimetics is expected to benefit from a more holistic perspective on adaptive strategies and functional contexts of leaf structures. Full article
Show Figures

Figure 1

23 pages, 5972 KiB  
Article
Synthesis and Structure of COE-11, a New Borosilicate Zeolite with a Two-Dimensional Pore System of 12-Ring Channels
by Bernd Marler, Hermann Gies, Trees De Baerdemaeker, Ulrich Müller, Andrei-Nicolae Parvulescu, Weiping Zhang, Toshiyuki Yokoi, Feng-Shou Xiao, Xiangju Meng, Dirk De Vos and Ute Kolb
Chemistry 2023, 5(2), 730-752; https://doi.org/10.3390/chemistry5020052 - 28 Mar 2023
Cited by 3 | Viewed by 2869
Abstract
The new zeolite, COE-11, was synthesized at 155 °C to 168 °C by hydrothermal synthesis from a reaction mixture of SiO2/tetraethylammonium hydroxide/H3BO3/NaOH/H2O. Because tetraethylammonium is an unspecific structure directing agent, COE-11 crystallizes in all cases [...] Read more.
The new zeolite, COE-11, was synthesized at 155 °C to 168 °C by hydrothermal synthesis from a reaction mixture of SiO2/tetraethylammonium hydroxide/H3BO3/NaOH/H2O. Because tetraethylammonium is an unspecific structure directing agent, COE-11 crystallizes in all cases together with at least one impurity phase from a selection of phases: zeolite types *BEA, CHA, FER, MFI, MOR, MTW; the layered silicates magadiite and kenyaite; and searlsite and silica polymorph quartz. The crystal structure was solved from 3D electron diffraction (3D ED) data. Subsequent structure refinements of X-ray powder diffraction (PXRD) data and single crystal electron diffraction data converged to residual values of RF = 0.039, chi2 = 3.6 (PXRD) and RF = 21.81% (3D ED) confirming the structure model. COE-11 crystallizes in space group C2 with unit cell dimensions of a0 = 17.3494(11) Å, b0 = 17.3409(11) Å, c0 = 14.2789(4) Å and β = 113.762(2) °. The structure of COE-11 is characterized by a microporous borosilicate framework with intersecting, highly elliptical 12-ring channels running parallel (110) and (1–10) and forming a two-dimensional pore system. The Rietveld refinement provided a hint that boron partly substitutes silicon on three specific T sites of the framework. The idealized chemical composition of as-made COE-11 is [(CH3CH2)4N]4[B4Si62O132] per unit cell. Physico-chemical characterization using solid-state NMR spectroscopy, SEM, TG-DTA, and ATR-FTIR spectroscopy confirmed that COE-11 is a microporous borosilicate zeolite. COE-11 is structurally closely related to zeolite beta polymorph B but differs concerning the dimensionality of the pore system, which is 2D instead of 3D. Full article
Show Figures

Graphical abstract

14 pages, 5220 KiB  
Article
Study on the Effect of Temperature on the Crystal Transformation of Microporous Calcium Silicate Synthesized of Extraction Silicon Solution from Fly Ash
by Dong Kang, Zhijie Yang, De Zhang, Yang Jiao, Chenyang Fang and Kaiyue Wang
Materials 2023, 16(6), 2154; https://doi.org/10.3390/ma16062154 - 7 Mar 2023
Cited by 5 | Viewed by 2404
Abstract
In this study, microporous calcium silicate was synthesized from a silicon solution of fly ash extracted by soaking in strong alkali as a silicon source. By means of XRD, TEM, FTIR, and thermodynamic calculations, the crystal evolution and growth process of microporous calcium [...] Read more.
In this study, microporous calcium silicate was synthesized from a silicon solution of fly ash extracted by soaking in strong alkali as a silicon source. By means of XRD, TEM, FTIR, and thermodynamic calculations, the crystal evolution and growth process of microporous calcium silicate were studied under the synthesis temperature of 295~365 K. The results show that calcium silicate is a single-chain structure of the Si–O tetrahedron: Q1 type Si–O tetrahedron is located at both ends of the chain, and the middle is the [SiO44−] tetrahedron connected by [O2−] coplanar, and Ca2+ is embedded in the interlayer structure of calcium silicate. The formation rate and crystallization degree of calcium silicate hydrate were positively correlated with temperature. When the synthesis temperature was 295 K, its particle size was about 8 μm, and when the synthesis temperature was 330 K, a large number of amorphous microporous calcium silicate with a particle size of about 14 μm will be generated. When the temperature was above 350 K, the average particle size was about 17 μm. The microporous calcium silicate showed obvious crystalline characteristics, which indicate that the crystallization degree and particle size of microporous calcium silicate could be controlled by a reasonable synthesis temperature adjustment. Full article
Show Figures

Figure 1

18 pages, 4980 KiB  
Article
2,6-Diaminopyridine-Based Polyurea as an ORR Electrocatalyst of an Anion Exchange Membrane Fuel Cell
by Yen-Zen Wang, Tar-Hwa Hsieh, Yu-Chang Huang and Ko-Shan Ho
Polymers 2023, 15(4), 915; https://doi.org/10.3390/polym15040915 - 11 Feb 2023
Cited by 7 | Viewed by 2846
Abstract
In order to yield more Co(II), 2,6-diaminopyridine (DAP) was polymerized with 4,4-methylene diphenyl diisocyanates (MDI) in the presence of Co(II) to obtain a Co-complexed polyurea (Co-PUr). The obtained Co-PUr was calcined to become Co, N-doped carbon (Co–N–C) as the cathode catalyst of an [...] Read more.
In order to yield more Co(II), 2,6-diaminopyridine (DAP) was polymerized with 4,4-methylene diphenyl diisocyanates (MDI) in the presence of Co(II) to obtain a Co-complexed polyurea (Co-PUr). The obtained Co-PUr was calcined to become Co, N-doped carbon (Co–N–C) as the cathode catalyst of an anion exchange membrane fuel cell (AEMFC). High-resolution transmission electron microscopy (HR-TEM) of Co–N–C indicated many Co-Nx (Co covalent bonding with several nitrogen) units in the Co–N–C matrix. X-ray diffraction patterns showed that carbon and cobalt crystallized in the Co–N–C catalysts. The Raman spectra showed that the carbon matrix of Co–N–C became ordered with increased calcination temperature. The surface area (dominated by micropores) of Co–N–Cs also increased with the calcination temperature. The non-precious Co–N–C demonstrated comparable electrochemical properties (oxygen reduction reaction: ORR) to commercial precious Pt/C, such as high on-set and half-wave voltages, high limited reduction current density, and lower Tafel slope. The number of electrons transferred in the cathode was close to four, indicating complete ORR. The max. power density (Pmax) of the single cell with the Co–N–C cathode catalyst demonstrated a high value of 227.7 mWcm−2. Full article
(This article belongs to the Special Issue Functional and Conductive Polymer Thin Films III)
Show Figures

Graphical abstract

14 pages, 9952 KiB  
Article
Optimization of Femtosecond Laser Drilling Process for DD6 Single Crystal Alloy
by Tianhan Du, Xiaoqing Liang, Yanqing Yu, Liucheng Zhou, Zhenbing Cai, Lingfeng Wang, Wentong Jia and Xinlei Pan
Metals 2023, 13(2), 333; https://doi.org/10.3390/met13020333 - 7 Feb 2023
Cited by 5 | Viewed by 2696
Abstract
In this paper, we explore the optimal combination of femtosecond laser drilling parameters for micro-hole processing on DD6 single-crystal high-temperature alloy and analyze the significance of parameter variations on the microstructure characteristics of the holes. The L25(56) orthogonal test was performed by controlling [...] Read more.
In this paper, we explore the optimal combination of femtosecond laser drilling parameters for micro-hole processing on DD6 single-crystal high-temperature alloy and analyze the significance of parameter variations on the microstructure characteristics of the holes. The L25(56) orthogonal test was performed by controlling six parameters during femtosecond laser ring processing: average power; overlap rate; defocus rate; feed amount; gas pressure; and end position. The significance of the influence of the factors was analyzed by ANOVA, and the parameters were optimized by genetic algorithm. Scanning electron microscopy was performed on the micropores and the salient features of the pores were analyzed. Finally, we calculated the extreme differences and conducted single-factor effect analysis. We conclude that the defocus rate has the most significant level on the hole drilling by femtosecond laser ring processing for DD6 single crystal high-temperature alloy; and the effect of the end position is smaller than others. The optimized parameters are power 6.73 W; overlap 99%, defocus 0 mm; pressure 0.2 MPa; feed 0.02 mm, and end −0.4 mm. Full article
Show Figures

Figure 1

Back to TopTop