Nano-Cavities within Nano-Zeolites: The Influencing Factors of the Fabricating Process on Their Catalytic Activities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Syntheses of TS-1 Catalysts
2.3. Post-Treatment Procedures
2.4. Characterization
2.5. Catalytic Testing
3. Results and Discussion
- (1)
- Acid treatment could eliminate alkali metal ions in the TS-1 catalyst, improving the catalytic activity and the utilization efficiency of hydrogen peroxide. Meanwhile, acid treatment resulted in the increase of silanol groups and the decrease of hydrophobicity as evaluated by water adsorption testing (Figure 6), which was not beneficial to catalytic activity. In addition, acid treatment led to the leaching of active framework titanium species to form extra-framework titanium species and/or anatase-like tiny TiO2 based on the increased adsorption band at about 260 nm and 330 nm in the DRUV/vis spectra (Figure 4B), which would have adverse effects on catalytic activity.
- (2)
- The recrystallization post-treatment process could form nano-cavities within zeolitic crystal (as observed by TEM images in Figure 3c,d), which could reduce the diffusion length of the micropores, which would be beneficial to the catalytic activity, catalytic life, the selectivity of epoxy products, and the utilization efficiency of hydrogen peroxide. Meanwhile, the improved hydrophobicity as evaluated by water adsorption testing (Figure 6) was also beneficial to the catalytic performance. However, the recrystallization post-treatment process led to the loss of framework titanium species and the increase of extra-framework titanium species based on the further increased adsorption band at about 260 nm in the DRUV/vis spectra (Figure 4B) compared to sample after acid post-treatment, which was a disadvantage for catalytic performance.
- (3)
- The overall catalytic activity should consider various influence factors comprehensively. The parent nano-zeolite via direct synthesis contained significant amounts of alkali metal ions, displaying a very low catalytic activity. The overall effects were positive to the alkene conversion after removing the alkali metal ions although acid post-treatment, which led to some loss of framework titanium and the decrease of hydrophobicity. The sample after recrystallization and the overall activity was greatly improved.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huybrechts, D.R.C.; Bruycker, L.D.; Jacobs, P.A. Oxyfunctionalization of alkanes with hydrogen peroxide on titanium silicalite. Nature 1990, 345, 240–242. [Google Scholar] [CrossRef]
- Tatsumi, T.; Nakamura, M.; Negishi, S.; Tominaga, H.-O. Shape-selective oxidation of alkanes with H2O2 catalysed by titanosilicate. J. Chem. Soc. Chem. Commun. 1990, 6, 476–477. [Google Scholar] [CrossRef]
- Clerici, M.G.; Bellussi, G.; Romano, U. Synthesis of Propylene Oxide from Propylene and Hydrogen Peroxide Catalyzed by Titanium Silicalite. J. Catal. 1991, 129, 159–167. [Google Scholar] [CrossRef]
- Yin, H.; Su, F.; Luo, C.; Zhu, L.X.; Zhong, W.Z.; Mao, L.Q.; You, K.Y.; Yin, D.L. Visible-light-mediated remote aliphatic C-H oxyfunctionalization over CuCl2 decorated hollowed-TS-1 photocatalysts. Appl. Catal. B-Environ. 2022, 302, 120851. [Google Scholar] [CrossRef]
- Taramasso, M.; Perego, G.; Notari, B. Preparation of Porous Crystalline Synthetic Material Comprised of Silicon and Titanium Oxides. U.S. Patent 4,410,501, 1983. [Google Scholar]
- Notari, B. Titanium Silicalite: A New Selective Oxidation Catalyst. Stud. Surf. Sci. Catal. 1991, 60, 343–352. [Google Scholar]
- Bassler, P.; Weidenbach, M.; Goebbel, H. The new HPPO Process for Propylene Oxide From Joint Development to Worldscale Production. Chem. Eng. Trans. 2010, 21, 571–576. [Google Scholar]
- Lin, M.; Xia, C.; Zhu, B.; Li, H.; Shu, X. Green and efficient epoxidation of propylene with hydrogen peroxide (HPPO process) catalyzed by hollow TS-1 zeolite: A 1.0 kt/a pilot-scale study. Chem. Eng. J. 2016, 295, 370–375. [Google Scholar] [CrossRef]
- Shakeri, M.; Dehghanpour, S.B. Rational synthesis of TS-1 zeolite to direct both particle size and framework Ti in favor of enhanced catalytic performance. Microporous Mesoporous Mater. 2020, 298, 110066. [Google Scholar] [CrossRef]
- Smeets, V.; Gaigneaux, E.M.; Debecker, D.P. Hierarchical micro-/macroporous TS-1 zeolite epoxidation catalyst prepared by steam assisted crystallization. Microporous Mesoporous Mater. 2020, 293, 109801. [Google Scholar] [CrossRef]
- Zhang, M.M.; Wen, Y.Q.; Zong, L.K.; Wei, H.J.; Wang, X.Y. Improved Ti species distribution and hierarchical pores in TS-1: Towards regeneration of TS-1 deactivated due to alkali corrosion. New J. Chem. 2020, 44, 6394–6401. [Google Scholar] [CrossRef]
- van der Pol, A.J.H.P.; Verduyn, A.J.; van Hooff, J.H.C. Why are some titanium silicalite-1 samples active and others not? Appl. Catal. A-Gen. 1992, 92, 113–130. [Google Scholar] [CrossRef] [Green Version]
- Bellussi, G.; Fattore, V. Isomorphous Substitution in Zeolites: A Route for the Preparation of Novel Catalysts. Stud. Surf. Sci. Catal. 1991, 69, 79–92. [Google Scholar]
- Khouw, C.B.; Davis, M.E. Catalytic Activity of Titanium Silicates Synthesized in the Presence of Alkali-Metal and Alkaline-Earth Ions. J. Catal. 1995, 151, 77–86. [Google Scholar] [CrossRef]
- Wang, J.G.; Wang, Y.B.; Tatsumi, T.; Zhao, Y.L. Anionic polymer as a quasi-neutral medium for low-cost synthesis of titanosilicate molecular sieves in the presence of high-concentration alkali metal ions. J. Catal. 2016, 338, 321–328. [Google Scholar] [CrossRef]
- Fu, K.R.; Wang, J.G.; Wang, Y.C.; Shao, Y.C.; Zhu, J.Q.; Li, T.D. Anionic polyelectrolytes in titanosilicate molecular sieve synthesis towards simultaneously accomplishing low production cost and high catalytic activity. RSC Adv. 2018, 8, 21363–21368. [Google Scholar] [CrossRef] [Green Version]
- Shao, Y.; Wang, Y.; Liu, X.; Li, T.; Haydel, P.R.; Tatsumi, T.; Wang, J. A Single-Crystalline Hierarchical Zeolite via an Oriented Co-Growth of Nanocrystals Based on Synergy of Polyelectrolytes and Hetero-Atoms. ChemCatChem 2020, 12, 2702–2707. [Google Scholar] [CrossRef]
- Wang, J.G.; Zhao, Y.L.; Yokoi, T.; Kondo, J.N.; Tatsumi, T. High-Performance Titanosilicate Catalyst Obtained through Combination of Liquid-Phase and Solid-Phase Transformation Mechanisms. ChemCatChem 2014, 6, 2719–2726. [Google Scholar] [CrossRef]
- Du, H.; Liu, G.; Min, E. A preparation method of titanium-silicalite molecular sieve (TS-2). CN 96106315.7, 1996. [Google Scholar]
- Lin, M.; Shu, X.; Wang, X.; Zhu, B. Titanium-silicalite molecular sieve and the method for its preparation. U.S. Patent 6,475,465, 2000. [Google Scholar]
- Lin, M.; Zhu, B.; Shu, X.T.; Wang, X.Q. Synthesis and Characterization of Hollow Titanium Silicalite Zeolite(HTS). Sci. Res. 2008, 3, 1–5. [Google Scholar]
- Xu, J.; Wang, Y.Q.; Feng, W.P.; Lin, Y.; Wang, S.H. Effect of triethylamine treatment of titanium silicalite-1 on propylene epoxidation. Front. Chem. Sci. Eng. 2014, 8, 478–487. [Google Scholar] [CrossRef]
- Tsai, S.T.; Chao, P.Y.; Tsai, T.C.; Wang, I.K.; Liu, X.X.; Guo, X.W. Effects of pore structure of post-treated TS-1 on phenol hydroxylation. Catal. Today 2009, 148, 174–178. [Google Scholar] [CrossRef]
- Shi, C.F.; Lin, M.; Zhu, B.; Mu, X.H.; Luo, Y.B.; Long, J. Bifunctional Titanosilicate with Hollow Structure. AlChE J. 2011, 57, 1374–1376. [Google Scholar] [CrossRef]
- Zuo, Y.; Song, W.C.; Dai, C.Y.; He, Y.P.; Wang, M.L.; Wang, X.S.; Guo, X.W. Modification of small-crystal titanium silicalite-1 with organic bases: Recrystallization and catalytic properties in the hydroxylation of phenol. Appl. Catal. A-Gen. 2013, 453, 272–279. [Google Scholar] [CrossRef]
- Wang, Y.L.; Zuo, Y.; Liu, M.; Dai, C.Y.; Feng, Z.C.; Guo, X.W. The High-Performance Hollow Silicalite-1@Titanium Silicalite-1 Core-Shell Catalyst for Propene Epoxidation. ChemistrySelect 2017, 2, 10097–10100. [Google Scholar] [CrossRef]
- Zhang, S.J.; Zhao, H.; Wang, X.Y.; Luo, S.; Shi, Y.Q.; Zhao, Y.X.; Ying, L.Y.; Chen, J. Formation and transformation of nitroso compounds of ketoxime isomers in ketone ammoximation catalyzed by hollow titanium silicalite. React. Kinet. Mech. Cat. 2019, 127, 787–801. [Google Scholar] [CrossRef]
- Jiao, Y.L.; Adedigba, A.L.; Dummer, N.F.; Liu, J.M.; Zhou, Y.T.; Guan, Y.N.; Shen, H.Y.; Perdjon, M.; Hutchings, G.J. The effect of T-atom ratio and TPAOH concentration on the pore structure and titanium position in MFI-Type titanosilicate during dissolution-recrystallization process. Microporous Mesoporous Mater. 2020, 305, 110397. [Google Scholar] [CrossRef]
- Shao, Y.C.; Wang, D.Z.; Xu, Y.T.; Tatsumi, T.; Wang, J.G. A bi-model mesoporous single-crystalline hierarchical zeolite. Mater. Lett. 2021, 299, 130073. [Google Scholar] [CrossRef]
- Li, M.Y.; Zhai, Y.; Zhang, X.B.; Wang, F.M.; Lv, G.J.; Rosine, A.; Li, M.Y.; Zhang, Q.; Liu, Y.K. (NH4)2SO4-assisted synthesis of thin-walled Ti-rich hollow titanium silicalite-1 zeolite for 1-hexene epoxidation. Microporous Mesoporous Mater. 2022, 331, 111655. [Google Scholar] [CrossRef]
- Fan, Y.Q.; Gong, X.C.; Si, X.M.; Xia, C.J.; Wu, P.; Ma, Y. Post-synthesis and structural evolution of hollow titanium silicalite-1 with solvent-free method. Nano Res. 2023, 16, 1740–1747. [Google Scholar] [CrossRef]
- Liu, M.Q.; Xiao, Z.S.; Dai, J.; Zhong, W.Z.; Xu, Q.; Mao, L.Q.; Yin, D.L. Manganese-containing hollow TS-1: Description of the catalytic sites and surface properties for solvent-free oxidation of ethylbenzene. Chem. Eng. J. 2017, 313, 1382–1395. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, S.J.; Zhao, Y.X.; Lin, M. The mechanism of catalyst deactivation and by-product formation in acetone ammoximation catalyzed by hollow titanium silicalite. J. Mol. Catal. A Chem. 2014, 385, 1–6. [Google Scholar] [CrossRef]
- Xia, C.J.; Lin, M.; Zheng, A.G.; Xiang, Y.J.; Zhu, B.; Xu, G.T.; Shu, X.T. Irreversible deactivation of hollow TS-1 zeolite caused by the formation of acidic amorphous TiO2-SiO2 nanoparticles in a commercial cyclohexanone ammoximation process. J. Catal. 2016, 338, 340–348. [Google Scholar] [CrossRef]
- Peng, X.X.; Xia, C.J.; Lin, M.; Shu, X.T.; Zhu, B.; Wang, B.R.; Zhang, Y.; Luo, Y.B.; Mu, X.H. A safer and greener chlorohydrination of allyl chloride with H2O2 and HCl over hollow titanium silicate zeolite. Appl. Catal. A-Gen. 2017, 543, 17–25. [Google Scholar] [CrossRef]
- Peng, X.X.; Xia, C.J.; Lin, M.; Yuan, H.; Zhu, B.; Zhang, Y.; Wang, B.R.; Shu, X.T. Chlorohydrination of allyl chloride with HCl and H2O2 catalyzed by hollow titanium silicate zeolite to produce dichloropropanol. Green Chem. 2017, 19, 1221–1225. [Google Scholar] [CrossRef]
- Liu, M.; Wei, H.J.; Li, B.J.; Song, L.Y.; Zhao, S.Z.; Niu, C.C.; Jia, C.F.; Wang, X.Y.; Wen, Y.Q. Green and efficient preparation of hollow titanium silicalite-1 by using recycled mother liquid. Chem. Eng. J. 2018, 331, 194–202. [Google Scholar] [CrossRef]
- Lv, G.J.; Wang, F.M.; Zhang, X.B.; Binks, B.P. Surface-Active Hollow Titanosilicate Particles as a Pickering Interfacial Catalyst for Liquid-Phase Alkene Epoxidation Reactions. Langmuir 2018, 34, 302–310. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Z.; Yu, Y.; Tang, Z.; Shen, K.; Wang, R.; Liu, H.; Huang, X.; Liu, Y. Hollow core-shell structured TS-1@S-1 as an efficient catalyst for alkene epoxidation. RSC Adv. 2019, 9, 37801–37808. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Y.; Wang, F.M.; Zhang, X.B.; Lv, G.J.; Zhu, Z.G.; Wang, K.W.; Xu, Z.B.; Jiang, L.F. Functional mother liquor reversed titanium species for the green synthesis of anatase-free hollow TS-1 with tunable titanium micro-environment via a kinetic-thermodynamic co-regulatory pathway. Mater. Chem. Front. 2022, 6, 2072–2084. [Google Scholar] [CrossRef]
- Liu, Y.K.; Wang, F.M.; Zhang, X.B.; Zhang, Q.; Zhai, Y.; Lv, G.J.; Li, M.Y.; Li, M.Y. One-step synthesis of anatase-free hollow titanium silicalite-1 by the solid-phase conversion method. Microporous Mesoporous Mater. 2022, 331, 111676. [Google Scholar] [CrossRef]
- Wang, Y.; Tuel, A. Nanoporous zeolite single crystals: ZSM-5 nanoboxes with uniform intracrystalline hollow structures. Microporous Mesoporous Mater. 2008, 113, 286–295. [Google Scholar] [CrossRef]
- Li, S.; Tuel, A.; Laprune, D.; Meunier, F.; Farrusseng, D. Transition-Metal Nanoparticles in Hollow Zeolite Single Crystals as Bifunctional and Size-Selective Hydrogenation Catalysts. Chem. Mater. 2014, 27, 276–282. [Google Scholar] [CrossRef]
- Qin, Z.X.; Melinte, G.; Gilson, J.P.; Jaber, M.; Bozhilov, K.; Boullay, P.; Mintova, S.; Ersen, O.; Valtchev, V. The Mosaic Structure of Zeolite Crystals. Angew. Chem. Int. Ed. 2016, 55, 15049–15052. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wang, L.; Ye, Z.Q.; Zhang, H.B.; Xie, S.H.; Zhang, Y.H.; Tang, Y. Constructing Mosaic-Tiling MFI Zeolite Mesocrystal with Enhanced Catalytic Performance. Cryst. Growth Des. 2019, 19, 6192–6198. [Google Scholar] [CrossRef]
- Ricchiardi, G.; Damin, A.; Bordiga, S.; Lamberti, C.; Spano, G.; Rivetti, F.; Zecchina, A. Vibrational Structure of Titanium Silicate Catalysts. A Spectroscopic and Theoretical Study. J. Am. Chem. Soc. 2001, 123, 11409–11419. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.G.; Yokoi, T.; Kondo, J.N.; Tatsumi, T.; Zhao, Y.L. Titanium(IV) in the Organic-Structure-Directing-Agent-Free Synthesis of Hydrophobic and Large-Pore Molecular Sieves as Redox Catalysts. ChemSusChem 2015, 8, 2476–2480. [Google Scholar] [CrossRef]
- Rodenas, Y.; Fierro, J.L.G.; Mariscal, R.; Retuerto, M.; Granados, M.L. Post-synthesis Treatment of TS-1 with TPAOH: Effect of Hydrophobicity on the Liquid-Phase Oxidation of Furfural to Maleic Acid. Top. Catal. 2019, 62, 560–569. [Google Scholar] [CrossRef]
- Wang, L.; Sun, J.; Meng, X.; Zhang, W.; Zhang, J.; Pan, S.; Shen, Z.; Xiao, F.S. A significant enhancement of catalytic activities in oxidation with H2O2 over the TS-1 zeolite by adjusting the catalyst wettability. Chem. Commun. 2014, 50, 2012–2014. [Google Scholar] [CrossRef]
- Wang, L.; Liu, Y.; Xie, W.; Wu, H.; Li, X.; He, M.; Wu, P. Improving the Hydrophobicity and Oxidation Activity of Ti-MWW by Reversible Structural Rearrangement. J. Phys. Chem. C 2008, 112, 6132–6138. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, L.; Yu, Y.; Liu, D.; Fang, N.; Lin, Y.; Xu, D.; Li, F.; Liu, Y.; He, M. TS-1 zeolite with homogeneous distribution of Ti atoms in the framework: Synthesis, crystallization mechanism and its catalytic performance. J. Catal. 2021, 404, 990–998. [Google Scholar] [CrossRef]
- Zhang, J.; Yue, M.; Wang, X.; Qin, D. Synthesis of nanosized TS-1 zeolites through solid transformation method with unprecedented low usage of tetrapropylammonium hydroxide. Microporous Mesoporous Mater. 2015, 217, 96–101. [Google Scholar] [CrossRef]
Sample | SBET 1 /m2 g−1 | Vmicro. 2 /m3 g−1 | Sext. 2 /m2 g−1 |
---|---|---|---|
TS-1-p | 467 | 0.18 | 78 |
TS-1-p-ac | 469 | 0.18 | 96 |
TS-1-p-ac-re | 489 | 0.18 | 82 |
Catalyst | Si/Ti (mol/mol) | Si/K (mol/mol) | Si/Na (mol/mol) | Conversion (%) | Selectivity (%) | TON 1 (mol/mol-Ti) | Rinit. 2 (×10−3/s) | SH2O2 3 (%) |
---|---|---|---|---|---|---|---|---|
TS-1-p | 17 | 58 | 669 | 2.1 | 85.9 | 5 | 0.9 | 28.7 |
TS-1-p-ac | 18 | >1000 | >1000 | 7.9 | 84.7 | 18 | 21.1 | >99 |
TS-1-p-ac-re | 20 | n.d. | n.d. | 23.1 | 98.2 | 59 | 49.5 | >99 |
TS-1 [39] 4 | 98 | - | - | 21.5 | 100 | - | - | 84.9 |
TS-1 [51] 5 | 58 | - | - | 21.9 | - | - | - | - |
TS-1 [52] 6 | 40.6 | - | - | 22.8 | 95 | - | - | 93 |
TS-1 7 | 45 | - | - | 24.4 | 90.4 | - | - | 80.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, K.; Li, G.; Xu, F.; Dai, T.; Su, W.; Wang, H.; Li, T.; Wang, Y.; Wang, J. Nano-Cavities within Nano-Zeolites: The Influencing Factors of the Fabricating Process on Their Catalytic Activities. Nanomaterials 2023, 13, 1923. https://doi.org/10.3390/nano13131923
Fu K, Li G, Xu F, Dai T, Su W, Wang H, Li T, Wang Y, Wang J. Nano-Cavities within Nano-Zeolites: The Influencing Factors of the Fabricating Process on Their Catalytic Activities. Nanomaterials. 2023; 13(13):1923. https://doi.org/10.3390/nano13131923
Chicago/Turabian StyleFu, Kairui, Geng Li, Fulin Xu, Tiantong Dai, Wen Su, Hao Wang, Tianduo Li, Yunan Wang, and Jingui Wang. 2023. "Nano-Cavities within Nano-Zeolites: The Influencing Factors of the Fabricating Process on Their Catalytic Activities" Nanomaterials 13, no. 13: 1923. https://doi.org/10.3390/nano13131923
APA StyleFu, K., Li, G., Xu, F., Dai, T., Su, W., Wang, H., Li, T., Wang, Y., & Wang, J. (2023). Nano-Cavities within Nano-Zeolites: The Influencing Factors of the Fabricating Process on Their Catalytic Activities. Nanomaterials, 13(13), 1923. https://doi.org/10.3390/nano13131923