Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (51)

Search Parameters:
Keywords = metallurgical waste reduction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3611 KB  
Article
Comparative Analysis of Two CO2 Sequestration Pathways for Magnesium Slag Based on Kinetics and Life Cycle Assessment
by Zhen Lu, Yan Wu, Hongshuo Ding, Chengyuan Zhao, Yunlong Bai and Li Zhang
Materials 2026, 19(1), 193; https://doi.org/10.3390/ma19010193 - 5 Jan 2026
Viewed by 227
Abstract
As a metallurgical solid waste rich in active calcium oxide, magnesium slag (MS) is endowed with significant carbon dioxide sequestration potential due to its inherent properties, providing a feasible path for the simultaneous solution of waste residue disposal and carbon dioxide emission reduction. [...] Read more.
As a metallurgical solid waste rich in active calcium oxide, magnesium slag (MS) is endowed with significant carbon dioxide sequestration potential due to its inherent properties, providing a feasible path for the simultaneous solution of waste residue disposal and carbon dioxide emission reduction. However, current research has neither clarified the kinetic mechanism (core theoretical support for carbon dioxide sequestration industrialization) nor systematically evaluated the life cycle environmental impacts of MS’s two carbonation routes (direct or indirect leaching carbonation). To address this, this study explores kinetic laws via the single-factor control variable method, and combines life cycle assessment (LCA) to fill the gap, providing key theoretical support for process optimization and engineering promotion. Kinetic results show indirect carbon dioxide sequestration (ICDS) forms an inert silicon-rich layer (core-shrinkage model, mixed control, 28.4 kJ/mol activation energy), while direct carbon dioxide sequestration (DCDS) involves dual-layer formation and pore blockage (mixed control, 14.0 kJ/mol). The ICDS achieves a higher reaction rate of 89%, compared to 63% for the DCDS. In life cycle assessments, DCDS demonstrates outstanding overall environmental sustainability, particularly excelling in carbon dioxide sequestration and acidification control, while ICDS exhibits significant environmental drawbacks (such as high carbon dioxide emissions and ecological toxicity). However, ICDS possesses advantages such as high feedstock utilization and strong synthesis capabilities for high-value-added products. Through targeted optimization, its environmental indicators can be reduced in the future, making it suitable for specific scenarios like high-end calcium carbonate production and resource utilization of low-grade magnesium slag. Full article
Show Figures

Figure 1

12 pages, 3718 KB  
Article
Recovery of Fe, Pb and Zn from Blast Furnace Gas Ash by Intensive Calcination and Magnetic Separation Techniques
by Chunqing Gao, Huifen Yang, Jian Xu and Mingyu Sai
Separations 2026, 13(1), 10; https://doi.org/10.3390/separations13010010 - 25 Dec 2025
Viewed by 228
Abstract
Intensive calcination, selection and metallurgical joint comprehensive utilization of solid waste blast furnace gas ash generated by a Chinese iron and steel plant. The main valuable elements in the gas ash are Fe, Pb, Zn, and C, with contents of 22.46%, 3.22%, 10.57%, [...] Read more.
Intensive calcination, selection and metallurgical joint comprehensive utilization of solid waste blast furnace gas ash generated by a Chinese iron and steel plant. The main valuable elements in the gas ash are Fe, Pb, Zn, and C, with contents of 22.46%, 3.22%, 10.57%, and 27.02%, respectively. The iron minerals are mainly magnetite and hematite/limonite. Lead exists primarily in the form of lead vanadate and basic lead chloride. Zinc is associated with oxygen, sulfur, and iron in the form of zinc ferrite crystals. The effects of calcination temperature, calcination time, and reducing agent dosage on gasification and reduction indices were investigated. Results showed that using a gasification and reduction calcination–magnetic separation process with weak magnetism, at a calcination temperature of 1150 °C, with 20% anthracite as the reducing agent and a calcination time of 2 h, the volatilization rates of lead and zinc reached 96.70% and 98.26%, respectively. When the roasted ore was ground to a particle size of D90 = 0.085 mm, high-quality iron concentrate with 65.61% iron grade and low lead and zinc contents of 0.08% and 0.17% was obtained, meeting the quality requirements for iron concentrate. The tailings from iron selection can be used as additives in cement and other construction materials. This integrated process combining pyrometallurgy and mineral processing enables the efficient and comprehensive utilization of blast furnace gas dust. Full article
(This article belongs to the Special Issue Advances in Novel Beneficiation Technology of Critical Minerals)
Show Figures

Figure 1

19 pages, 2901 KB  
Article
Resource-Efficient Smelting Technology for FeCrMnSi Ferroalloy Production from Technogenic Wastes in an Ore-Thermal Furnace
by Yerbolat Makhambetov, Armat Zhakan, Ablay Zhunusov, Sultan Kabylkanov, Azamat Burumbayev, Zhadiger Sadyk, Amankeldy Akhmetov and Bagdagul Uakhitova
Metals 2025, 15(12), 1318; https://doi.org/10.3390/met15121318 - 28 Nov 2025
Viewed by 497
Abstract
The article presents the results of a study on the production of a complex chromium–manganese–silicon-containing ferroalloy in a large-scale laboratory ore-thermal furnace using man-made waste—chromium-containing aspiration dust obtained during smelting of high-carbon ferrochrome, fines (−5 mm) of iron–manganese ore currently stored in landfills, [...] Read more.
The article presents the results of a study on the production of a complex chromium–manganese–silicon-containing ferroalloy in a large-scale laboratory ore-thermal furnace using man-made waste—chromium-containing aspiration dust obtained during smelting of high-carbon ferrochrome, fines (−5 mm) of iron–manganese ore currently stored in landfills, and finely dispersed coal sludge formed during enrichment. A single-stage technology for the production of a new complex chromium–manganese–silicon-containing ferroalloy by carbothermal reduction is proposed. A metallurgical assessment of the initial charge materials was carried out by the X-ray diffraction (XRD) phase analysis, and metal samples of the obtained ferroalloy were studied by scanning electron microscopy (SEM) in combination with energy dispersive spectroscopy (EDS). The resulting ferroalloy has a complex microstructure with a predominance of carbide and intermetallic phases. A high degree of extraction of chromium (up to 80%), manganese (up to 75%), and silicon (up to 35%) was recorded. The average chemical composition of the obtained ferroalloy, wt.%: Cr—37.41; Mn—17.31; Si—11.84; C—3.81; P—0.14; S—0.02. The slag formed during the smelting of the ferroalloy has satisfactory technological properties: it is characterized by good fluidity, and it actively exits the furnace by gravity. Entanglement of metal kings in the slag is not observed. The results obtained confirm the technological feasibility of the utilization of technogenic raw materials for the production of complex ferroalloys of the FeCrMnSi type. Full article
Show Figures

Figure 1

15 pages, 3405 KB  
Article
The Use of Coniferous Tree Cone Biomass as an Energy Source and a Reducing Agent in the Recycling of Metals from Oxide Secondary Raw Materials
by Szymon Ptak, Jerzy Łabaj, Tomasz Matuła, Albert Smalcerz, Leszek Blacha, Adrian Smagór and Róbert Findorák
Energies 2025, 18(23), 6183; https://doi.org/10.3390/en18236183 - 25 Nov 2025
Viewed by 374
Abstract
The challenges faced by the metallurgical industry implicate that actions aimed at reducing negative impacts on the environment are becoming extremely important. This is justified both in the search for economically competitive methods of producing basic construction materials, consistent with the circular economy [...] Read more.
The challenges faced by the metallurgical industry implicate that actions aimed at reducing negative impacts on the environment are becoming extremely important. This is justified both in the search for economically competitive methods of producing basic construction materials, consistent with the circular economy policy, and in improving the efficiency of metal production technology. An essential aspect of biomass use is the introduction of an energy source that naturally reduces the energy supplied to the reactor, thereby reducing the carbon footprint of the metal produced. In this case, the research undertaken aims to determine the possibility of using a bioreductant that will allow for the reduction or elimination of the fossil raw material, which is coal, thus reducing the costs associated with ETS and ETS II (European Union Emissions Trading System). This paper presents the results of research on the reduction process of oxide metal-bearing raw material, the chemical composition of which is similar to slags from the copper industry. The effects of slag reduction time on the degrees of copper and lead removal were examined. The process was carried out at 1300 °C, with the constant addition of a reducing agent, in the form of crushed pine cones. After processing for 1 h, the copper content in the waste slag was 1.30 wt%, whereas extending the process to 5 h reduced the copper content to 0.15 wt%. For lead, at the exact reduction times, the element’s contents in the slag after processing were 1.92 wt% and 0.79 wt%, respectively. The results of the studied process showed that, in the first stage of the slag reduction process, intensive reduction of copper and lead oxides occurs. Research was also conducted to characterize the biomaterial during the high-temperature process. Results show high degrees of removal for basic metals at the following levels: 99% for Cu and 72% for Pb. The waste slag is characterized by low metal content, which allows for safe storage or use in other sectors of the economy. This type of biomaterial is, therefore, recommended for research in large-scale laboratories or on a semi-industrial scale, particularly in relation to the gas phase formed and its possible impacts on the structural elements of industrial installations. It should be noted that there is a lack of data in the literature on the use of forest biomass in the form of pine cones as an alternative to coke as a reducing agent for use in pyrometallurgical processes. Full article
Show Figures

Figure 1

25 pages, 15657 KB  
Article
Zinc Kiln Slag Recycling Based on Hydrochloric Acid Oxidative Leaching and Subsequent Metal Recovery
by Pavel Grudinsky, Ekaterina Vasileva and Valery Dyubanov
Sustainability 2025, 17(22), 10171; https://doi.org/10.3390/su172210171 - 13 Nov 2025
Viewed by 733
Abstract
The limited availability of high-quality ore deposits and the environmental hazards of metallurgical wastes highlight the importance of developing resource-efficient metal recovery technologies. Zinc kiln slag (ZKS), also known as Waelz slag, a by-product material enriched in non-ferrous metals, was processed through oxidative [...] Read more.
The limited availability of high-quality ore deposits and the environmental hazards of metallurgical wastes highlight the importance of developing resource-efficient metal recovery technologies. Zinc kiln slag (ZKS), also known as Waelz slag, a by-product material enriched in non-ferrous metals, was processed through oxidative HCl leaching with H2O2 as an oxidant. Thermodynamic simulation and laboratory experiments were applied to determine optimal leaching conditions to dissolve copper, zinc, and iron. Optimal leaching efficiency was achieved with consumptions of 0.8 g HCl and 0.1 g H2O2 per gram of ZKS, a liquid-to-solid (L/S) ratio of 5 mL/g, a temperature of 70 °C, and a duration of 180 min, which resulted in recoveries of 96.3% Cu, 93.6% Fe, and 76.8% Zn. The solid residue with 43.5 wt.% C is promising for reuse as a reductant material in pyrometallurgical processes. Copper and arsenic were separated from the leachate via cementation with iron powder, achieving recovery rates of 98.9% and 91.2%, respectively. A subsequent two-step iron precipitation produced ferric hydroxide with 52.2 wt.% Fe and low levels of impurities. As a result, the developed novel hydrochloric acid oxidative leaching and metal precipitation route for ZKS recycling provides an efficient and sustainable alternative to conventional treatment methods. Full article
(This article belongs to the Special Issue Sustainable Materials, Waste Management, and Recycling)
Show Figures

Graphical abstract

35 pages, 1057 KB  
Review
Review of Formation Mechanisms, Localization Methods, and Enhanced Oil Recovery Technologies for Residual Oil in Terrigenous Reservoirs
by Inzir Raupov, Mikhail Rogachev and Egor Shevaldin
Energies 2025, 18(21), 5649; https://doi.org/10.3390/en18215649 - 28 Oct 2025
Viewed by 1074
Abstract
Residual oil (RO) in terrigenous reservoirs formed after waterflooding can exceed 60% of the original oil in place; approximately 70% is trapped at the macro-scale in barriers and lenses, whereas about 30% remains at the micro-scale as film and capillary-held oil. This review [...] Read more.
Residual oil (RO) in terrigenous reservoirs formed after waterflooding can exceed 60% of the original oil in place; approximately 70% is trapped at the macro-scale in barriers and lenses, whereas about 30% remains at the micro-scale as film and capillary-held oil. This review aims to synthesize current knowledge of RO formation mechanisms, localization methods and chemical recovery technologies. It analyzes laboratory, numerical and field studies published from 1970 to 2025. The physical and technological factors governing RO distribution are systematized, and the effects of heterogeneities of various types, imperfections in pressure-maintenance (waterflood) systems and contrasts in oil–water properties are demonstrated. Instrumental monitoring techniques—vertical seismic profiling (VSP), well logging (WL), hydrodynamic well testing (WT) and geochemical well testing (GWT)—are discussed alongside indirect analytical approaches such as retrospective production-data analysis and neural-network forecasting. Industrial experience from more than 30,000 selective permeability-reduction operations, which have yielded over 50 Mt of additional oil, is consolidated. The advantages of gel systems of different chemistries are evaluated, and the prospects of employing waste products from agro-industrial, metallurgical and petroleum sectors as reagents are considered. The findings indicate that integrating multi-level neural-network techniques with instrumental monitoring and adaptive selection of chemical formulations is crucial for maximizing RO recovery. Full article
(This article belongs to the Special Issue Advances in Unconventional Reservoirs and Enhanced Oil Recovery)
Show Figures

Figure 1

29 pages, 27846 KB  
Review
Recycling and Mineral Evolution of Multi-Industrial Solid Waste in Green and Low-Carbon Cement: A Review
by Zishu Yue and Wei Zhang
Minerals 2025, 15(7), 740; https://doi.org/10.3390/min15070740 - 15 Jul 2025
Viewed by 1465
Abstract
The accelerated industrialization in China has precipitated a dramatic surge in solid waste generation, causing severe land resource depletion and posing substantial environmental contamination risks. Simultaneously, the cement industry has become characterized by the intensive consumption of natural resources and high carbon emissions. [...] Read more.
The accelerated industrialization in China has precipitated a dramatic surge in solid waste generation, causing severe land resource depletion and posing substantial environmental contamination risks. Simultaneously, the cement industry has become characterized by the intensive consumption of natural resources and high carbon emissions. This review aims to investigate the current technological advances in utilizing industrial solid waste for cement production, with a focus on promoting resource recycling, phase transformations during hydration, and environmental management. The feasibility of incorporating coal-based solid waste, metallurgical slags, tailings, industrial byproduct gypsum, and municipal solid waste incineration into active mixed material for cement is discussed. This waste is utilized by replacing conventional raw materials or serving as active mixed material due to their content of oxygenated salt minerals and oxide minerals. The results indicate that the formation of hydration products can be increased, the mechanical strength of cement can be improved, and a notable reduction in CO2 emissions can be achieved through the appropriate selection and proportioning of mineral components in industrial solid waste. Further research is recommended to explore the synergistic effects of multi-waste combinations and to develop economically efficient pretreatment methods, with an emphasis on balancing the strength, durability, and environmental performance of cement. This study provides practical insights into the environmentally friendly and efficient recycling of industrial solid waste and supports the realization of carbon peak and carbon neutrality goals. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Graphical abstract

18 pages, 4063 KB  
Article
Fruit Seed Biomass as an Alternative Material to Use in Recycling Processes of Metals from Industrial Waste
by Lukasz Kortyka, Jerzy Labaj, Lukasz Mycka, Tomasz Matula, Szymon Ptak, Dorota Babilas, Tomasz Wojtal, Leszek Blacha, Albert Smalcerz, Robert Findorak and Bartosz Chmiela
Materials 2025, 18(13), 3063; https://doi.org/10.3390/ma18133063 - 27 Jun 2025
Cited by 2 | Viewed by 712
Abstract
The metallurgical industry has been constantly changing over the past decades. On the one hand, there has been the modernization and improvement of production efficiency, and on the other hand, we have seen a reduction in the negative impact on the environment. The [...] Read more.
The metallurgical industry has been constantly changing over the past decades. On the one hand, there has been the modernization and improvement of production efficiency, and on the other hand, we have seen a reduction in the negative impact on the environment. The possibility of using alternative materials and the circular economy is significant in this area. In the present work, research was carried out to determine the usefulness of biomass in the form of fruit seeds for the recycling processes of metal-bearing raw materials, including slags from copper production processes, which are characterized by a much higher metal content than ores of this metal. The main carbon-bearing material/reducer used in the process is metallurgical coke. The transformation of the European metal industry has been observed in recent years. To carry out the physicochemical characterization of the tested material, a research methodology was adopted using tools to determine the stability of behavior at high temperatures, chemical composition, and volatile components. Thermodynamic analysis was carried out, indicating the theoretical course of reactions of individual system components and thermal effects, allowing a determination of whether the assumed reactions are endothermic or exothermic. The planned research ends with the reduction process in conditions similar to those carried out in industrial conditions. Enforced by the guidelines for reducing CO2 emissions, it contributes to a significant reduction in the demand for coke. This paper addresses the issue of determining the feasibility of using selected bioreducers, including cherry stones, to verify their suitability in the process of reducing copper oxides. The study used copper slag with a composition similar to slags generated at the copper production stage in a flash furnace. The results obtained in reducing copper content above 98 wt. % indicate the great potential of this type of bioreducer. It should be noted that, unlike conventional fossil fuels, the use of cherry stones to reduce copper slag can be considered an environmentally neutral method of carbon offset. The resulting secondary slag is a waste product that can be stored and disposed of without harmful environmental effects due to its low lead content. An additional advantage is the relatively wide availability of cherry stones. Full article
Show Figures

Figure 1

37 pages, 2520 KB  
Review
Sustainable Transition Pathways for Steel Manufacturing: Low-Carbon Steelmaking Technologies in Enterprises
by Jinghua Zhang, Haoyu Guo, Gaiyan Yang, Yan Wang and Wei Chen
Sustainability 2025, 17(12), 5329; https://doi.org/10.3390/su17125329 - 9 Jun 2025
Cited by 2 | Viewed by 5722
Abstract
Amid escalating global climate crises and the urgent imperative to meet the Paris Agreement’s carbon neutrality targets, the steel industry—a leading contributor to global greenhouse gas emissions—confronts unprecedented challenges in driving sustainable industrial transformation through innovative low-carbon steelmaking technologies. This paper examines decarbonization [...] Read more.
Amid escalating global climate crises and the urgent imperative to meet the Paris Agreement’s carbon neutrality targets, the steel industry—a leading contributor to global greenhouse gas emissions—confronts unprecedented challenges in driving sustainable industrial transformation through innovative low-carbon steelmaking technologies. This paper examines decarbonization technologies across three stages (source, process, and end-of-pipe) for two dominant steel production routes: the long process (BF-BOF) and the short process (EAF). For the BF-BOF route, carbon reduction at the source stage is achieved through high-proportion pellet charging in the blast furnace and high scrap ratio utilization; at the process stage, carbon control is optimized via bottom-blowing O2-CO2-CaO composite injection in the converter; and at the end-of-pipe stage, CO2 recycling and carbon capture are employed to achieve deep decarbonization. In contrast, the EAF route establishes a low-carbon production system by relying on green and efficient electric arc furnaces and hydrogen-based shaft furnaces. At the source stage, energy consumption is reduced through the use of green electricity and advanced equipment; during the process stage, precision smelting is realized through intelligent control systems; and at the end-of-pipe stage, a closed-loop is achieved by combining cascade waste heat recovery and steel slag resource utilization. Across both process routes, hydrogen-based direct reduction and green power-driven EAF technology demonstrate significant emission reduction potential, providing key technical support for the low-carbon transformation of the steel industry. Comparative analysis of industrial applications reveals varying emission reduction efficiencies, economic viability, and implementation challenges across different technical pathways. The study concludes that deep decarbonization of the steel industry requires coordinated policy incentives, technological innovation, and industrial chain collaboration. Accelerating large-scale adoption of low-carbon metallurgical technologies through these synergistic efforts will drive the global steel sector toward sustainable development goals. This study provides a systematic evaluation of current low-carbon steelmaking technologies and outlines practical implementation strategies, contributing to the industry’s decarbonization efforts. Full article
Show Figures

Figure 1

19 pages, 1788 KB  
Review
From Natural to Industrial: How Biocoagulants Can Revolutionize Wastewater Treatment
by Renata Machado Pereira da Silva, Bruna Silva de Farias and Sibele Santos Fernandes
Processes 2025, 13(6), 1706; https://doi.org/10.3390/pr13061706 - 29 May 2025
Cited by 5 | Viewed by 3898
Abstract
The environmental impacts of industrial processes have increased the demand for sustainable alternatives in wastewater treatment. Conventional chemical coagulants, though widely used, can generate toxic residues and pose environmental and health risks. Biocoagulants, derived from natural and renewable sources, offer a biodegradable and [...] Read more.
The environmental impacts of industrial processes have increased the demand for sustainable alternatives in wastewater treatment. Conventional chemical coagulants, though widely used, can generate toxic residues and pose environmental and health risks. Biocoagulants, derived from natural and renewable sources, offer a biodegradable and eco-friendly alternative. This review explores their potential to replace synthetic coagulants by analyzing their origins, mechanisms of action, and applications. A total of 15 studies published between 2020 and 2025 were analyzed, all focused on industrial wastewater. These studies demonstrated that biocoagulants can achieve similar, or the superior, removal of turbidity (>67%), solids (>83%), and heavy metals in effluents from food, textile, metallurgical, and paper industries. While raw materials are often inexpensive, processing costs may increase production expenses. However, life cycle assessments suggest long-term advantages due to reduced sludge and environmental impact. A textile industry case study showed a 25% sludge reduction and improved biodegradability using a plant-based biocoagulant compared to aluminum sulfate. Transforming this waste into inputs for wastewater treatment not only reduces negative impacts from disposal but also promotes integrated environmental management aligned with circular economy and cleaner production principles. The review concludes that biocoagulants constitute a viable and sustainable alternative for industrial wastewater treatment. Full article
(This article belongs to the Section Biological Processes and Systems)
Show Figures

Figure 1

14 pages, 1168 KB  
Article
Intelligent System for Reducing Waste and Enhancing Efficiency in Copper Production Using Machine Learning
by Bagdaulet Kenzhaliyev, Timur Imankulov, Aksultan Mukhanbet, Sergey Kvyatkovskiy, Maral Dyussebekova and Nurdaulet Tasmurzayev
Metals 2025, 15(2), 186; https://doi.org/10.3390/met15020186 - 12 Feb 2025
Cited by 4 | Viewed by 2382
Abstract
The growing environmental impact of copper production necessitates innovative approaches for optimizing metallurgical processes and minimizing waste. This study addresses this challenge by leveraging advanced machine learning (ML) techniques to enhance the efficiency of pyrometallurgical operations such as slag optimization, composition prediction, and [...] Read more.
The growing environmental impact of copper production necessitates innovative approaches for optimizing metallurgical processes and minimizing waste. This study addresses this challenge by leveraging advanced machine learning (ML) techniques to enhance the efficiency of pyrometallurgical operations such as slag optimization, composition prediction, and waste minimization. Using a combination of real-world and synthetic data, we developed models capable of both forward prediction, estimating slag and matte compositions from ore characteristics, and backward prediction, inferring ore compositions from output characteristics. Five ML algorithms were evaluated, with Gradient Boosting and Support Vector Regression demonstrating superior performance in capturing complex, non-linear relationships. Forward prediction achieved near-perfect accuracy, while backward prediction highlighted the inherent complexity of inverse modeling. This backward-driven strategy proposed in this research aims to determine optimal ore compositions to achieve desired outputs, reducing waste and energy consumption. By integrating ML models with a systematic hyperparameter optimization approach, this work advances the potential for sustainable and precise metallurgical processes. While challenges remain in refining backward predictions, the findings demonstrate the transformative potential of data-driven strategies in industrial metallurgy, paving the way for environmentally sustainable and economically efficient copper production practices. Full article
Show Figures

Figure 1

18 pages, 3357 KB  
Review
Trends and Applications of Green Binder Materials for Cemented Paste Backfill Mining in China
by Jiandong Wang, Bolin Xiao, Xiaohui Liu and Zhuen Ruan
Minerals 2025, 15(2), 97; https://doi.org/10.3390/min15020097 - 21 Jan 2025
Cited by 10 | Viewed by 2142
Abstract
The backfill binder material is the key to the cost and performance of cemented paste backfill. This study aims to understand the current situation of metal ore backfill binders, identify industry challenges, inspire research ideas, and explore development directions. Current research investigates trends [...] Read more.
The backfill binder material is the key to the cost and performance of cemented paste backfill. This study aims to understand the current situation of metal ore backfill binders, identify industry challenges, inspire research ideas, and explore development directions. Current research investigates trends and developments of backfill binders through literature review, experience summary, field research, statistical analysis, and other methods. Firstly, the main backfill binder types are summarized, including cement, metallurgical slag, thermal slag, chemical slag, and tailings binders. Secondly, the research progress regarding reactivity activation, hydration mechanism, harmful ion solidification, energy conservation, and carbon reduction is summarized. Thirdly, three industrial applications of new backfill binders are introduced and summarized. Cement is still the most common, followed by slag powder binder. The cases of steel slag binder and semi-hydrated phosphogypsum backfill have shown significant effects. Solid waste-based backfill binder materials are gradually replacing cement, which is a trend. Finally, further research is discussed, including hydration modeling and simulation, material properties under extreme environments, hardening process control, and technical standards for backfill binders. This work provides a reference and basis for promoting green and efficient paste backfill and sustainable industry development. Full article
(This article belongs to the Topic Innovative Strategies to Mitigate the Impact of Mining)
Show Figures

Figure 1

11 pages, 4433 KB  
Article
Waste Minimization of Lead Paste and Jarosite to Recover a Silver-Rich Alloy by the Pyrometallurgical Route
by Jose Enrique Sanchez Vite, Alejandro Cruz Ramírez, Manuel Eduardo Flores Favela, José Antonio Romero Serrano, Miguel Pérez Labra, Víctor Hugo Gutiérrez Pérez, Ricardo Gerardo Sánchez Alvarado and Juan Cancio Jiménez Lugos
Recycling 2024, 9(6), 119; https://doi.org/10.3390/recycling9060119 - 5 Dec 2024
Cited by 2 | Viewed by 2267
Abstract
A silver-rich lead alloy was obtained through the recycling of two metallurgical wastes: these are lead paste obtained from spent lead–acid batteries and a jarosite residue obtained from the hydrometallurgical production of zinc. Mixtures of both wastes were pyrometallurgically treated with sodium carbonate [...] Read more.
A silver-rich lead alloy was obtained through the recycling of two metallurgical wastes: these are lead paste obtained from spent lead–acid batteries and a jarosite residue obtained from the hydrometallurgical production of zinc. Mixtures of both wastes were pyrometallurgically treated with sodium carbonate in a silicon carbide crucible at 1200 °C. The alloy and slag produced were analyzed by atomic absorption spectrometry, X-ray diffraction, and scanning electron microscopy with energy-dispersive spectra. High silver recovery was obtained in a Pb-Ag alloy for a mixture ratio of 30% Na2CO3–40% lead paste–30% jarosite, reaching a silver grade of 126 ppm. The slags produced for the highest jarosite content allow the compound formation of Na2(SO4) and Na2Fe(SO4)2, which have high sulfur-fixing, avoiding SO2 release and contributing to the minimization of atmospheric pollution. The novel pyrometallurgical route addresses not only the valorization of precious metals such as silver and lead but also the reduction in accumulated industrial waste. Full article
Show Figures

Figure 1

11 pages, 2778 KB  
Article
Reviving Riches: Unleashing Critical Minerals from Copper Smelter Slag Through Hybrid Bioleaching Approach
by Kamalpreet Kaur Brar, Sara Magdouli, Nancy N. Perreault, Rayen Tanabene and Satinder Kaur Brar
Minerals 2024, 14(11), 1094; https://doi.org/10.3390/min14111094 - 29 Oct 2024
Cited by 2 | Viewed by 2152
Abstract
Due to the emission of hazardous chemicals and heat, the traditional smelting method used to extract critical minerals from ore and mine slag/tailings is considered bad for the environment. An environmentally friendly procedure that can stabilize sulfur emissions from mine waste without endangering [...] Read more.
Due to the emission of hazardous chemicals and heat, the traditional smelting method used to extract critical minerals from ore and mine slag/tailings is considered bad for the environment. An environmentally friendly procedure that can stabilize sulfur emissions from mine waste without endangering the environment is bioleaching. In the present study, sequential oxidative (Oxi) and reductive (Red) bioleaching of acid-pretreated copper smelter slag using iron-oxidizing/reducing Acidithiobacillus ferrooxidans was applied to investigate critical minerals’ recovery for the dissolution of copper smelter slag. In this batch flask experiment, up to 55% Cu was recovered on day 11 during the Oxi stage, which increased to 80% during the Red stage on day 20. A sequential oxidative and reductive bioleaching of an acid-pretreated copper smelter slag at pH (1.8) and 30 °C positively affects the extraction of Cu (80%), Zn (77.1%), and Al (65.3%). In contrast to the aerobic bioleaching experiment, the reduction of Fe3+ iron under anaerobic conditions resulted in a more significant release of Fe2+ and sulfate, limiting the development of jarosite, surface passivation, and the subsequent loss of metal recovery due to co-precipitation with Fe3+. Overall, the Oxi-Red bioleaching process combined with acid pretreatment showed promising results toward creating a method for recovering valuable metals from metallurgical waste that is economical and environmentally beneficial. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

13 pages, 1811 KB  
Article
A Study on the Potential for the Application of Peanut Shells as a Reducer in the Process of Metal Recovery from Metallurgical Slags
by Lukasz Kortyka, Jerzy Labaj, Szymon Ptak, Albert Smalcerz, Leszek Blacha, Lukasz Mycka, Tomasz Matula and Robert Findorak
Sustainability 2024, 16(21), 9261; https://doi.org/10.3390/su16219261 - 25 Oct 2024
Cited by 5 | Viewed by 2735
Abstract
Copper production technology is a complex process consisting of many stages. The combination of pyrometallurgical and hydrometallurgical stages, on the one hand, complicates production while, on the other hand, allowing for a relatively selective separation of intermediate or waste materials that can be [...] Read more.
Copper production technology is a complex process consisting of many stages. The combination of pyrometallurgical and hydrometallurgical stages, on the one hand, complicates production while, on the other hand, allowing for a relatively selective separation of intermediate or waste materials that can be subjected to the process of recovery of useful components. Materials of this type are characterised by a much higher copper content relative to the ore material. On the other hand, due to the oxide form, reduction processes are used in which coke is mainly applied. Reduction of the unfavourable phenomenon of CO2 emissions, in this case, can be performed through the use of bioreducers, which are characterised by an inert carbon footprint since the generation of carbon dioxides is the same as its absorption at the stage of vegetation and growth. In this paper, the topic of determining the feasibility of using selected bioreducers, such as peanut shells, to verify their suitability in the process of reducing copper oxides as well as the impact on the working components of the laboratory reactor in which the process is carried out are discussed. In this case, raw materials with a composition similar to the that of slags produced at the copper production stage in a flash furnace were tested for reduction. The results referring to reducing lead and copper contents above 88% Pb and 98% Cu indicate the great potential of this type of bioreducer. An additional advantage is the relatively wide availability of peanut resources. The effects of the copper reduction time on the degree of decopperisation performed with a constant reducer addition at 1300 °C were studied in this paper. Following 1 h of the process, the copper content in the slag was 0.78 wt%, while the longer process duration resulted in a copper fraction of 0.19 wt%. Considering lead, its content was 0.33 wt% after the reduction process. Full article
Show Figures

Figure 1

Back to TopTop