Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,222)

Search Parameters:
Keywords = metallization of plastics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3316 KiB  
Article
Experimental Study on the Electromagnetic Forming Behavior of Pre-Painted Al 99.0 Sheet
by Dorin Luca, Vasile Șchiopu and Dorian D. Luca
J. Manuf. Mater. Process. 2025, 9(8), 259; https://doi.org/10.3390/jmmp9080259 - 3 Aug 2025
Viewed by 74
Abstract
Development of forming methods for surface-coated metals is a current concern due to their economic and environmental advantages. For a successful forming operation, it is necessary that both components, the substrate and the coating, are able to withstand stress without damage until the [...] Read more.
Development of forming methods for surface-coated metals is a current concern due to their economic and environmental advantages. For a successful forming operation, it is necessary that both components, the substrate and the coating, are able to withstand stress without damage until the final shape and dimensions are reached. This goal can be achieved through good knowledge of the elastic and plastic properties of the substrate and the coating, the compatibility between them, the appropriate surface treatment, and the rigorous control of technological forming parameters. Our study was carried out with flat specimens of pre-painted Al 99.0 sheet that were electromagnetically formed by bulging. Forming behavior was investigated as depending on the initial thickness of the substrate, on the aluminum sheet pretreatment, as well as on the plastic deformation path of the metal–paint structure. To verify the damage to the paint layer, tests with increasing strains were performed, and the interface between the metal and the coating layer was investigated by scanning electron microscopy. The obtained results indicate that electromagnetic forming of pre-painted sheets can be a feasible method for specific applications if the forming degree of the substrate is tightly correlated with the type of desired coating and with the pretreatment method used for the metal surface. Full article
Show Figures

Figure 1

12 pages, 2848 KiB  
Article
Microstructure and Properties of Dissoluble LA141-0.5Cu Magnesium Alloy Wires Applied to Oil and Gas Resource Exploitation
by Qiang Sun, Jianjun Xue, Yang Shi, Dingwei Weng, Shaolin Zhang, Ran Wei, Zheng Tong and Jie Qian
Metals 2025, 15(8), 860; https://doi.org/10.3390/met15080860 (registering DOI) - 31 Jul 2025
Viewed by 152
Abstract
Mg-Li-based dissoluble metal is a promising material for preparing dissoluble magnesium alloy wires. However, there are few reports on the development of Mg-Li dissoluble magnesium alloy wires so far. In this paper, the mechanical properties and dissoluble properties of as-drawn and annealed LA141-0.5Cu [...] Read more.
Mg-Li-based dissoluble metal is a promising material for preparing dissoluble magnesium alloy wires. However, there are few reports on the development of Mg-Li dissoluble magnesium alloy wires so far. In this paper, the mechanical properties and dissoluble properties of as-drawn and annealed LA141-0.5Cu wires were investigated in detail. It was found that the tensile strength of the LA141-0.5Cu wires decreased from 160 MPa to 127 MPa and the elongation increased from 17% to 22% after annealing. The difference in corrosion rates (93 °C/3% KCl solution) between the as-drawn wires and annealed wires is not significant, with values of 5.1 mg·cm−2·h−1 and 4.5 mg·cm−2·h−1, respectively. This can be explained as follows: after annealing, the number of dislocations in the wire decreases, the strength decreases, and the plasticity increases. The reason why the wires have a significant corrosion rate is that there is a large potential difference between the Cu-containing second phase and the magnesium matrix, which forms galvanic corrosion. The decrease in dislocation density after annealing leads to a slight reduction in the corrosion rate of the wires. This work provides a qualified material for fabricating temporary blocking knots for the exploitation of unconventional oil and gas resources. Full article
Show Figures

Figure 1

32 pages, 3004 KiB  
Review
Research and Application of Ga-Based Liquid Metals in Catalysis
by Yu Zhang, Ying Xin and Qingshan Zhao
Nanomaterials 2025, 15(15), 1176; https://doi.org/10.3390/nano15151176 - 30 Jul 2025
Viewed by 154
Abstract
In recent years, Ga-based liquid metals have emerged as a prominent research focus in catalysis, owing to their unique properties, including fluidity, low melting point, high thermal and electrical conductivity, and tunable surface characteristics. This review summarizes the synthesis strategies for Ga-based liquid [...] Read more.
In recent years, Ga-based liquid metals have emerged as a prominent research focus in catalysis, owing to their unique properties, including fluidity, low melting point, high thermal and electrical conductivity, and tunable surface characteristics. This review summarizes the synthesis strategies for Ga-based liquid metal catalysts, with a focus on recent advances in their applications across electrocatalysis, thermal catalysis, photocatalysis, and related fields. In electrocatalysis, these catalysts exhibit potential for reactions such as electrocatalytic CO2 reduction, electrocatalytic ammonia synthesis, electrocatalytic hydrogen production, and the electrocatalytic oxidation of alcohols. As to thermal catalysis, these catalysts are employed in processes such as alkane dehydrogenation, selective hydrogenation, thermocatalytic CO2 reduction, thermocatalytic ammonia synthesis, and thermocatalytic plastic degradation. In photocatalysis, they can be used in other photocatalytic reactions such as organic matter degradation and overall water splitting. Furthermore, Ga-based liquid metal catalysts also exhibit distinct advantages in catalytic reactions within battery systems and mechano-driven catalysis, offering innovative concepts and technical pathways for developing novel catalytic systems. Finally, this review discusses the current challenges and future prospects in Ga-based liquid metal catalysis. Full article
Show Figures

Figure 1

22 pages, 15066 KiB  
Article
Influence of Shot Peening on Selected Properties of the Surface and Subsurface Regions of Additively Manufactured 316L and AlSi10Mg
by Ali Al-Zuhairi, Patrick Lehner, Bastian Blinn, Marek Smaga, Jonas Flatter, Tilmann Beck and Roman Teutsch
Metals 2025, 15(8), 856; https://doi.org/10.3390/met15080856 - 30 Jul 2025
Viewed by 151
Abstract
Due to the high potential of shot peening to improve the surface quality of additively manufactured components, in this work, the influence on surface morphology and, thus, the surface topography and selected properties of the surface and subsurface regions of additively manufactured parts [...] Read more.
Due to the high potential of shot peening to improve the surface quality of additively manufactured components, in this work, the influence on surface morphology and, thus, the surface topography and selected properties of the surface and subsurface regions of additively manufactured parts is analysed. For this, cubic specimens made of stainless steel 316L and AlSi10Mg were manufactured via powder bed fusion laser beam metal (PBF-LB/M), and subsequently, their “as-built” surfaces were shot peened. Shot peening was conducted with stainless steel or ceramic beads using pressures of 3 and 5 bar. The resulting morphologies were analysed regarding topography, microstructure and mechanical properties (hardness and cyclic deformation behaviour) in the subsurface region and the residual stresses. The results demonstrate a strong plastic deformation due to shot peening, resulting in a decreased surface roughness as well as an increased hardness and compressive residual stresses near the surface. These effects were generally more pronounced after using higher peening pressure and/or ceramic beads. Note that two sets of PBF-LB/M parameters were used to produce the AlSi10Mg specimens. The investigation of these specimens reveals an interrelation between the parameters used in shot peening and PBF-LB/M on the resulting surface morphology. Full article
Show Figures

Graphical abstract

12 pages, 1939 KiB  
Article
Fe3+-Modulated In Situ Formation of Hydrogels with Tunable Mechanical Properties
by Lihan Rong, Tianqi Guan, Xinyi Fan, Wenjie Zhi, Rui Zhou, Feng Li and Yuyan Liu
Gels 2025, 11(8), 586; https://doi.org/10.3390/gels11080586 - 30 Jul 2025
Viewed by 146
Abstract
Fe3+-incorporated hydrogels are particularly valuable for wearable devices due to their tunable mechanical properties and ionic conductivity. However, conventional immersion-based fabrication fundamentally limits hydrogel performance because of heterogeneous ion distribution, ionic leaching, and scalability limitations. To overcome these challenges, we report [...] Read more.
Fe3+-incorporated hydrogels are particularly valuable for wearable devices due to their tunable mechanical properties and ionic conductivity. However, conventional immersion-based fabrication fundamentally limits hydrogel performance because of heterogeneous ion distribution, ionic leaching, and scalability limitations. To overcome these challenges, we report a novel one-pot strategy where controlled amounts of Fe3+ are directly added to polyacrylamide-sodium acrylate (PAM-SA) precursor solutions, ensuring homogeneous ion distribution. Combining this with Photoinduced Electron/Energy Transfer Reversible Addition–Fragmentation Chain Transfer (PET-RAFT) polymerization enables efficient hydrogel fabrication under open-vessel conditions, improving its scalability. Fe3+ concentration achieves unprecedented modulation of mechanical properties: Young’s modulus (10 to 150 kPa), toughness (0.26 to 2.3 MJ/m3), and strain at break (800% to 2500%). The hydrogels also exhibit excellent compressibility (90% strain recovery), energy dissipation (>90% dissipation efficiency at optimal Fe3+ levels), and universal adhesion to diverse surfaces (plastic, metal, PTFE, and cardboard). Finally, these Fe3+-incorporated hydrogels demonstrated high effectiveness as strain sensors for monitoring finger/elbow movements, with gauge factors dependent on composition. This work provides a scalable, oxygen-tolerant route to tunable hydrogels for advanced wearable devices. Full article
(This article belongs to the Section Gel Chemistry and Physics)
Show Figures

Graphical abstract

36 pages, 3579 KiB  
Article
RNA Sequencing Reveals Inflammatory and Metabolic Changes in the Lung and Brain After Carbon Black and Naphthalene Whole Body Inhalation Exposure in a Rodent Model of Military Burn Pit Exposures
by Allison M. Haaning, Brian J. Sandri, Henry L. Wyneken, William T. Goldsmith, Joshua P. Nixon, Timothy R. Nurkiewicz, Chris H. Wendt, Paul Barach, Janeen H. Trembley and Tammy A. Butterick
Int. J. Mol. Sci. 2025, 26(15), 7238; https://doi.org/10.3390/ijms26157238 - 26 Jul 2025
Viewed by 530
Abstract
Military personnel deployed to Iraq and Afghanistan were exposed to emissions from open-air burn pits, where plastics, metals, and medical waste were incinerated. These exposures have been linked to deployment-related respiratory diseases (DRRD) and may also impact neurological health via the lung–brain axis. [...] Read more.
Military personnel deployed to Iraq and Afghanistan were exposed to emissions from open-air burn pits, where plastics, metals, and medical waste were incinerated. These exposures have been linked to deployment-related respiratory diseases (DRRD) and may also impact neurological health via the lung–brain axis. To investigate molecular mechanisms, adult male rats were exposed to filtered air, naphthalene (a representative volatile organic compound), or a combination of naphthalene and carbon black (surrogate for particulate matter; CBN) via whole-body inhalation (six hours/day, three consecutive days). Lung, brain, and plasma samples were collected 24 h after the final exposure. Pro-inflammatory biomarkers were assessed using multiplex electrochemiluminescence and western blot. Differentially expressed genes (DEGs) were identified by RNA sequencing, and elastic net modeling was used to define exposure-predictive gene signatures. CBN exposure altered inflammatory biomarkers across tissues, with activation of nuclear factor kappa B (NF-κB) signaling. In the lung, gene set enrichment revealed activated pathways related to proliferation and inflammation, while epithelial–mesenchymal transition (EMT) and oxidative phosphorylation were suppressed. In the brain, EMT, inflammation, and senescence pathways were activated, while ribosomal function and oxidative metabolism were downregulated. Elastic net modeling identified a lung gene signature predictive of CBN exposure, including Kcnq3, Tgfbr1, and Tm4sf19. These findings demonstrate that inhalation of a surrogate burn pit mixture induces inflammatory and metabolic gene expression changes in both lung and brain tissues, supporting the utility of this animal model for understanding systemic effects of airborne military toxicants and for identifying potential biomarkers relevant to DRRD and Veteran health. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

10 pages, 220 KiB  
Article
Surface Application of Different Insecticides Against Two Coleopteran Pests of Stored Products
by Paraskevi Agrafioti, Marina Gourgouta, Dimitrios Kateris and Christos G. Athanassiou
Appl. Sci. 2025, 15(15), 8306; https://doi.org/10.3390/app15158306 - 25 Jul 2025
Viewed by 163
Abstract
The present study highlights the critical role of surface type, insect species, and exposure duration in determining the efficacy of surface-applied insecticides in stored-product pest management. Four insecticides were sprayed and evaluated on different surfaces (concrete, metallic, plastic, and ceramic) against two beetles: [...] Read more.
The present study highlights the critical role of surface type, insect species, and exposure duration in determining the efficacy of surface-applied insecticides in stored-product pest management. Four insecticides were sprayed and evaluated on different surfaces (concrete, metallic, plastic, and ceramic) against two beetles: the red flour beetle and the tobacco beetle. Alpha-cypermethrin and spinosad exhibited rapid and high efficacy, particularly on non-porous surfaces such as metal and ceramic, whereas pirimiphos-methyl was less effective initially and required extended exposure to achieve complete mortality, especially against Tribolium castaneum. In contrast, Lasioderma serricorne showed greater susceptibility across all insecticides and surfaces. Spinosad maintained high efficacy across all surface types, suggesting broader applicability under variable conditions. The reduced performance of insecticides on concrete surfaces underscores the influence of substrate porosity on insecticide bioavailability. Additionally, the observed delayed mortality effect in all treatments indicates that even brief exposure can result in lethal outcomes, emphasizing the long-term potential of these applications. These findings underscore the need for surface-specific application strategies and support the integration of surface treatments into comprehensive pest management programs. Further research is warranted under simulated field conditions to assess residual efficacy over time and in the presence of food, thereby enhancing the relevance of laboratory findings to real-world storage environments. Full article
(This article belongs to the Special Issue Advanced Computational Techniques for Plant Disease Detection)
33 pages, 4531 KiB  
Article
Development of the Theory of Additional Impact on the Deformation Zone from the Side of Rolling Rolls
by Valeriy Chigirinsky, Irina Volokitina, Abdrakhman Naizabekov, Sergey Lezhnev and Sergey Kuzmin
Symmetry 2025, 17(8), 1188; https://doi.org/10.3390/sym17081188 - 25 Jul 2025
Viewed by 154
Abstract
The model explicitly incorporates boundary conditions that account for the complex interplay between sections experiencing varying degrees of reduction. This interaction significantly influences the overall deformation behavior and force loading. The control effect is associated with boundary conditions determined by the unevenness of [...] Read more.
The model explicitly incorporates boundary conditions that account for the complex interplay between sections experiencing varying degrees of reduction. This interaction significantly influences the overall deformation behavior and force loading. The control effect is associated with boundary conditions determined by the unevenness of the compression, which have certain quantitative and qualitative characteristics. These include additional loading, which is less than the main load, which implements the process of plastic deformation, and the ratio of control loads from the entrance and exit of the deformation site. According to this criterion, it follows from experimental data that the controlling effect on the plastic deformation site occurs with a ratio of additional and main loading in the range of 0.2–0.8. The next criterion is the coefficient of support, which determines the area of asymmetry of the force load and is in the range of 2.00–4.155. Furthermore, the criterion of the regulating force ratio at the boundaries of the deformation center forming a longitudinal plastic shear is within the limits of 2.2–2.5 forces and 1.3–1.4 moments of these forces. In this state, stresses and deformations of the plastic medium are able to realize the effects of plastic shaping. The force effect reduces with an increase in the unevenness of the deformation. This is due to a change in height of the longitudinal interaction of the disparate sections of the strip. There is an appearance of a new quality of loading—longitudinal plastic shear along the deformation site. The unbalanced additional force action at the entrance of the deformation source is balanced by the force source of deformation, determined by the appearance of a functional shift in the model of the stress state of the metal. The developed theory, using the generalized method of an argument of functions of a complex variable, allows us to characterize the functional shift in the deformation site using invariant Cauchy–Riemann relations and Laplace differential equations. Furthermore, the model allows for the investigation of material properties such as the yield strength and strain hardening, influencing the size and characteristics of the identified limit state zone. Future research will focus on extending the model to incorporate more complex material behaviors, including viscoelastic effects, and to account for dynamic loading conditions, more accurately reflecting real-world milling processes. The detailed understanding gained from this model offers significant potential for optimizing mill roll designs and processes for enhanced efficiency and reduced energy consumption. Full article
(This article belongs to the Special Issue Symmetry in Finite Element Modeling and Mechanics)
Show Figures

Figure 1

11 pages, 935 KiB  
Article
Rescue Blankets in Direct Exposure to Lightning Strikes—An Experimental Study
by Markus Isser, Wolfgang Lederer, Daniel Schwaiger, Mathias Maurer, Sandra Bauchinger and Stephan Pack
Coatings 2025, 15(8), 868; https://doi.org/10.3390/coatings15080868 - 23 Jul 2025
Viewed by 1067
Abstract
Lightning strikes pose a significant risk during outdoor activities. The connection between conventionally used rescue blankets in alpine emergencies and the risk of lightning injury is unclear. This experimental study investigated whether rescue blankets made of aluminum-coated polyethylene terephthalate increase the likelihood of [...] Read more.
Lightning strikes pose a significant risk during outdoor activities. The connection between conventionally used rescue blankets in alpine emergencies and the risk of lightning injury is unclear. This experimental study investigated whether rescue blankets made of aluminum-coated polyethylene terephthalate increase the likelihood of lightning injuries. High-voltage experiments of up to 2.5 MV were conducted in a controlled laboratory setting, exposing manikins to realistic lightning discharges. In a balanced test environment, two conventionally used brands were investigated. Upward leaders frequently formed on the edges along the fold lines of the foils and were significantly longer in crumpled rescue blankets (p = 0.004). When a lightning strike occurred, the thin metallic layer evaporated at the contact point without igniting the blanket or damaging the underlying plastic film. The blankets diverted surface currents and prevented current flow to the manikins, indicating potentially protective effects. The findings of this experimental study suggest that upward leaders rise from the edge areas of rescue blankets, although there is no increased risk for a direct strike. Rescue blankets may even provide partial protection against exposure to electrical charges. Full article
Show Figures

Figure 1

19 pages, 4649 KiB  
Article
Cavitation Erosion Performance of the INCONEL 625 Superalloy Heat-Treated via Stress-Relief Annealing
by Robert Parmanche, Olimpiu Karancsi, Ion Mitelea, Ilare Bordeașu, Corneliu Marius Crăciunescu and Ion Dragoș Uțu
Appl. Sci. 2025, 15(15), 8193; https://doi.org/10.3390/app15158193 - 23 Jul 2025
Viewed by 170
Abstract
Cavitation-induced degradation of metallic materials presents a significant challenge for engineers and users of equipment operating with high-velocity fluids. For any metallic material, the mechanical strength and ductility characteristics are controlled by the mobility of dislocations and their interaction with other defects in [...] Read more.
Cavitation-induced degradation of metallic materials presents a significant challenge for engineers and users of equipment operating with high-velocity fluids. For any metallic material, the mechanical strength and ductility characteristics are controlled by the mobility of dislocations and their interaction with other defects in the crystal lattice (such as dissolved foreign atoms, grain boundaries, phase separation surfaces, etc.). The increase in mechanical properties, and consequently the resistance to cavitation erosion, is possible through the application of heat treatments and cold plastic deformation processes. These factors induce a series of hardening mechanisms that create structural barriers limiting the mobility of dislocations. Cavitation tests involve exposing a specimen to repeated short-duration erosion cycles, followed by mass loss measurements and surface morphology examinations using optical microscopy and scanning electron microscopy (SEM). The results obtained allow for a detailed study of the actual wear processes affecting the tested material and provide a solid foundation for understanding the degradation mechanism. The tested material is the Ni-based alloy INCONEL 625, subjected to stress-relief annealing heat treatment. Experiments were conducted using an ultrasonic vibratory device operating at a frequency of 20 kHz and an amplitude of 50 µm. Microstructural analyses showed that slip bands formed due to shock wave impacts serve as preferential sites for fatigue failure of the material. Material removal occurs along these slip bands, and microjets result in pits with sizes of several micrometers. Full article
Show Figures

Figure 1

14 pages, 1030 KiB  
Article
Lumen-Apposing Metal Stents for Endoscopic Transgastric Drainage of Pancreatic Fluid Collections in Children—A Case Report and Review of Safety and Efficacy
by Irene Wen Hui Tu, Zong Jie Koh, Khek Yu Ho, Sivaramakrishnan Venkatesh Karthik and Vidyadhar Padmakar Mali
Children 2025, 12(8), 965; https://doi.org/10.3390/children12080965 (registering DOI) - 23 Jul 2025
Viewed by 187
Abstract
Background/Objectives: Pancreatic fluid collections (PFCs) in acute pancreatitis require drainage when symptomatic or infected. Walled-off necrosis (WON) is difficult to drain with plastic stents alone. A lumen-apposing metal stent (LAMS) offers larger calibre drainage, lower migration risk than conventional methods, and the option [...] Read more.
Background/Objectives: Pancreatic fluid collections (PFCs) in acute pancreatitis require drainage when symptomatic or infected. Walled-off necrosis (WON) is difficult to drain with plastic stents alone. A lumen-apposing metal stent (LAMS) offers larger calibre drainage, lower migration risk than conventional methods, and the option of direct endoscopic necrosectomy through the stent. However, the paediatric literature on LAMSs is sparse. We report our institutional experience, and summarise current evidence on the feasibility, efficacy and safety of LAMSs for PFC drainage in children. Methods: We performed a retrospective study at the National University Hospital (NUH) and a full review of the literature on LAMS use in children for endoscopic trans-gastric drainage of PFCs from April 2012 to September 2024. Results: There were, respectively, 2 (males, 10 and 17 years) and 18 children who underwent endoscopic trans-gastric LAMS insertion for drainage of PFCs in acute pancreatitis in the NUH and across the nine included studies, which were published between 2015 and 2024. The technical and clinical success was 100%. There were no complications during insertion or indwell time (28 and 50 days in the NUH and 40 days, range of 7–100 days in the systematic review, respectively). Endoscopic removal of LAMSs was uneventful. There were no recurrent PFCs over a 4-month (1,7 months) and 12-month (range, 2–44 months) follow-up, respectively. Migration of LAMSs to colon following the collapse of the WON was reported in one case. Conclusions: An transgastric LAMS (with trans-stent necrosectomy) is a technically feasible method of drainage of WON following acute pancreatitis in children with minimal complications. Full article
(This article belongs to the Section Pediatric Surgery)
Show Figures

Figure 1

18 pages, 2637 KiB  
Article
Tailored 3D Lattice SAPO-34/S-PEEK Composite Sorbents by Additive Manufacturing for Sorption Heat Transformation Applications
by Gabriele Marabello, Emanuela Mastronardo, Davide Palamara, Andrea Frazzica and Luigi Calabrese
Materials 2025, 18(15), 3428; https://doi.org/10.3390/ma18153428 - 22 Jul 2025
Viewed by 183
Abstract
The development of high-performance adsorbent materials is crucial for any sorption-based energy conversion process. In such a context, composite sorbent materials, although promising in terms of performance and stability, are often challenging to shape into complex geometries. Additive manufacturing, also known as 3D [...] Read more.
The development of high-performance adsorbent materials is crucial for any sorption-based energy conversion process. In such a context, composite sorbent materials, although promising in terms of performance and stability, are often challenging to shape into complex geometries. Additive manufacturing, also known as 3D printing, has emerged as a powerful technique for fabricating intricate structures with tailored properties. In this paper, an innovative three-dimensional structure, constituted by zeolite as filler and sulfonated polyether ether ketone as matrix, was obtained using additive manufacturing technology, which is mainly suitable for sorption-based energy conversion processes. The lattice structure was tailored in order to optimize the synthesis procedure and material stability. The complex three-dimensional lattice structure was obtained without a metal or plastic reinforcement support. The composite structure was evaluated to assess its structural integrity using morphological analysis. Furthermore, the adsorption/desorption capacity was evaluated using water-vapor adsorption isobars at 11 mbar at equilibrium in the temperature range 30–120 °C, confirming good adsorption/desorption capacity. Full article
Show Figures

Figure 1

14 pages, 3123 KiB  
Article
Effect of Surface Modification for Efficient Electroplating of 3D-Printed Components
by Dagmar Klichová, Hana Krupová, Jakub Měsíček, František Botko and Světlana Radchenko
Machines 2025, 13(7), 630; https://doi.org/10.3390/machines13070630 - 21 Jul 2025
Viewed by 195
Abstract
This article explores the issue of surface modification through tumbling and vaporisation of 3D-printed materials, and its impact on the electrolytic deposition of metal coatings on previously non-conductive materials. Plastic materials represent an affordable alternative, but their surface treatment, in the form of [...] Read more.
This article explores the issue of surface modification through tumbling and vaporisation of 3D-printed materials, and its impact on the electrolytic deposition of metal coatings on previously non-conductive materials. Plastic materials represent an affordable alternative, but their surface treatment, in the form of post-coating, achieves properties comparable to those of metal parts while saving expensive metal material. Samples prepared by selective laser sintering (SLS) with different surface treatments were used. Polyamide 12 (PA12) was chosen as the base material and copper (Cu) as the metallic coating. Graphite was sprayed on the samples to ensure conductivity. The Cu coating was electrodeposited from an acidic copper electrolyte. The quantitative analysis of the surface was carried out using standard ISO parameters. The thickness of the deposited copper layer was determined using destructive measurements on a digital microscope. The results show that surface modification has a significant effect on the functional properties of the surface quality and the thickness of the deposited copper layer. Full article
(This article belongs to the Special Issue Surface Engineering Techniques in Advanced Manufacturing)
Show Figures

Figure 1

15 pages, 677 KiB  
Article
Zero-Shot Learning for Sustainable Municipal Waste Classification
by Dishant Mewada, Eoin Martino Grua, Ciaran Eising, Patrick Denny, Pepijn Van de Ven and Anthony Scanlan
Recycling 2025, 10(4), 144; https://doi.org/10.3390/recycling10040144 - 21 Jul 2025
Viewed by 291
Abstract
Automated waste classification is an essential step toward efficient recycling and waste management. Traditional deep learning models, such as convolutional neural networks, rely on extensive labeled datasets to achieve high accuracy. However, the annotation process is labor-intensive and time-consuming, limiting the scalability of [...] Read more.
Automated waste classification is an essential step toward efficient recycling and waste management. Traditional deep learning models, such as convolutional neural networks, rely on extensive labeled datasets to achieve high accuracy. However, the annotation process is labor-intensive and time-consuming, limiting the scalability of these approaches in real-world applications. Zero-shot learning is a machine learning paradigm that enables a model to recognize and classify objects it has never seen during training by leveraging semantic relationships and external knowledge sources. In this study, we investigate the potential of zero-shot learning for waste classification using two vision-language models: OWL-ViT and OpenCLIP. These models can classify waste without direct exposure to labeled examples by leveraging textual prompts. We apply this approach to the TrashNet dataset, which consists of images of municipal solid waste organized into six distinct categories: cardboard, glass, metal, paper, plastic, and trash. Our experimental results yield an average classification accuracy of 76.30% with Open Clip ViT-L/14-336 model, demonstrating the feasibility of zero-shot learning for waste classification while highlighting challenges in prompt sensitivity and class imbalance. Despite lower accuracy than CNN- and ViT-based classification models, zero-shot learning offers scalability and adaptability by enabling the classification of novel waste categories without retraining. This study underscores the potential of zero-shot learning in automated recycling systems, paving the way for more efficient, scalable, and annotation-free waste classification methodologies. Full article
Show Figures

Figure 1

16 pages, 2312 KiB  
Article
A Multi-Response Investigation of Abrasive Waterjet Machining Parameters on the Surface Integrity of Twinning-Induced Plasticity (TWIP) Steel
by Onur Cavusoglu
Materials 2025, 18(14), 3404; https://doi.org/10.3390/ma18143404 - 21 Jul 2025
Viewed by 306
Abstract
Twinning-induced plasticity (TWIP) steels represent a significant development in automotive steel production, characterized by advanced strength and ductility properties. The present study empirically investigated the effects of process parameters on the cutting process and surface quality of TWIP980 steel sheet by abrasive water [...] Read more.
Twinning-induced plasticity (TWIP) steels represent a significant development in automotive steel production, characterized by advanced strength and ductility properties. The present study empirically investigated the effects of process parameters on the cutting process and surface quality of TWIP980 steel sheet by abrasive water jet (AWJ) cutting. The cutting experiments were conducted on 1.4 mm thick sheet metal using four different traverse speeds (50, 100, 200, and 400 mm/min) and four different water jet pressures (1500, 2000, 2500, and 3000 bar). Two different abrasive flow rates (300 and 600 g/min) were also utilized. The cut surfaces were characterized in three dimensions with an optical profilometer. The parameters of surface roughness, kerf width, taper angle, and material removal rate (MRR) were determined. Furthermore, microhardness measurements were conducted on the cut surfaces. The optimal surface quality and geometrical accuracy were achieved by applying a combination of parameters, including 3000 bar of pressure, a traverse rate of 400 mm/min, and an abrasive flow rate of 600 g/min. Concurrently, an effective cutting performance with increased MRR and reduced taper angles was achieved under these conditions. The observed increase in microhardness with increasing pressure is attributable to a hardening effect resulting from local plastic deformation. Full article
Show Figures

Figure 1

Back to TopTop