In Vitro Susceptibility of Clinical and Carrier Strains of Staphylococcus aureus to STAFAL® Phage Preparation
Abstract
:1. Introduction
2. Results
2.1. Antimicrobial Susceptibility of Isolated Staphylococcus aureus Strains
2.2. Susceptibility to STAFAL®
3. Discussion
4. Materials and Methods
4.1. Characteristics of Bacterial Strains
4.2. Testing of Susceptibility of Staphylococcus aureus Strains to STAFAL® Phage Preparation
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alves, D.R.; Gaudion, A.; Bean, J.E.; Perez Esteban, P.; Arnot, T.C.; Harper, D.R.; Kot, W.; Hansen, L.H.; Enright, M.C.; Jenkins, A.T. Combined use of bacteriophage K and a novel bacteriophage to reduce Staphylococcus aureus biofilm formation. Appl. Environ. Microbiol. 2014, 80, 6694–6703. [Google Scholar] [CrossRef] [PubMed]
- Nikolic, P.; Mudgil, P. The Cell Wall, Cell Membrane and Virulence Factors of Staphylococcus aureus and Their Role in Antibiotic Resistance. Microorganisms 2023, 11, 259. [Google Scholar] [CrossRef] [PubMed]
- Piewngam, P.; Otto, M. Staphylococcus aureus colonisation and strategies for decolonisation. Lancet Microbe 2024, 5, e606–e618. [Google Scholar] [CrossRef] [PubMed]
- Agnello, S.; Wardlow, L.C.; Reed, E.; Smith, J.M.; Coe, K.; Day, S.R. Clinical Outcomes of Daptomycin Versus Anti-Staphylococcal Beta-Lactams in Definitive Treatment of Methicillin-susceptible Staphylococcus aureus Bloodstream Infections. Int. J. Antimicrob. Agents 2021, 58, 106363. [Google Scholar] [CrossRef] [PubMed]
- Joo, H.; Wu, S.M.; Soni, I.; Wang-Crocker, C.; Matern, T.; Beck, J.P.; Loc-Carrillo, C. Phage and Antibiotic Combinations Reduce Staphylococcus aureus in Static and Dynamic Biofilms Grown on an Implant Material. Viruses 2023, 15, 460. [Google Scholar] [CrossRef]
- Łubowska, N.; Grygorcewicz, B.; Kosznik-Kwaśnicka, K.; Zauszkiewicz-Pawlak, A.; Węgrzyn, A.; Dołęgowska, B.; Piechowicz, L. Characterization of the Three New Kayviruses and Their Lytic Activity Against Multidrug-Resistant Staphylococcus aureus. Microorganisms 2019, 7, 471. [Google Scholar] [CrossRef]
- Tong, S.Y.C.; Lye, D.C.; Yahav, D.; Sud, A.; Robinson, J.O.; Nelson, J.; Archuleta, S.; Roberts, M.A.; Cass, A.; Paterson, D.L.; et al. Effect of vancomycin or daptomycin with vs without an antistaphylococcal β-lactam on mortality, bacteremia, relapse, or treatment failure in patients with MRSA bacteremia: A randomized clinical trial. JAMA 2020, 323, 527–537. [Google Scholar] [CrossRef]
- Liu, K.; Wang, C.; Zhou, X.; Guo, X.; Yang, Y.; Liu, W.; Zhao, R.; Song, H. Bacteriophage therapy for drug-resistant Staphylococcus aureus infections. Front. Cell Infect. Microbiol. 2024, 14, 1336821. [Google Scholar] [CrossRef]
- Scottish Health Technologies Group HIS. SHTG Recommendation. 2023. Available online: https://shtg.scot/our-advice/bacteriophage-therapy-for-patients-with-difficult-to-treat-bacterial-infections/ (accessed on 23 September 2024).
- Möllers, M.; von Wahlde, M.-K.; Schuler, F.; Mellmann, A.; Böing, C.; Schwierzeck, V.; Schneider, J.S.; Kampmeier, S. Outbreak of MRSA in a Gynecology/Obstetrics Department during the COVID-19 Pandemic: A Cautionary Tale. Microorganisms 2022, 10, 689. [Google Scholar] [CrossRef]
- Zohra, T.; Numan, M.; Ikram, A.; Salman, M.; Khan, T.; Din, M.; Salman, M.; Farooq, A.; Amir, A.; Ali, M. Cracking the Challenge of Antimicrobial Drug Resistance with CRISPR/Cas9, Nanotechnology and Other Strategies in ESKAPE Pathogens. Microorganisms 2021, 9, 954. [Google Scholar] [CrossRef]
- Freitas, A.R.; Werner, G. Nosocomial Pathogens and Antimicrobial Resistance: Modern Challenges and Future Opportunities. Microorganisms 2023, 11, 1685. [Google Scholar] [CrossRef] [PubMed]
- Bozidis, P.; Markou, E.; Gouni, A.; Gartzonika, K. Does Phage Therapy Need a Pan-Phage? Pathogens 2024, 13, 522. [Google Scholar] [CrossRef] [PubMed]
- D’Accolti, M.; Soffritti, I.; Mazzacane, S.; Caselli, E. Bacteriophages as a Potential 360-Degree Pathogen Control Strategy. Microorganisms 2021, 9, 261. [Google Scholar] [CrossRef] [PubMed]
- Baláž, A.; Kajsik, M.; Budiš, J.; Szemes, T.; Turňa, J. PHERI—Phage Host ExploRation Pipeline. Microorganisms 2023, 11, 1398. [Google Scholar] [CrossRef]
- Uyttebroek, S.; Chen, B.; Onsea, J.; Ruythooren, F.; Debaveye, Y.; Devolder, D.; Spriet, I.; Depypere, M.; Wagemans, J.; Lavigne, R.; et al. Safety and efficacy of phage therapy in difficult-to-treat infections: A systematic review. Lancet Infect. Dis. 2022, 22, e208–e220. [Google Scholar] [CrossRef]
- Vázquez, R.; Díez-Martínez, R.; Domingo-Calap, P.; García, P.; Gutiérrez, D.; Muniesa, M.; Ruiz-Ruigómez, M.; Sanjuán, R.; Tomás, M.; Tormo-Mas, M.Á.; et al. Essential Topics for the Regulatory Consideration of Phages as Clinically Valuable Therapeutic Agents: A Perspective from Spain. Microorganisms 2022, 10, 717. [Google Scholar] [CrossRef]
- Doss, J.; Culbertson, K.; Hahn, D.; Camacho, J.; Barekzi, N. A Review of Phage Therapy against Bacterial Pathogens of Aquatic and Terrestrial Organisms. Viruses 2017, 9, 50. [Google Scholar] [CrossRef]
- Straka, M.; Dubinová, M.; Liptáková, A. Phascinating Phages. Microorganisms 2022, 10, 1365. [Google Scholar] [CrossRef]
- Weber-Dąbrowska, B.; Jończyk-Matysiak, E.; Żaczek, M.; Łobocka, M.; Łusiak-Szelachowska, M.; Górski, A. Bacteriophage Procurement for Therapeutic Purposes. Front. Microbiol. 2016, 7, 1177. [Google Scholar] [CrossRef]
- Weber-Dąbrowska, B.; Mulczyk, M.; Górski, A. Bacteriophages as an efficient therapy for antibiotic-resistant septicemia in man. Transplant. Proc. 2003, 35, 1385–1386. [Google Scholar] [CrossRef]
- Jennes, S.; Merabishvili, M.; Soentjens, P.; Pang, K.W.; Rose, T.; Keersebilck, E.; Soete, O.; Francois, P.M.; Teodorescu, S.; Verween, G.; et al. Use of bacteriophages in the treatment of colistin-only-sensitive Pseudomonas aeruginosa septicaemia in a patient with acute kidney injury-a case report. Crit. Care 2017, 21, 129. [Google Scholar] [CrossRef] [PubMed]
- Rogóż, P.; Amanatullah, D.F.; Międzybrodzki, R.; Manasherob, R.; Weber-Dąbrowska, B.; Fortuna, W.; Letkiewicz, S.; Górski, A. Phage therapy in orthopaedic implant-associated infections. In Phage Therapy: A Practical Approach; Górski, A., Międzybrodzki, R., Borysowski, J., Eds.; Springer Nature Switzerland AG: Berlin/Heidelberg, Germany, 2019; pp. 189–211. [Google Scholar]
- Rubalskii, E.; Ruemke, S.; Salmoukas, C.; Boyle, E.C.; Warnecke, G.; Tudorache, I.; Shrestha, M.; Schmitto, J.D.; Martens, A.; Rojas, S.V.; et al. Bacteriophage therapy for critical infections related to cardiothoracic surgery. Antibiotics 2020, 9, 232. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.; Dai, J.; Guo, M.; Li, J.; Zhou, X.; Li, F.; Gao, Y.; Qu, H.; Lu, H.; Jin, J.; et al. Pre-optimized phage therapy on secondary Acinetobacter baumannii infection in four critical COVID-19 patients. Emerg. Microbes Infect. 2021, 10, 612–618. [Google Scholar] [CrossRef] [PubMed]
- Abedon, S.T.; Kuhl, S.J.; Blasdel, B.G.; Kutter, E.M. Phage treatment of human infections. Bacteriophage 2011, 1, 66–85. [Google Scholar] [CrossRef] [PubMed]
- Fruciano, D.E.; Bourne, S. Phage as an antimicrobial agent: D’Herelle’s heretical theories and their role in the decline of phage prophylaxis in the West. Can. J. Infect. Dis. Med. Microbiol. 2007, 18, 19–26. [Google Scholar] [CrossRef]
- Chanishvili, N. Bacteriophages as Therapeutic and Prophylactic Means: Summary of the Soviet and Post Soviet Experiences. Curr. Drug Deliv. 2016, 13, 309–323. [Google Scholar] [CrossRef]
- Kutateladze, M.; Adamia, R. Phage therapy experience at the Eliava Institute. Med. Mal. Infect. 2008, 38, 426–430. [Google Scholar] [CrossRef]
- Żaczek, M.; Górski, A.; Weber-Dąbrowska, B.; Letkiewicz, S.; Fortuna, W.; Rogóż, P.; Pasternak, E.; Międzybrodzki, R. A Thorough Synthesis of Phage Therapy Unit Activity in Poland—Its History, Milestones and International Recognition. Viruses 2022, 14, 1170. [Google Scholar] [CrossRef]
- Jault, P.; Leclerc, T.; Jennes, S.; Pirnay, J.P.; Que, Y.A.; Resch, G.; Rousseau, A.F.; Ravat, F.; Carsin, H.; Floch, R.; et al. Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): A randomised, controlled, double-blind phase 1/2 trial. Lancet Infect. Dis. 2019, 19, 35–45. [Google Scholar] [CrossRef]
- Naureen, Z.; Malacarne, D.; Anpilogov, K.; Dautaj, A.; Camilleri, G.; Cecchin, S.; Bressan, S.; Casadei, A.; Albion, E.; Sorrentino, E.; et al. Comparison between American and European legislation in the therapeutical and alimentary bacteriophage usage. Acta Biomed 2020, 91, e2020023. [Google Scholar] [CrossRef]
- Yang, Q.; Le, S.; Zhu, T.; Wu, N. Regulations of phage therapy across the world. Front. Microbiol. 2023, 14, 1250848. [Google Scholar] [CrossRef] [PubMed]
- ŠÚKL. Available online: https://www.sukl.sk/hlavna-stranka/slovenska-verzia/pomocne-stranky/detail-lieku?page_id=386&lie_id=24546 (accessed on 19 July 2024).
- Pulverer, G.; Pillich, J.; Kocur, M. Zwei neue gegen pathogene Staphylokokken wirksame Bakteriophagen. Zentralbl Bakteriol. Parasit. Infekt. Hyg. I Orig. 1966, 201, 321–325. [Google Scholar]
- Barylski, J.; Enault, F.; Dutilh, B.E.; Schuller, M.B.P.; Edwards, R.A.; Gillis, A.; Klumpp, J.; Knezevic, P.; Krupovic, M.; Kuhn, J.H.; et al. Analysis of Spounaviruses as a Case Study for the Overdue Reclassification of Tailed Phages. Syst. Biol. 2020, 69, 110–123. [Google Scholar] [CrossRef] [PubMed]
- Straka, M.; Hubenakova, Z.; Lichvarikova, A.; Janosikova, L.; Markuskova, B.; Minich, A.; Liptakova, A.; Drahovska, H.; Slobodnikova, L. Susceptibility of Staphylococcus aureus strains to commercial therapeutic phage preparations. Bratisl. Lek. Listy. 2022, 123, 724–729. [Google Scholar] [CrossRef] [PubMed]
- Romero-Calle, D.; Guimarães Benevides, R.; Góes-Neto, A.; Billington, C. Bacteriophages as Alternatives to Antibiotics in Clinical Care. Antibiotics 2019, 8, 138. [Google Scholar] [CrossRef]
- Wang, B.; Du, L.; Dong, B.; Kou, E.; Wang, L.; Zhu, Y. Current Knowledge and Perspectives of Phage Therapy for Combating Refractory Wound Infections. Int. J. Mol. Sci. 2024, 25, 5465. [Google Scholar] [CrossRef]
- Pirnay, J.P. Phage Therapy in the Year 2035. Front. Microbiol. 2020, 11, 1171. [Google Scholar] [CrossRef]
- Verbeken, G.; Pirnay, J.P. European regulatory aspects of phage therapy: Magistral phage preparations. Curr. Opin. Virol. 2022, 52, 24–29. [Google Scholar] [CrossRef]
- Erol, H.B.; Kaskatepe, B.; Bakkaloglu, Z.; Suzuk Yildiz, S. The evaluation of five commercial bacteriophage cocktails against methicillin-resistant Staphylococcus aureus isolated from nasal swab samples. Arch. Microbiol. 2021, 203, 5735–5743. [Google Scholar] [CrossRef]
- Terwilliger, A.; Clark, J.; Karris, M.; Hernandez-Santos, H.; Green, S.; Aslam, S.; Maresso, A. Phage Therapy Related Microbial Succession Associated with Successful Clinical Outcome for a Recurrent Urinary Tract Infection. Viruses 2021, 13, 2049. [Google Scholar] [CrossRef]
- Price, J.R.; Cole, K.; Bexley, A.; Kostiou, V.; Eyre, D.W.; Golubchik, T.; Wilson, D.J.; Crook, D.W.; Walker, A.S.; Peto, T.E.A.; et al. Transmission of Staphylococcus aureus between health-care workers, the environment, and patients in an intensive care unit: A longitudinal cohort study based on whole-genome sequencing. Lancet Infect. Dis. 2017, 17, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Sakr, A.; Brégeon, F.; Mège, J.L.; Rolain, J.M.; Blin, O. Staphylococcus aureus Nasal Colonization: An Update on Mechanisms, Epidemiology, Risk Factors, and Subsequent Infections. Front. Microbiol. 2018, 9, 2419. [Google Scholar] [CrossRef] [PubMed]
- Attia, N.; Ghazal, A.; El Sherbini, E.; Shalaby, M. Have Methicillin Resistant Staphylococcus aureus clinical isolates to be also resistant to Streptogramins? Microbes Infect. Dis. 2021, 2, 286–294. [Google Scholar] [CrossRef]
- Jangale, N.P.; Joshi, P.A.; Gaigawale, A.S. Association of different phenotypes of MLSB and mupirocin resistance in clinical isolates of Staphylococcus aureus. J. Popul. Ther. Clin. Pharmacol. 2024, 31, 2173–2178. [Google Scholar] [CrossRef]
- Alseqely, M.; Newton-Foot, M.; Khalil, A.; El-Nakeeb, M.; Whitelaw, A.; Abouelfetouh, A. Association between fluoroquinolone resistance and MRSA genotype in Alexandria, Egypt. Sci. Rep. 2021, 11, 4253. [Google Scholar] [CrossRef] [PubMed]
- Dvořáčková, M.; Růžička, F.; Dvořáková-Heroldová, M.; Vacek, L.; Bezděková, D.; Benešík, M.; Petráš, P.; Pantůček, R. Možnosti terapeutického ovlivnění stafylokokových infekcí prostřednictvím bakteriofágů a vybrané metody testování citlivosti stafylokoků in vitro (Therapeutic potential of bacteriophages for staphylococcal infections and selected methods for in vitro susceptibility testing). Epidemiol. Mikrobiol. Imunol. 2020, 69, 10–18. [Google Scholar]
- Dvořáčková, M.; Růžička, F.; Benešík, M.; Pantůček, R.; Dvořáková-Heroldová, M. Antimicrobial effect of commercial phage preparation Stafal® on biofilm and planktonic forms of methicillin-resistant Staphylococcus aureus. Folia Microbiol. 2019, 64, 121–126. [Google Scholar] [CrossRef]
- Oechslin, F. Resistance Development to Bacteriophages Occurring during Bacteriophage Therapy. Viruses 2018, 10, 351. [Google Scholar] [CrossRef]
- Torres-Barceló, C.; Hochberg, M.E. Evolutionary rationale for phages as complements of antibiotics. Trends Microbiol. 2016, 24, 249–256. [Google Scholar] [CrossRef]
- Engelthaler, D.M.; Kelley, E.; Driebe, E.M.; Bowers, J.; Eberhard, C.F.; Trujillo, J.; Decruyenaere, F.; Schupp, J.M.; Mossong, J.; Keim, P.; et al. Rapid and robust phylotyping of spa t003, a dominant MRSA clone in Luxembourg and other European countries. BMC Infect. Dis. 2013, 13, 339. [Google Scholar] [CrossRef]
- Neradova, K.; Fridrichova, M.; Jakubu, V.; Pomorska, K.; Zemlickova, H. Epidemiological characteristics of methicillin-resistant Staphylococcus aureus isolates from bloodstream cultures at University Hospital in the Czech Republic. Folia Microbiol. 2020, 65, 615–622. [Google Scholar] [CrossRef] [PubMed]
- Bartels, M.D.; Boye, K.; Rhod Larsen, A.; Skov, R.; Westh, H. Rapid increase of genetically diverse methicillin-resistant Staphylococcus aureus, Copenhagen, Denmark. Emerg. Infect. Dis. 2007, 13, 1533–1540. [Google Scholar] [CrossRef] [PubMed]
- Jones, S.U.; Chua, K.H.; Chew, C.H.; Yeo, C.C.; Abdullah, F.H.; Othman, N.; Kee, B.P.; Puah, S.M. spa diversity of methicillin-resistant and -susceptible Staphylococcus aureus in clinical strains from Malaysia: A high prevalence of invasive European spa-type t032. PeerJ 2021, 9, e11195. [Google Scholar] [CrossRef] [PubMed]
- Pomorska, K.; Jakubu, V.; Malisova, L.; Fridrichova, M.; Musilek, M.; Zemlickova, H. Antibiotic Resistance, spa Typing and Clonal Analysis of Methicillin-Resistant Staphylococcus aureus (MRSA) Isolates from Blood of Patients Hospitalized in the Czech Republic. Antibiotics 2021, 10, 395. [Google Scholar] [CrossRef]
- Sutton, T.D.S.; Hill, C. Gut Bacteriophage: Current Understanding and Challenges. Front. Endocrinol. 2019, 10, 784. [Google Scholar] [CrossRef]
- Barathan, M.; Ng, S.L.; Lokanathan, Y.; Ng, M.H.; Law, J.X. The Profound Influence of Gut Microbiome and Extracellular Vesicles on Animal Health and Disease. Int. J. Mol. Sci. 2024, 25, 4024. [Google Scholar] [CrossRef]
- Suh, G.A.; Lodise, T.P.; Tamma, P.D.; Knisely, J.M.; Alexander, J.; Aslam, S.; Barton, K.D.; Bizzell, E.; Totten, K.M.; Campbell, J.L.; et al. Considerations for the Use of Phage Therapy in Clinical Practice. Antimicrob. Agents Chemother. 2022, 66, e0207121. [Google Scholar] [CrossRef]
- Abedon, S.T.; Danis-Wlodarczyk, K.M.; Alves, D.R. Phage Therapy in the 21st Century: Is There Modern, Clinical Evidence of Phage-Mediated Efficacy? Pharmaceuticals 2021, 14, 1157. [Google Scholar] [CrossRef]
- Pillich, J.; Výmola, F.; Buda, J. Voraussetzungen für eine erfolgreiche Therapie durch Staphylokokken-Phagenlysate [Assumptions for successful therapy using staphylococcal phage lysates]. Zentralbl. Bakteriol. Orig. 1969, 210, 377–381. [Google Scholar]
- Zelenková, H. Antistafylokokový fágový lyzát v liečbe chronických rán predkolenia na podklade chronickej venóznej insuficiencie a diabetes mellitus [Antistaphylococcal phage lysate in the treatment of chronic lower leg wounds based on chronic venous insufficiency and diabetes mellitus]. Kazuistiky Diabetol. 2014, 12, 15–19. [Google Scholar]
- Leitner, L.; Ujmajuridze, A.; Chanishvili, N.; Goderdzishvili, M.; Chkonia, I.; Rigvava, S.; Chkhotua, A.; Changashvili, G.; McCallin, S.; Schneider, M.P.; et al. Intravesical bacteriophages for treating urinary tract infections in patients undergoing transurethral resection of the prostate: A randomised, placebo-controlled, double-blind clinical trial. Lancet Infect. Dis. 2021, 21, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Ferry, T.; Kolenda, C.; Batailler, C.; Gustave, C.A.; Lustig, S.; Malatray, M.; Fevre, C.; Josse, J.; Petitjean, C.; Chidiac, C.; et al. Phage therapy as adjuvant to conservative surgery and antibiotics to salvage patients with relapsing S. aureus prosthetic knee infection. Front. Med. 2020, 7, 570572. [Google Scholar] [CrossRef] [PubMed]
- Schoeffel, J.; Wang, E.W.; Gill, D.; Frackler, J.; Horne, B.A.; Manson, T.; Doub, J.B. Successful use of salvage bacteriophage therapy for a recalcitrant MRSA knee and hip prosthetic joint infection. Pharmaceuticals 2022, 15, 177. [Google Scholar] [CrossRef] [PubMed]
- Fabijan, A.P.; Lin, R.C.; Ho, J.; Maddocks, S.; Zakour, N.L.; Iredell, J.R.; Team, W.B. Publisher correction: Safety of bacteriophage therapy in severe Staphylococcus aureus infection. Nat. Microbiol. 2020, 5, 652. [Google Scholar] [CrossRef]
- Jorgensen, J.H.; Pfaller, M.A. (Eds.) Manual of Clinical Microbiology; ASM Press: Washington, DC, USA, 2015. [Google Scholar]
- Martineau, F.; Picard, F.J.; Paradis, D.K.S.; Roy, P.H.; Ouellette, M.; Bergeron, M.G. Development of a PCR Assay for Identifi cation of Staphylococci at Genus and Species Levels. J. Clin. Microbiol. 2001, 39, 2541–2547. [Google Scholar] [CrossRef]
- EUCAST. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_14.0_Breakpoint_Tables.pdf (accessed on 22 November 2024).
- Martineau, F.; Picard, F.J.; Roy, P.H.; Ouellette, M.; Bergeron, M.G. Species-specific and ubiquitous-DNA-based assays for rapid identification of Staphylococcus aureus. J. Clin. Microbiol. 1998, 36, 618–623. [Google Scholar] [CrossRef]
- CDC. Available online: https://www.cdc.gov/narms/resources/glossary.html (accessed on 22 May 2024).
- Croes, S.; Deurenberg, R.H.; Boumans, M.L.; Beisser, P.S.; Neef, C.; Stobberingh, E.E. Staphylococcus aureus biofilm formation at the physiologic glucose concentration depends on the S. aureus lineage. BMC Microbiol. 2009, 9, 229. [Google Scholar] [CrossRef]
- Schwierzeck, V.; Effner, R.; Abel, F.; Reiger, M.; Notheis, G.; Held, J.; Simon, V.; Dintner, S.; Hoffmann, R.; Hagl, B.; et al. Molecular Assessment of Staphylococcus aureus Strains in STAT3 Hyper-IgE Syndrome Patients. J. Clin. Immunol. 2022, 42, 1301–1309. [Google Scholar] [CrossRef]
- Ridom Spa Server. Available online: http://spaserver.ridom.de/ (accessed on 22 November 2024).
- AUMED. Available online: https://aumed.cz/stafal/ (accessed on 22 November 2024).
ATB | Carrier Strains n = 111 (100.0) | Strains from Bloodstream Infections n = 35 (100.0) | Strains of Infections of Skin and Soft Tissues n = 46 (100.0) | Total n = 192 (100.0) | p-Value |
---|---|---|---|---|---|
OXA | <0.001 | ||||
S | 107 (96.4) | 27 (77.1) | 25 (54.3) | 159 (82.8) | |
R | 4 (3.6) | 8 (22.9) | 21 (45.7) | 33 (17.2) | |
ERY | <0.001 | ||||
S | 79 (71.2) | 22 (62.9) | 18 (39.1) | 119 (62.0) | |
R | 32 (28.8) | 13 (37.1) | 28 (60.9) | 73 (38.0) | |
CLI | 0.004 | ||||
S | 81 (73.0) | 26 (74.3) | 21 (45.7) | 128 (67.6) | |
R | 30 (27.0) | 9 (25.7) | 25 (54.3) | 64 (33.3) | |
TET | 0.443 | ||||
S | 102 (91.9) | 30 (85.6) | 43 (93.5) | 175 (91.1) | |
R | 9 (8.1) | 5 (14.3) | 3 (6.5) | 17 (8.9) | |
COT | - | ||||
S (I) | 111 (100.0) | 35 (100.0) | 46 (100.0) | 192 (100.0) | |
CIP | <0.001 | ||||
I | 108 (97.3) | 23 (65.7) | 21 (45.7) | 152 (79.2) | |
R | 3 (2.7) | 12 (34.3) | 25 (54.3) | 40 (20.8) | |
MDR | <0.001 | ||||
No | 108 (97.3) | 29 (82.9) | 28 (60.9) | 165 (85.9) | |
Yes | 3 (2.7) | 6 (17.1) | 18 (39.1) | 27 (14.1) |
ATB | MRSA n = 33 (100.0) | MSSA n = 159 (100.0) | Total n = 192 (100.0) | p-Value |
---|---|---|---|---|
ERY | <0.001 | |||
S | 12 (36.6) | 107 (67.3) | 119 (62.0) | |
R | 21 (63.6) | 52 (32.7) | 73 (38.0) | |
CLI | <0.001 | |||
S | 13 (39.4) | 115 (72.3) | 128 (66.7) | |
R | 20 (60.6) | 44 (27.7) | 64 (33.3) | |
TET | 1.000 * | |||
S | 30 (90.9) | 145 (91.2) | 175 (91.1) | |
R | 3 (9.1) | 14 (8.8) | 17 (8.9) | |
COT | - | |||
S (I) | 33 (100.0) | 159 (100.0) | 192 (100.0) | - |
CIP | <0.001 | |||
I | 7 (21.2) | 145 (91.2) | 152 (79.2) | |
R | 26 (78.8) | 14 (8.8) | 40 (20.8) |
Susceptibility to STAFAL® | Spa Types |
---|---|
Susceptible n = 63 (64.9) | t003, t007, t010, t012, t014, t018, t024, t026, t036, t045, t056, t084, t085, t122, t148, t156, t160, t169, t189, t209, t223, t267, t279, t284, t342, t346, t360, t362, t435, t449, t491, t493, t648, t701, t706, t718, t760, t774, t922, t937, t1148, t1200, t1265, t1309, t1333, t1491, t1509, t2119, t2124, t2374, t3382, t3732, t4032, t4559, t4688, t5534, t16302, t16466, t18619, t18623, t18626, t18627 and t18629 |
Resistant n = 29 (29.9) | t004, t015, t050, t065, t091, t216, t289, t571, t688, t715, t728, t1040, t1255, t1646, t2248, t2642, t2716, t2932, t3625, t3884, t4545, t6608, t6943, t7157, t12469, t12588, t18621, t18625 and t18628 |
Variable susceptibility n = 5 (5.2) | t002, t008, t032, t179 and t1451 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Straka, M.; Hubenáková, Z.; Janošíková, L.; Bugalová, A.; Minich, A.; Wawruch, M.; Liptáková, A.; Drahovská, H.; Slobodníková, L. In Vitro Susceptibility of Clinical and Carrier Strains of Staphylococcus aureus to STAFAL® Phage Preparation. Int. J. Mol. Sci. 2024, 25, 12885. https://doi.org/10.3390/ijms252312885
Straka M, Hubenáková Z, Janošíková L, Bugalová A, Minich A, Wawruch M, Liptáková A, Drahovská H, Slobodníková L. In Vitro Susceptibility of Clinical and Carrier Strains of Staphylococcus aureus to STAFAL® Phage Preparation. International Journal of Molecular Sciences. 2024; 25(23):12885. https://doi.org/10.3390/ijms252312885
Chicago/Turabian StyleStraka, Marek, Zuzana Hubenáková, Lucia Janošíková, Aneta Bugalová, Andrej Minich, Martin Wawruch, Adriana Liptáková, Hana Drahovská, and Lívia Slobodníková. 2024. "In Vitro Susceptibility of Clinical and Carrier Strains of Staphylococcus aureus to STAFAL® Phage Preparation" International Journal of Molecular Sciences 25, no. 23: 12885. https://doi.org/10.3390/ijms252312885
APA StyleStraka, M., Hubenáková, Z., Janošíková, L., Bugalová, A., Minich, A., Wawruch, M., Liptáková, A., Drahovská, H., & Slobodníková, L. (2024). In Vitro Susceptibility of Clinical and Carrier Strains of Staphylococcus aureus to STAFAL® Phage Preparation. International Journal of Molecular Sciences, 25(23), 12885. https://doi.org/10.3390/ijms252312885