Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = metallothermic reaction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 8104 KiB  
Article
Carbon-Free Smelting of Ferrochrome Using FeAlSiCa Alloy
by Amankeldy Akhmetov, Zulfiadi Zulhan, Zhadiger Sadyk, Azamat Burumbayev, Armat Zhakan, Sultan Kabylkanov, Ruslan Toleukadyr, Zhalgas Saulebek, Zhuldyz Ayaganova and Yerbolat Makhambetov
Processes 2025, 13(6), 1745; https://doi.org/10.3390/pr13061745 - 2 Jun 2025
Cited by 1 | Viewed by 627
Abstract
This study explored the feasibility of the carbon-free smelting of ferrochrome (FeCr) using a complex reducing agent—ferroaluminosilicalcium alloy (FeAlSiCa)—produced from industrial waste and ferrosilicochrome (FeSiCr) dust. Laboratory-scale smelting experiments were conducted with Cr concentrate and the addition of FeAlSiCa and FeSiCr dust under [...] Read more.
This study explored the feasibility of the carbon-free smelting of ferrochrome (FeCr) using a complex reducing agent—ferroaluminosilicalcium alloy (FeAlSiCa)—produced from industrial waste and ferrosilicochrome (FeSiCr) dust. Laboratory-scale smelting experiments were conducted with Cr concentrate and the addition of FeAlSiCa and FeSiCr dust under four different reducing agent contents: (1) 10% deficiency, (2) stoichiometric amount, (3) 10% excess, and (4) 20% excess. It was found that with a 10% excess, a nearly complete reduction of Cr2O3 was achieved (residual content in slag ≤ 0.9%), resulting in the formation of low-carbon FeCr (LC FeCr) with a high nitrogen content (up to 2.6%). Based on a thermodynamic analysis of the reduction reactions, the high reactivity of the FeAlSiCa and FeSiCr components (Ca, Al, and Si) at 1500 °C was confirmed. These reactions were exothermic, which demonstrates the energy efficiency of using these ferroalloys as reducing agents in FeCr smelting. The resulting slag is structurally stable and does not disintegrate over time, making it a promising candidate for potential reuse as a secondary raw material. The results demonstrate the promise of the proposed technology for both reducing the carbon footprint of ferroalloy production and lowering the cost of the metallothermic production of LC FeCr. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

25 pages, 11591 KiB  
Article
Production of Nd and Nd–Fe Alloys from NdCl3 by Calciothermic Reduction
by Joo-Won Yu, Yeon-Jun Chung and Jei-Pil Wang
Materials 2025, 18(5), 971; https://doi.org/10.3390/ma18050971 - 21 Feb 2025
Viewed by 643
Abstract
This study presents a metallothermic reduction mechanism for fabricating Nd and Nd–Fe alloys at 850–1050 °C using anhydrous NdCl3 and Ca, which have relatively low melting points. Our method decreased the process temperature while improving the recovery rate of Nd using the [...] Read more.
This study presents a metallothermic reduction mechanism for fabricating Nd and Nd–Fe alloys at 850–1050 °C using anhydrous NdCl3 and Ca, which have relatively low melting points. Our method decreased the process temperature while improving the recovery rate of Nd using the thermodynamic parameters of the CaCl2–KCl–NaCl and Nd–Fe liquid solutions. To reduce the activity of the product (CaCl2), the optimal composition of the CaCl2–KCl–NaCl molten salt was XCaCl2=0.4 (XKCl:XNaCl=6:4). The molten metal bath (Nd or Nd–Fe) that formed at the bottom of the reaction zone during Nd and Nd–Fe alloy production absorbed metal particles generated in the molten salt during the reaction, thereby facilitating ingot formation. In Nd produced at 1050 °C using 1.2× the stoichiometric amount (by mass) of Ca, the Nd recovery rate was 97.0%. Moreover, in the Nd–Fe alloys produced at 1050 °C targeting eutectic compositions, the Nd recovery rate was 96.3%. Increased Fe contents in the Nd–Fe liquid solution reduced the Nd recovery rates, and the Nd–Fe alloy (Nd recovery rate: 89.8%) was produced at 850 °C, suggesting the possibility of increasing the energy efficiency of the Nd production process. The Nd–Fe alloy produced through this proposed process could be used as a raw material in the NdFeB strip casting process. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

21 pages, 14427 KiB  
Article
Aluminothermic Reduction Kinetics of Calcium Silicate Slag for Silicon Alloy Production
by Harald G. R. Philipson, Maria Wallin and Kristian Etienne Einarsrud
Metals 2024, 14(6), 604; https://doi.org/10.3390/met14060604 - 21 May 2024
Cited by 1 | Viewed by 1785
Abstract
We investigated the reaction kinetics and initial chemical conditions in the production of silicon alloys, employing aluminum as the reductant for calcium silicate slag, to enhance process economics and scalability to industrial levels. The apparent kinetics and transient chemical conditions were studied by [...] Read more.
We investigated the reaction kinetics and initial chemical conditions in the production of silicon alloys, employing aluminum as the reductant for calcium silicate slag, to enhance process economics and scalability to industrial levels. The apparent kinetics and transient chemical conditions were studied by immersing solid aluminum into molten slag, allowing the reaction to proceed for varying durations without external agitation, before quenching the reaction for chemical and microscopic analyses of the resulting silicon alloy and slag. The majority of the conversion was observed within the first 15 s at 1650 °C, driven by significant chemical interactions and interfacial turbulence introduced upon aluminum immersion. For Al-SiO2 stoichiometries ranging from 0.5 to 1.2, the slag phase reaction conformed to first-order kinetics during the initial two minutes, when it approached equilibrium. The mass transfer coefficients for Al2O3 were estimated at 1–2 × 10−4 m/s, comparable to those for SiO2 and CaO. A constant mass transfer coefficient could not be established for stoichiometries of 1.6 and 2, as these deviated from the standard slag mass transfer relationship and did not adhere to established relationships. Despite near-complete reactions, alloy–slag mixing was extensive, decreasing with lower stoichiometry values. Full article
(This article belongs to the Special Issue Metal Processing for Sustainability)
Show Figures

Figure 1

13 pages, 2934 KiB  
Article
In Situ Formation of Titanium Diboride/Magnesium Titanate Composites by Magnesiothermic-Based Combustion Synthesis
by Chun-Liang Yeh and Chen Chen
Processes 2024, 12(3), 459; https://doi.org/10.3390/pr12030459 - 24 Feb 2024
Cited by 1 | Viewed by 1155
Abstract
In situ formation of TiB2–Mg2TiO4 composites was investigated by combustion synthesis involving the solid-state reaction of Ti with boron and magnesiothermic reduction of B2O3. Certain amounts of MgO and TiO2 were added to [...] Read more.
In situ formation of TiB2–Mg2TiO4 composites was investigated by combustion synthesis involving the solid-state reaction of Ti with boron and magnesiothermic reduction of B2O3. Certain amounts of MgO and TiO2 were added to the reactant mixtures of Ti/B/Mg/B2O3 to act as the moderator of highly exothermic combustion and a portion of the precursors to form Mg2TiO4. Two combustion systems were designed to ensure that synthesis reactions were sufficiently energetic to carry on self-sustainably, that is, in the mode of self-propagating high-temperature synthesis (SHS). Consistent with thermodynamic analyses, experimental results indicated that the increase in pre-added MgO and TiO2 decreased the combustion temperature and propagation velocity of the flame front. MgO was shown to have a stronger dilution effect on combustion exothermicity than TiO2, because the extent of magnesiothermic reduction of B2O3 was reduced in the MgO-added samples. In situ formation of the TiB2–Mg2TiO4 composite was achieved from both types of samples. It is believed that, in the course of the SHS progression, Mg2TiO4 was produced through a combination reaction between MgO and TiO2, both of which were entirely or partially generated from the metallothermic reduction of B2O3. The microstructure of the products exhibited fine TiB2 crystals in the shape of short rods and thin platelets that existed within the gaps of Mg2AlO4 grains. Both constituent phases were well distributed. A novel and efficient synthesis route, which is energy- and time-saving, for producing Mg2TiO4-containing composites was demonstrated. Full article
(This article belongs to the Special Issue Advances in Ceramic Processing and Application of Ceramic Materials)
Show Figures

Figure 1

12 pages, 5171 KiB  
Article
Magnesiothermic Reduction of Silica: A Machine Learning Study
by Kai Tang, Azam Rasouli, Jafar Safarian, Xiang Ma and Gabriella Tranell
Materials 2023, 16(11), 4098; https://doi.org/10.3390/ma16114098 - 31 May 2023
Cited by 5 | Viewed by 2517
Abstract
Fundamental studies have been carried out experimentally and theoretically on the magnesiothermic reduction of silica with different Mg/SiO2 molar ratios (1–4) in the temperature range of 1073 to 1373 K with different reaction times (10–240 min). Due to the kinetic barriers occurring [...] Read more.
Fundamental studies have been carried out experimentally and theoretically on the magnesiothermic reduction of silica with different Mg/SiO2 molar ratios (1–4) in the temperature range of 1073 to 1373 K with different reaction times (10–240 min). Due to the kinetic barriers occurring in metallothermic reductions, the equilibrium relations calculated by the well-known thermochemical software FactSage (version 8.2) and its databanks are not adequate to describe the experimental observations. The unreacted silica core encapsulated by the reduction products can be found in some parts of laboratory samples. However, other parts of samples show that the metallothermic reduction disappears almost completely. Some quartz particles are broken into fine pieces and form many tiny cracks. Magnesium reactants are able to infiltrate the core of silica particles via tiny fracture pathways, thereby enabling the reaction to occur almost completely. The traditional unreacted core model is thus inadequate to represent such complicated reaction schemes. In the present work, an attempt is made to apply a machine learning approach using hybrid datasets in order to describe complex magnesiothermic reductions. In addition to the experimental laboratory data, equilibrium relations calculated by the thermochemical database are also introduced as boundary conditions for the magnesiothermic reductions, assuming a sufficiently long reaction time. The physics-informed Gaussian process machine (GPM) is then developed and used to describe hybrid data, given its advantages when describing small datasets. A composite kernel for the GPM is specifically developed to mitigate the overfitting problems commonly encountered when using generic kernels. Training the physics-informed Gaussian process machine (GPM) with the hybrid dataset results in a regression score of 0.9665. The trained GPM is thus used to predict the effects of Mg-SiO2 mixtures, temperatures, and reaction times on the products of a magnesiothermic reduction, that have not been covered by experiments. Additional experimental validation indicates that the GPM works well for the interpolates of the observations. Full article
(This article belongs to the Topic Advanced Processes in Metallurgical Technologies)
Show Figures

Figure 1

10 pages, 3146 KiB  
Article
Formation of TiB2–MgAl2O4 Composites by SHS Metallurgy
by Chun-Liang Yeh and Fu-You Zheng
Materials 2023, 16(4), 1615; https://doi.org/10.3390/ma16041615 - 15 Feb 2023
Cited by 3 | Viewed by 1547
Abstract
TiB2–MgAl2O4 composites were fabricated by combustion synthesis involving metallothermic reduction reactions. Thermite reagents contained Al and Mg as dual reductants and TiO2 or B2O3 as the oxidant. The reactant mixtures also comprised elemental Ti [...] Read more.
TiB2–MgAl2O4 composites were fabricated by combustion synthesis involving metallothermic reduction reactions. Thermite reagents contained Al and Mg as dual reductants and TiO2 or B2O3 as the oxidant. The reactant mixtures also comprised elemental Ti and boron, as well as a small amount of Al2O3 or MgO to serve as the combustion moderator. Four reaction systems were conducted and all of them were exothermic enough to proceed in the mode of self-propagating high-temperature synthesis (SHS). The reaction based on B2O3/Al/Mg thermite and diluted with MgO was the most exothermic, while that containing TiO2/Al/Mg thermite and Al2O3 as the diluent was the least. Depending on different thermites and diluents, the combustion front temperatures in a range from 1320 to 1720 °C, and combustion wave velocity from 3.9 to 5.7 mm/s were measured. The XRD spectra confirmed in situ formation of TiB2 and MgAl2O4. It is believed that MgAl2O4 was synthesized through a combination reaction between Al2O3 and MgO, both of which can be totally or partially produced from the metallothermic reduction of B2O3 or TiO2. The microstructure of the TiB2–MgAl2O4 composite exhibited fine TiB2 crystals surrounded by large densified MgAl2O4 grains. This study demonstrated an energy-saving and efficient route for fabricating MgAl2O4-containing composites. Full article
(This article belongs to the Special Issue Physical Metallurgy of Metals and Alloys)
Show Figures

Figure 1

10 pages, 8432 KiB  
Article
Features of the Process Obtaining of Mg-Zn-Y Master Alloy by the Metallothermic Recovery Method of Yttrium Fluoride Melt
by Sergey Savchenkov and Ilia Beloglazov
Crystals 2022, 12(6), 771; https://doi.org/10.3390/cryst12060771 - 26 May 2022
Cited by 6 | Viewed by 2886
Abstract
At present, magnesium master alloys with such rare earth metals (REM) as yttrium are used in the production of alloys of magnesium and aluminum. These alloys especially the system Mg-6Zn-1Y-0,5Zr are commonly used in the aircraft and automotive industries. The article is devoted [...] Read more.
At present, magnesium master alloys with such rare earth metals (REM) as yttrium are used in the production of alloys of magnesium and aluminum. These alloys especially the system Mg-6Zn-1Y-0,5Zr are commonly used in the aircraft and automotive industries. The article is devoted to the exploration of the synthesis process features for ternary magnesium master alloys with yttrium and zinc. The authors used X-ray fluorescence analysis (XRF), differential thermal analysis (DTA), and X-ray spectral analysis (XRD). Optical microscopy was used to conduct microstructural studies. The thermal effects that occur during metallothermic reactions of yttrium reduction from the YF3-NaCl-KCl-CaCl2 salt mixture with a melt of magnesium and zinc were investigated, and the temperatures of these effects were determined. It has been confirmed that the metallothermic reaction of yttrium reduction proceeds from the precursors of the composition: Na1.5Y2.5F9, NaYF4, Na5Y9F32, and KY7F22, and starts at a temperature of 471 °C. The results of experimental studies of the process of metallothermic reduction of yttrium from the salt mixture YF3-NaCl-KCl-CaCl2 are presented in detail. These experiments were carried out in a pit furnace at temperatures ranging from 650 to 700 °C, and it was found that, at a synthesis temperature of 700 °C, the yttrium yield is up to 99.1–99.8%. The paper establishes rational technological regimes for the synthesis (temperature 700 °C, exposure for 25 min, the ratio of chlorides to yttrium fluoride 6:1, periodic stirring of the molten metal) at which the yttrium yield reaches up to 99.8%. The structure of the master alloy samples obtained during the experiments was studied. That structure can be distinguished by a uniform distribution of ternary intermetallic compounds (Mg3YZn6) in the bulk of the double magnesium–zinc eutectic. Studies have been carried out on testing the obtained ternary master alloy as an alloying material in the production of alloys of the Mg-6Zn-1Y-0.5Zr system, while the digestibility of yttrium ranged from 91 to 95%. Full article
Show Figures

Figure 1

17 pages, 8552 KiB  
Article
Sulfonitrocarburizing of High-Speed Steel Cutting Tools: Kinetics and Performances
by Mihai Ovidiu Cojocaru, Mihai Branzei, Sorin Ciuca, Ioana Arina Gherghescu, Mariana Ion, Leontin Nicolae Druga and Cosmin Mihai Cotrut
Materials 2021, 14(24), 7779; https://doi.org/10.3390/ma14247779 - 16 Dec 2021
Cited by 4 | Viewed by 1999
Abstract
The scholarly literature records information related to the performance increase of the cutting tools covered by the superficial layers formed “in situ” when applying thermochemical processing. In this context, information is frequently reported on the carbamide role in processes aiming carbon and nitrogen [...] Read more.
The scholarly literature records information related to the performance increase of the cutting tools covered by the superficial layers formed “in situ” when applying thermochemical processing. In this context, information is frequently reported on the carbamide role in processes aiming carbon and nitrogen surface saturation. Sulfur, together with these elements adsorbed and diffused in the cutting tools superficial layers, undoubtedly ensures an increase of their operating sustainability. The present paper discusses the process of sulfonitrocarburizing in pulverulent solid media of high-speed tools steel (AISI T1, HS18-0-1) and its consequences. The peculiarity of the considered process is that the source of nitrogen and carbon is mainly carbamide (CON2H4), which is found in solid powdery mixtures together with components that do not lead to cyan complex formation (non-toxic media), and the sulfur source is native sulfur. The kinetics of the sulfonitrocarburizing process, depending on the carbamide proportion in the powdered solid mixture and the processing temperature, was studied. The consequences of the achieved sulfonitrocarburized layers on the cutting tools’ performance are expressed by the maximum permissible cutting speed and the maximum cut length. An interesting aspect is highlighted, namely the possibility of using chemically active mixtures. Their components, by initiation of the metallothermic reduction reaction, become able to provide both elements of interest and the amount of heat needed for the ultrafast saturation of the targeted metal surfaces. Full article
Show Figures

Figure 1

11 pages, 8643 KiB  
Article
Metallothermic Reduction of MoO3 on Combustion Synthesis of Molybdenum Silicides/MgAl2O4 Composites
by Chun-Liang Yeh and Min-Chia Chen
Materials 2021, 14(17), 4800; https://doi.org/10.3390/ma14174800 - 24 Aug 2021
Cited by 4 | Viewed by 2576
Abstract
Combustion synthesis involving metallothermic reduction of MoO3 by dual reductants, Mg and Al, to enhance the reaction exothermicity was applied for the in situ production of Mo3Si–, Mo5Si3− and MoSi2–MgAl2O4 composites [...] Read more.
Combustion synthesis involving metallothermic reduction of MoO3 by dual reductants, Mg and Al, to enhance the reaction exothermicity was applied for the in situ production of Mo3Si–, Mo5Si3− and MoSi2–MgAl2O4 composites with a broad compositional range. Reduction of MoO3 by Mg and Al is highly exothermic and produces MgO and Al2O3 as precursors of MgAl2O4. Molybdenum silicides are synthesized from the reactions of Si with both reduced and elemental Mo. Experimental evidence indicated that the reaction proceeded as self-propagating high-temperature synthesis (SHS) and the increase in silicide content weakened the exothermicity of the overall reaction, and therefore, lowered combustion front temperature and velocity. The XRD analysis indicated that Mo3Si–, Mo5Si3– and MoSi2–MgAl2O4 composites were well produced with only trivial amounts of secondary silicides. Based on SEM and EDS examinations, the morphology of synthesized composites exhibited dense and connecting MgAl2O4 crystals and micro-sized silicide particles, which were distributed over or embedded in the large MgAl2O4 crystals. Full article
(This article belongs to the Special Issue Advances in Materials Processing (Second Volume))
Show Figures

Figure 1

11 pages, 3776 KiB  
Article
Synthesis of FeSi-Al2O3 Composites by Autowave Combustion with Metallothermic Reduction
by Chun-Liang Yeh and Kuan-Ting Chen
Metals 2021, 11(2), 258; https://doi.org/10.3390/met11020258 - 3 Feb 2021
Cited by 8 | Viewed by 2392
Abstract
Fabrication of FeSi-Al2O3 composites with a molar ratio of FeSi/Al2O3 ranging from 1.2 to 4.5 was conducted by the self-propagating high-temperature synthesis (SHS) method. The synthesis reaction involved metallothermic reduction of Fe2O3 and SiO [...] Read more.
Fabrication of FeSi-Al2O3 composites with a molar ratio of FeSi/Al2O3 ranging from 1.2 to 4.5 was conducted by the self-propagating high-temperature synthesis (SHS) method. The synthesis reaction involved metallothermic reduction of Fe2O3 and SiO2 by Al and the chemical interaction of Fe and Si. Two combustion systems were examined: one contained thermite reagents of 0.6Fe2O3 + 0.6SiO2 + 2Al, and the other had Fe2O3 + 2Al to mix with different amounts of Fe and Si powders. A thermodynamic analysis indicated that metallothermic reduction of oxide precursors was sufficiently exothermic to sustain the combustion reaction in a self-propagating mode. The SHS reaction carrying out co-reduction of Fe2O3 and SiO2 was less exothermic, and was applied to synthesize products with FeSi/Al2O3 = 1.2–2.5, while the reaction reducing only Fe2O3 was more energetic and was adopted for the composites with FeSi/Al2O3 = 2.5–4.5. Moreover, the former had a larger activation energy, i.e., Ea = 215.3 kJ/mol, than the latter, i.e., Ea = 180.4 kJ/mol. For both reaction systems, the combustion wave velocity and temperature decreased with increasing FeSi content. Formation of FeSi-Al2O3 in situ composites with different amounts of FeSi was achieved. Additionally, a trivial amount of aluminum silicate was detected in the products of high FeSi contents due to dissolution of Si into Al2O3 during the SHS process. Full article
(This article belongs to the Special Issue Metallothermic Reactions)
Show Figures

Figure 1

11 pages, 4726 KiB  
Article
Formation of Mo5Si3/Mo3Si–MgAl2O4 Composites via Self-Propagating High-Temperature Synthesis
by Chun-Liang Yeh and Yin-Chien Chen
Molecules 2020, 25(1), 83; https://doi.org/10.3390/molecules25010083 - 24 Dec 2019
Cited by 13 | Viewed by 2786
Abstract
In situ formation of intermetallic/ceramic composites composed of molybdenum silicides (Mo5Si3 and Mo3Si) and magnesium aluminate spinel (MgAl2O4) was conducted by combustion synthesis with reducing stages in the mode of self-propagating high-temperature synthesis (SHS). [...] Read more.
In situ formation of intermetallic/ceramic composites composed of molybdenum silicides (Mo5Si3 and Mo3Si) and magnesium aluminate spinel (MgAl2O4) was conducted by combustion synthesis with reducing stages in the mode of self-propagating high-temperature synthesis (SHS). The SHS process combined intermetallic combustion between Mo and Si with metallothermic reduction of MoO3 by Al in the presence of MgO. Experimental evidence showed that combustion velocity and temperature decreased with increasing molar content of Mo5Si3 and Mo3Si, and therefore, the flammability limit determined for the reaction at Mo5Si3 or Mo3Si/MgAl2O4 = 2.0. Based upon combustion wave kinetics, the activation energies, Ea = 68.8 and 63.8 kJ/mol, were deduced for the solid-state SHS reactions producing Mo5Si3– and Mo3Si–MgAl2O4 composites, respectively. Phase conversion was almost complete after combustion, with the exception of trivial unreacted Mo existing in both composites and a minor amount of Mo3Si in the Mo5Si3–MgAl2O4 composite. Both composites display a dense morphology formed by connecting MgAl2O4 crystals, within which micro-sized molybdenum silicide grains were embedded. For equimolar Mo5Si3– and Mo3Si–MgAl2O4 composites, the hardness and fracture toughness are 14.6 GPa and 6.28 MPa m1/2, and 13.9 GPa and 5.98 MPa m1/2, respectively. Full article
(This article belongs to the Special Issue Intermetallics: Synthesis, Structure, Function)
Show Figures

Figure 1

14 pages, 3153 KiB  
Article
Reduction Conditions of Metallic Calcium from Magnesium Production Residues
by Kerem Can Taşyürek, Mehmet Buğdaycı and Onuralp Yücel
Metals 2018, 8(6), 383; https://doi.org/10.3390/met8060383 - 25 May 2018
Cited by 16 | Viewed by 7855
Abstract
In this paper, the theoretical and industrial definitions of metallic calcium production by the metallothermic process in a vacuum atmosphere were investigated. In the experiments, Al is the only reductant used for metallothermic calcium production. The effects of Al stoichiometry, time variances, and [...] Read more.
In this paper, the theoretical and industrial definitions of metallic calcium production by the metallothermic process in a vacuum atmosphere were investigated. In the experiments, Al is the only reductant used for metallothermic calcium production. The effects of Al stoichiometry, time variances, and temperature changes were investigated. The experiments were carried out at 1200 °C, 1250 °C, and 1300 °C, and with 100% Al, 125% Al, and 150% Al stoichiometry to produce metallic calcium from the residue of metallic magnesium production. Both the raw materials and the residue phases were characterized by atomic absorption spectrometry (AAS), X-ray diffraction (XRD) spectrometry, and chemical analysis techniques. Experimental results were investigated to determine the highest efficiency of reduction conditions. From the results of the experiments, reaction kinetics and activation energy were calculated. According to the experimental results, the highest recovery rate parameters for the reduction of calcium are 150% stoichiometric Al for 480 min at 1300 °C, with 72% recovery. Full article
Show Figures

Figure 1

Back to TopTop