Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (59)

Search Parameters:
Keywords = methicillin genetic determinants

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 6196 KB  
Article
Phenotypic and Genotypic Bacterial Virulence and Resistance Profiles in Hidradenitis Suppurativa
by Corina Ioana Cucu, Călin Giurcăneanu, Elena Poenaru, Liliana Gabriela Popa, Mircea Ioan Popa, Mariana Carmen Chifiriuc, Veronica Lazăr, Alina Maria Holban, Irina Gheorghe-Barbu, Andrei-Alexandru Muntean, Costin Ștefan Caracoti and Mara Mădălina Mihai
Int. J. Mol. Sci. 2025, 26(8), 3502; https://doi.org/10.3390/ijms26083502 - 9 Apr 2025
Viewed by 1276
Abstract
Hidradenitis suppurativa (HS) is a chronic inflammatory skin condition, primarily affecting young individuals, with a significant impact on their quality of life due to recurrent, painful nodules, abscesses, and oozing sinus tracts, primarily affecting intertriginous areas. The pathogenesis of HS is multifactorial, involving [...] Read more.
Hidradenitis suppurativa (HS) is a chronic inflammatory skin condition, primarily affecting young individuals, with a significant impact on their quality of life due to recurrent, painful nodules, abscesses, and oozing sinus tracts, primarily affecting intertriginous areas. The pathogenesis of HS is multifactorial, involving a complex interplay between genetic predisposition, immune dysregulation, microbial, and environmental factors. While it is known that cutaneous and gut microbiome contribute to innate immune dysregulation in HS, their precise involvement in disease pathogenesis remains unclear. Despite several studies investigating the microbiome of HS lesions, either by culture-dependent or independent methods, there is no data available on the interplay between bacterial virulence profiles, clinical manifestations, and the host immune response. This study aimed to explore the phenotypic and genotypic resistance and virulence profiles of microorganisms isolated from HS lesions (including the expression of soluble virulence factors and the ability to develop biofilms), with a special focus on Staphylococcus aureus (S. aureus), one of the most frequent infectious agents of HS. A total of 92 bacterial strains, belonging to 20 different bacterial species, were isolated from the HS lesions of 23 patients. The strains of Staphylococcus, Corynebacterium, and Enterococcus expressed the highest levels of soluble virulence factors, such as hemolysins, lecithinase, and lipase, which are involved in bacterial persistence, local invasivity, and tissue damage. Moreover, a significant variation among bacterial species was noted regarding the capacity to develop biofilms, with a potential impact on disease chronicization, bacterial tolerance to antibiotics, and immune defense mechanisms. The genetic characterization of methicillin-resistant staphylococci revealed the presence of adhesins, hemolysin and enterotoxin genes as well as methicillin and macrolides resistance genes. Our findings highlight the critical role of virulence determinants, including bacterial biofilms, in HS pathogenesis, emphasizing the need for targeted therapeutic strategies to disrupt biofilms and mitigate infection severity. Full article
(This article belongs to the Special Issue Recent Advances in Wound Healing: 2nd Edition)
Show Figures

Figure 1

12 pages, 643 KB  
Article
In Vitro Susceptibility of Clinical and Carrier Strains of Staphylococcus aureus to STAFAL® Phage Preparation
by Marek Straka, Zuzana Hubenáková, Lucia Janošíková, Aneta Bugalová, Andrej Minich, Martin Wawruch, Adriana Liptáková, Hana Drahovská and Lívia Slobodníková
Int. J. Mol. Sci. 2024, 25(23), 12885; https://doi.org/10.3390/ijms252312885 - 29 Nov 2024
Viewed by 1311
Abstract
The treatment of infections caused by Staphylococcus aureus is currently complicated by the increasing number of strains resistant to antimicrobial agents. One promising way to solve this problem is phage therapy. Due to the lack of data on the effectiveness and safety of [...] Read more.
The treatment of infections caused by Staphylococcus aureus is currently complicated by the increasing number of strains resistant to antimicrobial agents. One promising way to solve this problem is phage therapy. Due to the lack of data on the effectiveness and safety of phage preparations, STAFAL® is the only registered phage preparation for the treatment of infectious diseases in the Slovak Republic and the entire European Union. The aim of this work was to determine the effectiveness of the STAFAL® phage preparation against S. aureus strains of different origins with variable sensitivity to antimicrobial substances and with different genetic backgrounds. For this purpose, 111 carrier strains, 35 clinical isolates from bloodstream infections, and 46 strains from skin and soft tissue infections were analysed. The effectiveness of STAFAL® was determined by the plaque forming method. STAFAL® was effective against 74.0% of the strains tested. Susceptibility to this phage preparation was significantly higher in strains resistant to methicillin (MRSA), erythromycin and clindamycin (p < 0.05). The high efficiency of the STAFAL® preparation was confirmed against spa types t003, t024 and t032, typical of the hospital environment. The in vitro results indicate high therapeutic potential of the STAFAL® antistaphylococcal phage preparation, especially against MRSA strains. Full article
(This article belongs to the Special Issue Bacteriophages Biology and Bacteriophage-Derived Technologies)
Show Figures

Figure 1

14 pages, 678 KB  
Article
Prevalence and Molecular Epidemiology of Intestinal Colonization by Multidrug-Resistant Bacteria among Hematopoietic Stem-Cell Transplantation Recipients: A Bulgarian Single-Center Study
by Denis Niyazi, Stoyan Vergiev, Rumyana Markovska and Temenuga Stoeva
Antibiotics 2024, 13(10), 920; https://doi.org/10.3390/antibiotics13100920 - 26 Sep 2024
Cited by 1 | Viewed by 2407
Abstract
Background/Objectives: Intestinal colonization by multidrug-resistant (MDR) bacteria is considered one of the main risk factors for invasive infections in the hematopoietic stem-cell transplant (HSCT) setting, associated with hard-to-eradicate microorganisms. The aim of this study was to assess the rate of intestinal colonization [...] Read more.
Background/Objectives: Intestinal colonization by multidrug-resistant (MDR) bacteria is considered one of the main risk factors for invasive infections in the hematopoietic stem-cell transplant (HSCT) setting, associated with hard-to-eradicate microorganisms. The aim of this study was to assess the rate of intestinal colonization by MDR bacteria and their microbial spectrum in a group of post-HSCT patients to study the genetic determinants of beta-lactam and glycopeptide resistance in the recovered isolates, as well as to determine the epidemiological relation between them. Methods: The intestinal colonization status of 74 patients admitted to the transplantation center of University Hospital “St. Marina”—Varna in the period January 2019 to December 2021 was investigated. Stool samples/rectal swabs were screened for third-generation cephalosporin and/or carbapenem-resistant Gram-negative bacteria, methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), and Stenotrophomonas maltophilia. Identification and antimicrobial susceptibility testing were performed by Phoenix (BD, Sparks, MD, USA) and MALDI Biotyper sirius (Bruker, Bremen, Germany). Molecular genetic methods (PCR, DNA sequencing) were used to study the mechanisms of beta-lactam and glycopeptide resistance in the collected isolates, as well as the epidemiological relationship between them. Results: A total of 28 patients (37.8%) were detected with intestinal colonization by MDR bacteria. Forty-eight non-duplicate MDR bacteria were isolated from their stool samples. Amongst them, the Gram-negative bacteria prevailed (68.8%), dominated by ESBL-producing Escherichia coli (30.3%), and followed by carbapenem-resistant Pseudomonas sp. (24.2%). The Gram-positive bacteria were represented exclusively by Enterococcus faecium (31.2%). The main beta-lactam resistance mechanisms were associated with CTX-M and VIM production. VanA was detected in all vancomycin-resistant enterococci. A clonal relationship was observed among Enterobacter cloacae complex and among E. faecium isolates. Conclusions: To the best of our knowledge, this is the first Bulgarian study that presents detailed information about the prevalence, resistance genetic determinants, and molecular epidemiology of MDR gut-colonizing bacteria in HSCT patients. Full article
Show Figures

Figure 1

12 pages, 2631 KB  
Article
Genomic Analyses of Methicillin-Susceptible and Methicillin-Resistant Staphylococcus pseudintermedius Strains Involved in Canine Infections: A Comprehensive Genotypic Characterization
by Maria Eduarda Rocha Jacques da Silva, Gabriela Merker Breyer, Mateus Matiuzzi da Costa, Bertram Brenig, Vasco Ariston de Carvalho Azevedo, Marisa Ribeiro de Itapema Cardoso and Franciele Maboni Siqueira
Pathogens 2024, 13(9), 760; https://doi.org/10.3390/pathogens13090760 - 4 Sep 2024
Cited by 1 | Viewed by 1588
Abstract
Staphylococcus pseudintermedius is frequently associated with several bacterial infections in dogs, highlighting a One Health concern due to the zoonotic potential. Given the clinical significance of this pathogen, we performed comprehensive genomic analyses of 28 S. pseudintermedius strains isolated from canine infections throughout [...] Read more.
Staphylococcus pseudintermedius is frequently associated with several bacterial infections in dogs, highlighting a One Health concern due to the zoonotic potential. Given the clinical significance of this pathogen, we performed comprehensive genomic analyses of 28 S. pseudintermedius strains isolated from canine infections throughout whole-genome sequencing using Illumina HiSeq, and compared the genetic features between S. pseudintermedius methicillin-resistant (MRSP) and methicillin-susceptible (MSSP) strains. Our analyses determined that MRSP genomes are larger than MSSP strains, with significant changes in antimicrobial resistance genes and virulent markers, suggesting differences in the pathogenicity of MRSP and MSSP strains. In addition, the pangenome analysis of S. pseudintermedius from canine and human origins identified core and accessory genomes with 1847 and 3037 genes, respectively, which indicates that most of the S. pseudintermedius genome is highly variable. Furthermore, phylogenomic analysis clearly separated MRSP from MSSP strains, despite their infection sites, showing phylogenetic differences according to methicillin susceptibility. Altogether our findings underscore the importance of studying the evolutionary dynamics of S. pseudintermedius, which is crucial for the development of effective prevention and control strategies of resistant S. pseudintermedius infections. Full article
Show Figures

Figure 1

13 pages, 2221 KB  
Article
Genotypic Shift and Diversification of MRSA Blood Stream Isolates in a University Hospital Setting: Evidence from a 12-Year Observational Study
by Yuka Motomura, Motoyasu Miyazaki, Mitsuhiro Kamada, Shinichi Morimoto, Yoshihiko Nakamura, Tomomitsu Satho, Tohru Takata and Nobuhiro Kashige
Antibiotics 2024, 13(7), 670; https://doi.org/10.3390/antibiotics13070670 - 19 Jul 2024
Cited by 4 | Viewed by 2060
Abstract
There have been few reports regarding the long-term trends in the genotypes of methicillin-resistant Staphylococcus aureus (MRSA) bloodstream isolates. Therefore, this study was performed to investigate the longitudinal trends in the genotypes of MRSA bloodstream isolates obtained from hospitalized patients during a 12-year [...] Read more.
There have been few reports regarding the long-term trends in the genotypes of methicillin-resistant Staphylococcus aureus (MRSA) bloodstream isolates. Therefore, this study was performed to investigate the longitudinal trends in the genotypes of MRSA bloodstream isolates obtained from hospitalized patients during a 12-year study period from 2010 to 2021 at a tertiary care university hospital. Over the 12-year period from 2010 to 2021, we conducted a genetic investigation focusing on 245 MRSA strains isolated from the blood of hospitalized patients. The genotypes of the MRSA bloodstream isolates were determined by Staphylococcal Cassette Chromosome mec (SCCmec) typing, accessory gene regulator (agr) typing, PCR-based ORF typing (POT), and multilocus sequence typing (MLST). Strains with the same POT type detected in two or more isolates were designated as epidemic clones, while strains without a common POT type were classified as sporadic clones. Until 2015, isolates with SCCmec II/agr II were prevalent, but isolates with SCCmec IV/agr III increased from 2016. A total of 128 strains (52%) were identified as epidemic clones, while 117 strains (48%) were classified as sporadic clones. The detection rate of sporadic clones increased significantly since 2016 (p < 0.05). The epidemic clones were classified into three clusters, with MRSA of clonal complex (CC) 1 being prominent after 2016. This study showed that the genotypes of MRSA bloodstream isolates underwent a shift from SCCmec II/agr II type to SCCmec IV/agr III type, with a notable increase in MRSA of CC1, after 2016. There was a significant increase in the proportion of sporadic strains among the isolates, suggesting the diversification of genotypes. Full article
Show Figures

Figure 1

17 pages, 993 KB  
Article
New Insights into Molecular Characterization, Antimicrobial Resistance and Virulence Factors of Methicillin-Sensitive Coagulase-Positive Staphylococcus spp. from Dogs with Pyoderma and Otitis Externa
by Faten Ben Chehida, Wafa Tombari, Haythem Gharsa, Youssef Rabia, Sana Ferhi, Maha Jrad and Lilia Messadi
Microbiol. Res. 2024, 15(3), 1208-1224; https://doi.org/10.3390/microbiolres15030081 - 12 Jul 2024
Cited by 3 | Viewed by 1905
Abstract
The first Tunisian national molecular survey of coagulase-positive staphylococci (CoPS) isolated from dogs with pyoderma and otitis externa was conducted to evaluate the prevalence of CoPS and identify its phenotypic and genotypic diversities. A total of 99 out of the 195 samples collected [...] Read more.
The first Tunisian national molecular survey of coagulase-positive staphylococci (CoPS) isolated from dogs with pyoderma and otitis externa was conducted to evaluate the prevalence of CoPS and identify its phenotypic and genotypic diversities. A total of 99 out of the 195 samples collected from 39 sick dogs were identified across multiple sites as methicillin-susceptible CoPS belonging to the species S. pseudintermedius (64.4%), S. aureus (20.2%), S. coagulans (10.1%), and S. hyicus (5%). Fifteen sampled dogs carried more than one Staphylococcus species. Their antibiotic resistance and virulence factors were determined using conventional and molecular methods. Of the S. pseudintermedius isolates found, 17.4% were multidrug-resistant, whereas high rates of virulence genes were observed among the S. aureus isolates. On polystyrene surfaces, 75% of S. aureus isolates were biofilm producers, of which 15% were classified as strong producers. The capsular polysaccharide cap8 genotype was predominant among them. A MultiLocus Sequence Typing (MLST) analysis clustered the S.aureus isolates into five distinct sequence types (STs), with four assigned for the first time. Our findings highlight the spread of CoPS among diseased dogs and, especially, the emergence of S. hyicus, S. coagulans, multidrug-resistant S. pseudintermedius and S. aureus isolates with high genetic variability. The precise characterization of these strains, as well as their continuous monitoring, is necessary for the implementation of preventive strategies given the significant public health risk. Full article
(This article belongs to the Special Issue Veterinary Microbiology and Diagnostics)
Show Figures

Figure 1

13 pages, 1381 KB  
Article
Resistome, Virulome, and Clonal Variation in Methicillin-Resistant Staphylococcus aureus (MRSA) in Healthy Swine Populations: A Cross-Sectional Study
by Vanessa Silva, Adriana Silva, Raquel Barbero, Mario Romero, Rosa del Campo, Manuela Caniça, Rui Cordeiro, Gilberto Igrejas and Patricia Poeta
Genes 2024, 15(5), 532; https://doi.org/10.3390/genes15050532 - 24 Apr 2024
Cited by 2 | Viewed by 2052
Abstract
This cross-sectional study investigates the methicillin-resistant Staphylococcus aureus (MRSA): its prevalence, antimicrobial resistance, and molecular characteristics in healthy swine populations in central Portugal. A total of 213 samples were collected from pigs on twelve farms, and MRSA prevalence was assessed using selective agar [...] Read more.
This cross-sectional study investigates the methicillin-resistant Staphylococcus aureus (MRSA): its prevalence, antimicrobial resistance, and molecular characteristics in healthy swine populations in central Portugal. A total of 213 samples were collected from pigs on twelve farms, and MRSA prevalence was assessed using selective agar plates and confirmed via molecular methods. Antimicrobial susceptibility testing and whole genome sequencing (WGS) were performed to characterize resistance profiles and genetic determinants. Among the 107 MRSA-positive samples (83.1% prevalence), fattening pigs and breeding sows exhibited notably high carriage rates. The genome of 20 isolates revealed the predominance of the ST398 clonal complex, with diverse spa types identified. Antimicrobial susceptibility testing demonstrated resistance to multiple antimicrobial agents, including penicillin, cefoxitin, and tetracycline. WGS analysis identified a diverse array of resistance genes, highlighting the genetic basis of antimicrobial resistance. Moreover, virulence gene profiling revealed the presence of genes associated with pathogenicity. These findings underscore the significant prevalence of MRSA in swine populations and emphasize the need for enhanced surveillance and control measures to mitigate zoonotic transmission risks. Implementation of prudent antimicrobial use practices and targeted intervention strategies is essential to reducing MRSA prevalence and safeguarding public health. Continued research efforts are warranted to elucidate transmission dynamics and virulence potential, ultimately ensuring food safety and public health protection. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

15 pages, 1427 KB  
Article
Methicillin Resistance Elements in the Canine Pathogen Staphylococcus pseudintermedius and Their Association with the Peptide Toxin PSM-mec
by Gordon Y. C. Cheung, Ji Hyun Lee, Ryan Liu, Sara D. Lawhon, Ching Yang and Michael Otto
Antibiotics 2024, 13(2), 130; https://doi.org/10.3390/antibiotics13020130 - 28 Jan 2024
Cited by 3 | Viewed by 3535
Abstract
Staphylococcus pseudintermedius is a frequent cause of infections in dogs. Infectious isolates of this coagulase-positive staphylococcal species are often methicillin- and multidrug-resistant, which complicates therapy. In staphylococci, methicillin resistance is encoded by determinants found on mobile genetic elements called Staphylococcal Chromosome Cassette mec [...] Read more.
Staphylococcus pseudintermedius is a frequent cause of infections in dogs. Infectious isolates of this coagulase-positive staphylococcal species are often methicillin- and multidrug-resistant, which complicates therapy. In staphylococci, methicillin resistance is encoded by determinants found on mobile genetic elements called Staphylococcal Chromosome Cassette mec (SCCmec), which, in addition to methicillin resistance factors, sometimes encode additional genes, such as further resistance factors and, rarely, virulence determinants. In this study, we analyzed SCCmec in a collection of infectious methicillin-resistant S. pseudintermedius (MRSP) isolates from predominant lineages in the United States. We found that several lineages characteristically have specific types of SCCmec elements and Agr types and harbor additional factors in their SCCmec elements that may promote virulence or affect DNA uptake. All isolates had SCCmec-encoded restriction–modification (R-M) systems of types I or II, and sequence types (STs) ST84 and ST64 had one type II and one type I R-M system, although the latter lacked a complete methylation enzyme gene. ST68 isolates also had an SCCmec-encoded CRISPR system. ST71 isolates had a psm-mec gene, which, in all but apparently Agr-dysfunctional isolates, produced a PSM-mec peptide toxin, albeit at relatively small amounts. This study gives detailed insight into the composition of SCCmec elements in infectious isolates of S. pseudintermedius and lays the genetic foundation for further efforts directed at elucidating the contribution of identified accessory SCCmec factors in impacting SCCmec-encoded and thus methicillin resistance-associated virulence and resistance to DNA uptake in this leading canine pathogen. Full article
Show Figures

Figure 1

17 pages, 4174 KB  
Review
Beyond the Wild MRSA: Genetic Features and Phylogenomic Review of mecC-Mediated Methicillin Resistance in Non-aureus Staphylococci and Mammaliicocci
by Idris Nasir Abdullahi, Javier Latorre-Fernández, Rine Christopher Reuben, Islem Trabelsi, Carmen González-Azcona, Ameni Arfaoui, Yahaya Usman, Carmen Lozano, Myriam Zarazaga and Carmen Torres
Microorganisms 2024, 12(1), 66; https://doi.org/10.3390/microorganisms12010066 - 29 Dec 2023
Cited by 10 | Viewed by 3746
Abstract
Methicillin resistance, mediated by the mecA gene in staphylococci and mammaliicocci, has caused tremendous setbacks in the use of antibiotics in human and veterinary medicine due to its high potential of presenting the multidrug resistance (MDR) phenotype. Three other mec analogs exist, of [...] Read more.
Methicillin resistance, mediated by the mecA gene in staphylococci and mammaliicocci, has caused tremendous setbacks in the use of antibiotics in human and veterinary medicine due to its high potential of presenting the multidrug resistance (MDR) phenotype. Three other mec analogs exist, of which the mecC has evolutionary been associated with methicillin-resistant Staphylococcus aureus (MRSA) in wild animals, thus loosely referred to as the wild MRSA. In this study, we present an epidemiological review and genomic analysis of non-aureus staphylococci and mammaliicocci that carry the mecC-mediated methicillin resistance trait and determine whether this trait has any relevant link with the One Health niches. All previous studies (2007 till 2023) that described the mecC gene in non-aureus staphylococci and mammaliicocci were obtained from bibliometric databases, reviewed, and systematically analyzed to obtain the antimicrobial resistance (AMR) and virulence determinants, mobilome, and other genetic contents. Moreover, core genome single-nucleotide polymorphism analysis was used to assess the relatedness of these strains. Of the 533 articles analyzed, only 16 studies (on livestock, environmental samples, milk bulk tanks, and wild animals) were eligible for inclusion, of which 17 genomes from 6 studies were used for various in silico genetic analyses. Findings from this systematic review show that all mecC-carrying non-aureus staphylococci were resistant to only beta-lactam antibiotics and associated with the classical SCCmec XI of S. aureus LGA251. Similarly, two studies on wild animals reported mecC-carrying Mammaliicoccus stepanovicii associated with SCCmec XI. Nevertheless, most of the mecC-carrying Mammaliicoccus species presented an MDR phenotype (including linezolid) and carried the SCCmec-mecC hybrid associated with mecA. The phylogenetic analysis of the 17 genomes revealed close relatedness (<20 SNPs) and potential transmission of M. sciuri and M. lentus strains in livestock farms in Algeria, Tunisia, and Brazil. Furthermore, closely related M. sciuri strains from Austria, Brazil, and Tunisia (<40 SNPs) were identified. This systematic review enhances our comprehension of the epidemiology and genetic organization of mecC within the non-aureus staphylococci and mammaliicocci. It could be hypothesized that the mecC-carrying non-aureus staphylococci are evolutionarily related to the wild MRSA-mecC. The potential implications of clonal development of a lineage of mecA/mecC carrying strains across multiple dairy farms in a vast geographical region with the dissemination of MDR phenotype is envisaged. It was observed that most mecC-carrying non-aureus staphylococci and mammaliicocci were reported in mastitis cases. Therefore, veterinarians and veterinary microbiology laboratories must remain vigilant regarding the potential existence of mecA/mecC strains originating from mastitis as a potential niche for this resistance trait. Full article
(This article belongs to the Special Issue Pathogen Infection in Wildlife 2.0)
Show Figures

Figure 1

10 pages, 538 KB  
Brief Report
The Impact of MRSA Colonization on Healthcare-Associated Infections in Long-Term Care Facility Residents: A Whole-Genome Sequencing-Based Study
by Manuel Callejón Fernández, Rossana Abreu Rodríguez, Ángeles Arias, Armando Aguirre-Jaime, María Beatriz Castro Hernández, María José Ramos Real, Yanet Pedroso Fernández and María Lecuona
Microorganisms 2023, 11(12), 2842; https://doi.org/10.3390/microorganisms11122842 - 23 Nov 2023
Cited by 5 | Viewed by 3083
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) colonization has been considered a risk factor for the development of infection, however, there are no studies that have compared the colonizing and infecting strains using whole-genome sequencing (WGS). The aim of this study is to determine the prevalence of [...] Read more.
Methicillin-resistant Staphylococcus aureus (MRSA) colonization has been considered a risk factor for the development of infection, however, there are no studies that have compared the colonizing and infecting strains using whole-genome sequencing (WGS). The aim of this study is to determine the prevalence of and risk factors for MRSA colonization among long-term care facilities (LTCF) residents of Tenerife (Spain), and to analyze the epidemiological relationship between the colonizing and infecting strains using WGS. A point-prevalence study was carried out at 14 LTCFs in Tenerife from October 2020 to May 2021. Nasal swabs were cultured for MRSA. Colonized residents were followed up for two years. A phylogenetic comparison between colonization and infection strains was performed using WGS. A total of 764 residents were included. The prevalence of colonization by MRSA was 28.1% (n = 215), of which 12 (5.6%) subsequently developed infection. A close genetic relationship between colonization and infection isolates was found in three of the four (75%) residents studied. Our study confirms that colonized residents can develop serious MRSA infections from the same nasal colonization strain. Given the high prevalence of MRSA colonization in these centers, it is necessary to implement strategies with preventive measures to avoid the development of infection and the transmission of MRSA. Full article
(This article belongs to the Special Issue Advances in Public Health Microbiology 2023)
Show Figures

Figure 1

14 pages, 935 KB  
Article
Within-Host Diversity of Coagulase-Negative Staphylococci Resistome from Healthy Pigs and Pig Farmers, with the Detection of cfr-Carrying Strains and MDR-S. borealis
by Idris Nasir Abdullahi, Carmen Lozano, Carmen Simón, Myriam Zarazaga and Carmen Torres
Antibiotics 2023, 12(10), 1505; https://doi.org/10.3390/antibiotics12101505 - 2 Oct 2023
Cited by 10 | Viewed by 2291
Abstract
The ecology and diversity of resistome in coagulase-negative staphylococci (CoNS) from healthy pigs and pig farmers are rarely available as most studies focused on the livestock-associated methicillin-resistant S. aureus. This study aims to characterize the antimicrobial resistance (AMR) mechanisms, intra-host species diversity [...] Read more.
The ecology and diversity of resistome in coagulase-negative staphylococci (CoNS) from healthy pigs and pig farmers are rarely available as most studies focused on the livestock-associated methicillin-resistant S. aureus. This study aims to characterize the antimicrobial resistance (AMR) mechanisms, intra-host species diversity (more than one species in a host), and intra-species AMR diversity (same species with more than one AMR profile) in CoNS recovered from the nasal cavities of healthy pigs and pig farmers. One-hundred-and-one CoNS strains previously recovered from 40 pigs and 10 pig farmers from four Spanish pig farms were tested to determine their AMR profiles. Non-repetitive strains were selected (n = 75) and their AMR genes, SCCmec types, and genetic lineages were analyzed by PCR/sequencing. Of the non-repetitive strains, 92% showed a multidrug resistance (MDR) phenotype, and 52% were mecA-positive, which were associated with SCCmec types V (46.2%), IVb (20.5%), and IVc (5.1%). A total of 28% of the pigs and pig farmers had intra-host species diversity, while 26% had intra-species AMR diversity. High repertoires of AMR genes were detected, including unusual ones such as tetO, ermT, erm43, and cfr. Most important was the detection of cfr (in S. saprophyticus and S. epidermidis-ST16) in pigs and pig farmers; whereas MDR-S. borealis strains were identified in pig farmers. Pig-to-pig transmission of CoNS with similar AMR genes and SCCmec types was detected in 42.5% of pigs. The high level of multidrug, within-host, and intra-species resistome diversity in the nasal CoNS highlights their ability to be AMR gene reservoirs in healthy pigs and pig farmers. The detection of MDR-S. borealis and linezolid-resistant strains underscore the need for comprehensive and continuous surveillance of MDR-CoNS at the pig farm level. Full article
Show Figures

Figure 1

10 pages, 1509 KB  
Article
Antibacterial and Disinfecting Effects of Standardised Tea Extracts on More than 100 Clinical Isolates of Methicillin-Resistant Staphylococcus aureus
by Ruth Feilcke, Volker Bär, Constanze Wendt and Peter Imming
Plants 2023, 12(19), 3440; https://doi.org/10.3390/plants12193440 - 29 Sep 2023
Cited by 3 | Viewed by 3492
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) infections are still a major problem in hospitals. The excellent safety profile, accessibility and anti-infective activity of tea extracts make them promising agents for the treatment of infected wounds. To investigate the possibility of sterilising MRSA-infected surfaces, including skin [...] Read more.
Methicillin-resistant Staphylococcus aureus (MRSA) infections are still a major problem in hospitals. The excellent safety profile, accessibility and anti-infective activity of tea extracts make them promising agents for the treatment of infected wounds. To investigate the possibility of sterilising MRSA-infected surfaces, including skin with tea extracts, we determined the MICs for different extracts from green and black tea (Camellia sinensis), including epigallocatechin gallate (EGCG), on a large number of clinical isolates of MRSA, selected to represent a high genetic diversity. The extracts were prepared to achieve the maximal extraction of EGCG from tea and were used as stable lyophilisate with a defined EGCG content. All extracts showed a complete inhibition of cell growth at a concentration of approx. 80 µg/mL of EGCG after a contact time of 24 h. Time–kill plots were recorded for the extract with the highest amount of EGCG. The reduction factor (RF) was 5 after a contact time of 240 min. EGCG and tea extracts showed an RF of 2 in methicillin-sensitive S. aureus. Extracts from green and black tea showed lower MICs than an aqueous solution with the same concentration of pure EGCG. To the best of our knowledge, we are the first to show a reduction of 99.999% of clinically isolated MRSA by green tea extract within 4 h. Full article
(This article belongs to the Special Issue Medicinal Plant Extracts)
Show Figures

Figure 1

11 pages, 1035 KB  
Article
Comparing the Phylogenetic Distribution of Multilocus Sequence Typing, Staphylococcal Protein A, and Staphylococcal Cassette Chromosome Mec Types in Methicillin-Resistant Staphylococcus Aureus (MRSA) in Korea from 1994 to 2020
by You-Jin Hwang
Antibiotics 2023, 12(9), 1397; https://doi.org/10.3390/antibiotics12091397 - 1 Sep 2023
Cited by 2 | Viewed by 1722
Abstract
Staphylococcus aureus (S. aureus) bacteremia is one of the most frequent and severe bacterial infections worldwide. Methicillin-resistant Staphylococcus aureus (MRSA) is a serious human pathogen that can cause a wide variety of infections. Comparative genetic analyses have shown that despite the [...] Read more.
Staphylococcus aureus (S. aureus) bacteremia is one of the most frequent and severe bacterial infections worldwide. Methicillin-resistant Staphylococcus aureus (MRSA) is a serious human pathogen that can cause a wide variety of infections. Comparative genetic analyses have shown that despite the existence of a vast number of genotypes, genotypes are restricted to certain geographical locations. By comparing multilocus sequence typing (MLST) and SCCmec types from 1994 to 2020, the present study intended to discover which genotype genes were related to MRSA infections. MLST, Staphylococcus aureus protein A (spa), and SCCmec typings were performed to determine their relationship during those years. Results revealed that MRSA isolates in the Republic of Korea were distributed among all major staphylococcal cassette chromosome mec (SCCmec) types. The majority of SCCmec isolates belonged to SCCmec type II and type IV. The majority of MLST had the sequence type (ST) 72, 239, 8, or 188. By contrast, minorities belonged to ST22 (SCCmec IV), ST772 (SCCmec V), and ST672 (SCCmec V) genotypes. The SCCmec type was determined for various types. The spa type was dispersed, seemingly regardless of its multidrug resistance property. The MLST type was found to be similar to the existing typical type. These results showed some correlations between resistance characteristics and types according to the characteristics of the MLST types distributed, compared to previous papers. Reports on genotype distribution of MLST and SCCmec types in MRSA are rare. These results show a clear distribution of MLST and SCCmec types of MRSA from 1994 to 2020 in the Republic of Korea. Full article
Show Figures

Figure 1

18 pages, 2800 KB  
Review
Molecular Determinants of β-Lactam Resistance in Methicillin-Resistant Staphylococcus aureus (MRSA): An Updated Review
by Harshad Lade and Jae-Seok Kim
Antibiotics 2023, 12(9), 1362; https://doi.org/10.3390/antibiotics12091362 - 24 Aug 2023
Cited by 81 | Viewed by 15297
Abstract
The development of antibiotic resistance in Staphylococcus aureus, particularly in methicillin-resistant S. aureus (MRSA), has become a significant health concern worldwide. The acquired mecA gene encodes penicillin-binding protein 2a (PBP2a), which takes over the activities of endogenous PBPs and, due to its [...] Read more.
The development of antibiotic resistance in Staphylococcus aureus, particularly in methicillin-resistant S. aureus (MRSA), has become a significant health concern worldwide. The acquired mecA gene encodes penicillin-binding protein 2a (PBP2a), which takes over the activities of endogenous PBPs and, due to its low affinity for β-lactam antibiotics, is the main determinant of MRSA. In addition to PBP2a, other genetic factors that regulate cell wall synthesis, cell signaling pathways, and metabolism are required to develop high-level β-lactam resistance in MRSA. Although several genetic factors that modulate β-lactam resistance have been identified, it remains unclear how they alter PBP2a expression and affect antibiotic resistance. This review describes the molecular determinants of β-lactam resistance in MRSA, with a focus on recent developments in our understanding of the role of mecA-encoded PBP2a and on other genetic factors that modulate the level of β-lactam resistance. Understanding the molecular determinants of β-lactam resistance can aid in developing novel strategies to combat MRSA. Full article
(This article belongs to the Special Issue The Molecular Epidemiology and Antimicrobial Resistance of MRSA)
Show Figures

Figure 1

11 pages, 605 KB  
Article
Whole Genome Sequencing and Molecular Epidemiology of Clinical Isolates of Staphylococcus aureus from Algeria
by Rachida Namoune, Abla Djebbar, Rebecca Mekler, Martin McHugh, Mohammed El Amine Bekara, Arun Decano, Matthew T. G. Holden and Mohammed Sebaihia
Microorganisms 2023, 11(8), 2047; https://doi.org/10.3390/microorganisms11082047 - 9 Aug 2023
Cited by 4 | Viewed by 3157
Abstract
Staphylococcus aureus is an important pathogen responsible for various healthcare- and community-acquired infections. In this study, whole genome sequencing (WGS) was used to genotype S. aureus clinical isolates from two hospitals in Algeria and to characterize their genetic determinants of antimicrobial resistance. Seventeen [...] Read more.
Staphylococcus aureus is an important pathogen responsible for various healthcare- and community-acquired infections. In this study, whole genome sequencing (WGS) was used to genotype S. aureus clinical isolates from two hospitals in Algeria and to characterize their genetic determinants of antimicrobial resistance. Seventeen S. aureus isolates were included in this study. WGS, single-nucleotide polymorphism (SNP)-based phylogenetic analysis, in silico multilocus sequence typing (MLST), spa and staphylococcal cassette chromosome mec (SCCmec) typing and in silico antimicrobial resistance profiling were performed. Phenotypic antibiotic susceptibility testing was performed using the Vitek 2 system and the disk diffusion method. The isolates were separated into sequence types (STs), with ST80 being predominant; five clonal complexes (CCs); four spa types (t044, t127, t368, t386); and two SCCmec types (IVc and IVa). Whole genome analysis revealed the presence of the resistance genes mecA, blaZ, ermC, fusB, fusC, tetK, aph(3′)-IIIa and aad(6) and mutations conferring resistance in the genes parC and fusA. The rate of multidrug resistance (MDR) was 64%. This work provides a high-resolution characterization of methicillin-resistant S. aureus (MRSA) and methicillin-susceptible S. aureus (MSSA) isolates and emphasizes the importance of continuous surveillance to monitor the spread of S. aureus in healthcare settings in the country. Full article
(This article belongs to the Section Public Health Microbiology)
Show Figures

Figure 1

Back to TopTop