Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (105)

Search Parameters:
Keywords = message streams

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2065 KiB  
Article
Lower-Latency Screen Updates over QUIC with Forward Error Correction
by Nooshin Eghbal and Paul Lu
Future Internet 2025, 17(7), 297; https://doi.org/10.3390/fi17070297 - 30 Jun 2025
Viewed by 188
Abstract
There are workloads that do not need the total data ordering enforced by the Transmission Control Protocol (TCP). For example, Virtual Network Computing (VNC) has a sequence of pixel-based updates in which the order of rectangles can be relaxed. However, VNC runs over [...] Read more.
There are workloads that do not need the total data ordering enforced by the Transmission Control Protocol (TCP). For example, Virtual Network Computing (VNC) has a sequence of pixel-based updates in which the order of rectangles can be relaxed. However, VNC runs over the TCP and can have higher latency due to unnecessary blocking to ensure total ordering. By using Quick UDP Internet Connections (QUIC) as the underlying protocol, we are able to implement a partial order delivery approach, which can be combined with Forward Error Correction (FEC) to reduce data latency. Our earlier work on consistency fences provides a mechanism and semantic foundation for partial ordering. Our new evaluation on the Emulab testbed, with two different synthetic workloads for streaming and non-streaming updates, shows that our partial order and FEC strategy can reduce the blocking time and inter-delivery time of rectangles compared to total delivery. For one workload, partially ordered data with FEC can reduce the 99-percentile message-blocking time to 0.4 ms versus 230 ms with totally ordered data. That workload was with 0.5% packet loss, 100 ms Round-Trip Time (RTT), and 100 Mbps bandwidth. We study the impact of varying the packet-loss rate, RTT, bandwidth, and CCA and demonstrate that partial order and FEC latency improvements grow as we increase packet loss and RTT, especially with the emerging Bottleneck Bandwidth and Round-Trip propagation time (BBR) congestion control algorithm. Full article
Show Figures

Figure 1

10 pages, 1714 KiB  
Proceeding Paper
Efficient Detection of Galileo SAS Sequences Using E6-B Aiding
by Rafael Terris-Gallego, Ignacio Fernandez-Hernandez, José A. López-Salcedo and Gonzalo Seco-Granados
Eng. Proc. 2025, 88(1), 46; https://doi.org/10.3390/engproc2025088046 - 9 May 2025
Viewed by 183
Abstract
Galileo Signal Authentication Service (SAS) is an assisted signal authentication capability under development by Galileo, designed to enhance the robustness of the European Global Navigation Satellite System (GNSS) against malicious attacks like spoofing. It operates by providing information about some fragments of the [...] Read more.
Galileo Signal Authentication Service (SAS) is an assisted signal authentication capability under development by Galileo, designed to enhance the robustness of the European Global Navigation Satellite System (GNSS) against malicious attacks like spoofing. It operates by providing information about some fragments of the unknown spreading codes in the E6-C signal. Unlike other approaches, Galileo SAS uniquely employs Timed Efficient Stream Loss-tolerant Authentication (TESLA) keys provided by Open Service Navigation Message Authentication (OSNMA) in the E1-B signal for decryption, avoiding the need for key storage in potentially compromised receivers. The encrypted fragments are made available to the receivers before the broadcast of the E6-C signal, along with their broadcast time. However, if the receiver lacks an accurate time reference, searching for these fragments—which typically last for milliseconds and have periodicities extending to several seconds—can become impractical. In such cases, the probability of detection is severely diminished due to the excessively large search space that results. To mitigate this, initial estimates for the code phase delay and Doppler frequency can be obtained from the E1-B signal. Nevertheless, the alignment between E1-B and E6-C is not perfect, largely due to the intrinsic inter-frequency biases they exhibit. To mitigate this issue, we can leverage auxiliary signals like E6-B, processed by High Accuracy Service (HAS)-compatible receivers. This is a logical choice as E6-B shares the same carrier frequency as E6-C. This could help in obtaining more precise estimates of the location of the encrypted fragments and improving the probability of detection, resulting in enhanced robustness for the SAS authentication process. This paper presents a comparison of uncertainties associated with the use of the E1-B and E6-B signals, based on real data samples obtained with a custom-built Galileo SAS evaluation platform based on Software Defined Radio (SDR) boards. The results show the benefits of including E6-B in SAS processing, with minimal implementation cost. Full article
(This article belongs to the Proceedings of European Navigation Conference 2024)
Show Figures

Figure 1

14 pages, 2429 KiB  
Article
End-to-End Architecture for Real-Time IoT Analytics and Predictive Maintenance Using Stream Processing and ML Pipelines
by Ouiam Khattach, Omar Moussaoui and Mohammed Hassine
Sensors 2025, 25(9), 2945; https://doi.org/10.3390/s25092945 - 7 May 2025
Cited by 1 | Viewed by 1875
Abstract
The rapid proliferation of Internet of Things (IoT) devices across industries has created a need for robust, scalable, and real-time data processing architectures capable of supporting intelligent analytics and predictive maintenance. This paper presents a novel comprehensive architecture that enables end-to-end processing of [...] Read more.
The rapid proliferation of Internet of Things (IoT) devices across industries has created a need for robust, scalable, and real-time data processing architectures capable of supporting intelligent analytics and predictive maintenance. This paper presents a novel comprehensive architecture that enables end-to-end processing of IoT data streams, from acquisition to actionable insights. The system integrates Kafka-based message brokering for the high-throughput ingestion of real-time sensor data, with Apache Spark facilitating batch and stream extraction, transformation, and loading (ETL) processes. A modular machine-learning pipeline handles automated data preprocessing, training, and evaluation across various models. The architecture incorporates continuous monitoring and optimization components to track system performance and model accuracy, feeding insights to users via a dedicated Application Programming Interface (API). The design ensures scalability, flexibility, and real-time responsiveness, making it well suited for industrial IoT applications requiring continuous monitoring and intelligent decision-making. Full article
Show Figures

Figure 1

22 pages, 3372 KiB  
Article
Encryption Algorithm MLOL: Security and Efficiency Enhancement Based on the LOL Framework
by Xinyue Zhang, Daoguang Mu, Wenzheng Zhang and Xinfeng Dong
Cryptography 2025, 9(1), 18; https://doi.org/10.3390/cryptography9010018 - 12 Mar 2025
Viewed by 689
Abstract
Authenticated encryption with associated data (AEAD) schemes based on stream ciphers, such as ASCON and MORUS, typically use nonlinear feedback shift registers (NFSRs) and linear feedback shift registers (LFSRs) to generate variable-length key streams. While these methods ensure message confidentiality and authenticity, they [...] Read more.
Authenticated encryption with associated data (AEAD) schemes based on stream ciphers, such as ASCON and MORUS, typically use nonlinear feedback shift registers (NFSRs) and linear feedback shift registers (LFSRs) to generate variable-length key streams. While these methods ensure message confidentiality and authenticity, they present challenges in security analysis, especially when automated evaluation is involved. In this paper, we present MLOL, a novel AEAD algorithm based on the LOL framework. MLOL combines authenticated encryption with optimizations to the LFSR structure to enhance both security and efficiency. The cost evaluation demonstrates that on specialized CPU platforms without SIMD instruction set support, MLOL achieves better performance in authenticated encryption speed compared to LOL-MINI with GHASH. Our security analysis confirms that MLOL provides 256-bit security against current cryptanalytic techniques. Experimental results demonstrate that MLOL not only inherits the excellent performance of LOL but also reduces the time complexity of the authenticated encryption process, providing more reliable security guarantees. It significantly simplifies security evaluation, making it suitable for automated analysis tools, and offers a feasible new approach for AEAD algorithm design. Full article
(This article belongs to the Topic Trends and Prospects in Security, Encryption and Encoding)
Show Figures

Figure 1

4 pages, 172 KiB  
Editorial
Is Medium Still the Message? The Vague Relationship Between Broadcasting, Streaming, and Media Audiences
by Anna Podara
Journal. Media 2025, 6(1), 16; https://doi.org/10.3390/journalmedia6010016 - 26 Jan 2025
Viewed by 1011
Abstract
Marshall McLuhan’s famous assertion that “the medium is the message” and the affordances of a medium (e [...] Full article
25 pages, 6259 KiB  
Article
Integration of Multi-Source Landslide Disaster Data Based on Flink Framework and APSO Load Balancing Task Scheduling
by Zongmin Wang, Huangtaojun Liang, Haibo Yang, Mengyu Li and Yingchun Cai
ISPRS Int. J. Geo-Inf. 2025, 14(1), 12; https://doi.org/10.3390/ijgi14010012 - 31 Dec 2024
Cited by 2 | Viewed by 933
Abstract
As monitoring technologies and data collection methodologies advance, landslide disaster data reflects attributes such as diverse sources, heterogeneity, substantial volumes, and stringent real-time requirements. To bolster the data support capabilities for the monitoring, prevention, and management of landslide disasters, the efficient integration of [...] Read more.
As monitoring technologies and data collection methodologies advance, landslide disaster data reflects attributes such as diverse sources, heterogeneity, substantial volumes, and stringent real-time requirements. To bolster the data support capabilities for the monitoring, prevention, and management of landslide disasters, the efficient integration of multi-source heterogeneous data is of paramount importance. The present study proposes an innovative approach to integrate multi-source landslide disaster data by combining the Flink-oriented framework with load balancing task scheduling based on an improved particle swarm optimization (APSO) algorithm. It utilizes Flink’s streaming processing capabilities to efficiently process and store multi-source landslide data. To tackle the issue of uneven cluster load distribution during the integration process, the APSO algorithm is proposed to facilitate cluster load balancing. The findings indicate the following: (1) The multi-source data integration method for landslide disaster based on Flink and APSO proposed in this article, combined with the structural characteristics of landslide disaster data, adopts different integration methods for data in different formats, which can effectively achieve the integration of multi-source landslide data. (2) A multi-source landslide data integration framework based on Flink has been established. Utilizing Kafka as a message queue, a real-time data pipeline was constructed, with Flink facilitating data processing and read/write operations for the database. This implementation achieves efficient integration of multi-source landslide data. (3) Compared to Flink’s default task scheduling strategy, the cluster load balancing strategy based on APSO demonstrated a reduction of approximately 4.7% in average task execution time and an improvement of approximately 5.4% in average system throughput during actual tests using landslide data sets. The research findings illustrate a significant improvement in the efficiency of data integration processing and system performance. Full article
Show Figures

Figure 1

24 pages, 3427 KiB  
Article
One Class of Ideally Secret Autonomous Symmetric Ciphering Systems Based on Wiretap Polar Codes
by Milan Milosavljević, Jelica Radomirović, Tomislav Unkašević and Boško Božilović
Mathematics 2024, 12(23), 3724; https://doi.org/10.3390/math12233724 - 27 Nov 2024
Cited by 1 | Viewed by 698
Abstract
This paper introduces a class of symmetric ciphering systems with a finite secret key, which provides ideal secrecy, autonomy in key generation and distribution, and robustness against the probabilistic structure of messages (the Ideally Secret Autonomous Robust (ISAR) system). The ISAR system is [...] Read more.
This paper introduces a class of symmetric ciphering systems with a finite secret key, which provides ideal secrecy, autonomy in key generation and distribution, and robustness against the probabilistic structure of messages (the Ideally Secret Autonomous Robust (ISAR) system). The ISAR system is based on wiretap polar codes constructed over an artificial wiretap channel with a maximum secrecy capacity of 0.5. The system autonomously maintains a minimum level of key equivocation by continuously refreshing secret keys without additional key generation and distribution infrastructure. Moreover, it can transform any stream ciphering system with a finite secret key of known length into an ISAR system without knowing and/or changing its algorithm. Therefore, this class of system strongly supports privacy, a critical requirement for contemporary security systems. The ISAR system’s reliance on wiretap polar coding for strong secrecy ensures resistance to passive known plaintext attacks. Furthermore, resistance to passive attacks on generated refreshing keys follows directly from ideal secrecy and autonomy. The results presented offer an efficient methodology for synthesizing this class of systems with predetermined security margins and a complexity of the order of nlogn, where n is the block length of the applied polar code. Full article
(This article belongs to the Special Issue Advanced Research on Information System Security and Privacy)
Show Figures

Figure 1

17 pages, 6714 KiB  
Article
Development of Deterministic Communication for In-Vehicle Networks Based on Software-Defined Time-Sensitive Networking
by Binqi Li, Yuan Zhu, Qin Liu and Xiangxi Yao
Machines 2024, 12(11), 816; https://doi.org/10.3390/machines12110816 - 15 Nov 2024
Cited by 2 | Viewed by 1707
Abstract
To support more advanced functionality in vehicles, there is the challenge of deterministic and reliable transmission of sensor data and control signals. Time-sensitive networking (TSN) is the most promising candidate to meet this demand by leveraging IEEE 802.1 ethernet standards, which include time [...] Read more.
To support more advanced functionality in vehicles, there is the challenge of deterministic and reliable transmission of sensor data and control signals. Time-sensitive networking (TSN) is the most promising candidate to meet this demand by leveraging IEEE 802.1 ethernet standards, which include time synchronization, traffic shaping, and low-latency forwarding mechanisms. To explore the implementation of TSN for in-vehicle networks (IVN), this paper proposes a robust integer linear programming (ILP)-based scheduling model for time-sensitive data streams to mitigate the vulnerabilities of the time-aware shaper (TAS) mechanism in practice. Furthermore, we integrate this scheduling model into a software-defined time-sensitive networking (SD-TSN) architecture to automate the scheduling computations and configurations in the design phase. This SD-TSN architecture can offer a flexible and programmable approach to network management, enabling precise control over timing constraints and quality-of-service (QoS) parameters for time-sensitive traffic. Firstly, data transmission requirements are gathered by the centralized user configuration (CUC) module to acquire traffic information. Subsequently, the CNC module transfers the computed results of routing and scheduling to the YANG model for configuration delivery. Finally, automotive TSN switches can complete local configuration by parsing the received configuration messages. Through an experimental validation based on a physical platform, this study demonstrates the effectiveness of the scheduling algorithm and SD-TSN architecture in enhancing deterministic communication for in-vehicle networks. Full article
(This article belongs to the Special Issue Intelligent Control and Active Safety Techniques for Road Vehicles)
Show Figures

Figure 1

27 pages, 5309 KiB  
Article
A Case Study on the Integration of Powerline Communications and Visible Light Communications from a Power Electronics Perspective
by Felipe Loose, Juan Ramón Garcia-Meré, Adrion Andrei Rosanelli, Carlos Henrique Barriquello, José Antonio Fernandez Alvárez, Juan Rodríguez and Diego González Lamar
Sensors 2024, 24(20), 6627; https://doi.org/10.3390/s24206627 - 14 Oct 2024
Cited by 1 | Viewed by 1713
Abstract
This paper presents a dual-purpose LED driver system that functions as both a lighting source and a Visible Light Communication (VLC) transmitter integrated with a Powerline Communication (PLC) network under the PRIME G3 standard. The system decodes PLC messages from the powerline grid [...] Read more.
This paper presents a dual-purpose LED driver system that functions as both a lighting source and a Visible Light Communication (VLC) transmitter integrated with a Powerline Communication (PLC) network under the PRIME G3 standard. The system decodes PLC messages from the powerline grid and transmits the information via LED light to an optical receiver under a binary phase shift keying (BPSK) modulation. The load design targets a light flux of 800 lumens, suitable for LED light bulb applications up to 10 watts, ensuring practicality and energy efficiency. The Universal Asynchronous Receiver-Transmitter (UART) module enables communication between the PLC and VLC systems, allowing for an LED driver with dynamic control and real-time operation. Key signal processing stages are commented and developed, including a hybrid buck converter with modulation capabilities and a nonlinear optical receiver to regenerate the BPSK reference signal for VLC. Results show a successful prototype working under a laboratory environment. Experimental validation shows successful transmission of bit streams from the PLC grid to the VLC setup. A design guideline is presented in order to dictate the design of the electronic devices involved in the experiment. Finally, this research highlights the feasibility of integrating PLC and VLC technologies, offering an efficient and cost-effective solution for data transmission over existing infrastructure. Full article
(This article belongs to the Special Issue Challenges and Future Trends in Optical Communications)
Show Figures

Figure 1

14 pages, 322 KiB  
Article
Stealthy Messaging: Leveraging Message Queuing Telemetry Transport for Covert Communication Channels
by Sara Lazzaro and Francesco Buccafurri
Appl. Sci. 2024, 14(19), 8874; https://doi.org/10.3390/app14198874 - 2 Oct 2024
Cited by 1 | Viewed by 1460
Abstract
Covert channel methods are techniques for improving privacy and security in network communications. These methods consist of embedding secret data within normal network channels, making it more difficult for unauthorized parties to detect such data. This paper presents a new approach for creating [...] Read more.
Covert channel methods are techniques for improving privacy and security in network communications. These methods consist of embedding secret data within normal network channels, making it more difficult for unauthorized parties to detect such data. This paper presents a new approach for creating covert channels using the Message Queuing Telemetry Transport (MQTT) protocol, widely used in the context of the Internet of Things (IoT). The proposed method exploits storage channels by altering the field length of MQTT messages. Our solution leverages well-known one-way mathematical functions to ensure that data remain hidden from third parties observing the MQTT stream. In this way, we ensure that not only the content of the communication is preserved but also that the communication itself takes place. We conducted a security analysis to show that our solution offers the above-mentioned property even against severe threats, such as an adversary being able to observe all the messages exchanged in the network (even in the clear). Finally, we conducted an overhead analysis of our solution both in terms of the time required to perform the required operations and of the bytes to send. Our study shows that our solution adds no significant time overhead, and the additional overhead in terms of transmitted bytes remains within acceptable limits. Full article
Show Figures

Figure 1

27 pages, 3641 KiB  
Article
Application of Attribute-Based Encryption in Military Internet of Things Environment
by Łukasz Pióro, Jakub Sychowiec, Krzysztof Kanciak and Zbigniew Zieliński
Sensors 2024, 24(18), 5863; https://doi.org/10.3390/s24185863 - 10 Sep 2024
Cited by 2 | Viewed by 1693
Abstract
The Military Internet of Things (MIoT) has emerged as a new research area in military intelligence. The MIoT frequently has to constitute a federation-capable IoT environment when the military needs to interact with other institutions and organizations or carry out joint missions as [...] Read more.
The Military Internet of Things (MIoT) has emerged as a new research area in military intelligence. The MIoT frequently has to constitute a federation-capable IoT environment when the military needs to interact with other institutions and organizations or carry out joint missions as part of a coalition such as in NATO. One of the main challenges of deploying the MIoT in such an environment is to acquire, analyze, and merge vast amounts of data from many different IoT devices and disseminate them in a secure, reliable, and context-dependent manner. This challenge is one of the main challenges in a federated environment and forms the basis for establishing trusting relationships and secure communication between IoT devices belonging to different partners. In this work, we focus on the problem of fulfillment of the data-centric security paradigm, i.e., ensuring the secure management of data along the path from its origin to the recipients and implementing fine-grained access control mechanisms. This problem can be solved using innovative solutions such as applying attribute-based encryption (ABE). In this work, we present a comprehensive solution for secure data dissemination in a federated MIoT environment, enabling the use of distributed registry technology (Hyperledger Fabric), a message broker (Apache Kafka), and data processing microservices implemented using the Kafka Streams API library. We designed and implemented ABE cryptography data access control methods using a combination of pairings-based elliptic curve cryptography and lightweight cryptography and confirmed their suitability for the federations of military networks. Experimental studies indicate that the proposed cryptographic scheme is viable for the number of attributes typically assumed to be used in battlefield networks, offering a good trade-off between security and performance for modern cryptographic applications. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

27 pages, 5663 KiB  
Article
A Platform for Integrating Internet of Things, Machine Learning, and Big Data Practicum in Electrical Engineering Curricula
by Nandana Jayachandran, Atef Abdrabou, Naod Yamane and Anwer Al-Dulaimi
Computers 2024, 13(8), 198; https://doi.org/10.3390/computers13080198 - 15 Aug 2024
Cited by 2 | Viewed by 2908
Abstract
The integration of the Internet of Things (IoT), big data, and machine learning (ML) has pioneered a transformation across several fields. Equipping electrical engineering students to remain abreast of the dynamic technological landscape is vital. This underscores the necessity for an educational tool [...] Read more.
The integration of the Internet of Things (IoT), big data, and machine learning (ML) has pioneered a transformation across several fields. Equipping electrical engineering students to remain abreast of the dynamic technological landscape is vital. This underscores the necessity for an educational tool that can be integrated into electrical engineering curricula to offer a practical way of learning the concepts and the integration of IoT, big data, and ML. Thus, this paper offers the IoT-Edu-ML-Stream open-source platform, a graphical user interface (GUI)-based emulation software tool to help electrical engineering students design and emulate IoT-based use cases with big data analytics. The tool supports the emulation or the actual connectivity of a large number of IoT devices. The emulated devices can generate realistic correlated IoT data and stream it via the message queuing telemetry transport (MQTT) protocol to a big data platform. The tool allows students to design ML models with different algorithms for their chosen use cases and train them for decision-making based on the streamed data. Moreover, the paper proposes learning outcomes to be targeted when integrating the tool into an electrical engineering curriculum. The tool is evaluated using a comprehensive survey. The survey results show that the students gained significant knowledge about IoT concepts after using the tool, even though many of them already had prior knowledge of IoT. The results also indicate that the tool noticeably improved the students’ practical skills in designing real-world use cases and helped them understand fundamental machine learning analytics with an intuitive user interface. Full article
(This article belongs to the Special Issue Smart Learning Environments)
Show Figures

Figure 1

17 pages, 2078 KiB  
Article
Between Fact and Fiction: Elizabeth II’s Funeral and Its Connection to The Crown on X (Twitter)
by Raquel Rodríguez-Díaz, Palmira Chavero and Naftalí Paula-Veloz
Societies 2024, 14(8), 146; https://doi.org/10.3390/soc14080146 - 8 Aug 2024
Viewed by 1506
Abstract
Television series enhance the social visibility of their content, as is the case with Queen Elizabeth II and The Crown. Netflix is the streaming television platform that has turned Peter Morgan’s successful series (2016) into a television icon where the monarch is the [...] Read more.
Television series enhance the social visibility of their content, as is the case with Queen Elizabeth II and The Crown. Netflix is the streaming television platform that has turned Peter Morgan’s successful series (2016) into a television icon where the monarch is the main protagonist, taking us on a biographical journey that mixes the historical and the political with fiction. The main character is made to seem more humane and is brought closer to the general public, all of which leads to a transmedia narrative. This research aims to analyze the content of the messages published on Twitter during the days surrounding the Queen’s State funeral in September 2022 and their connection with the series through the hashtag #TheCrown. The topics that have become trends worldwide are quantitatively analyzed, using different digital tools. The sample collected 1,489,279 tweets published during the days from the announcement of the death of Elizabeth II to the day of her funeral (from 8 to 19 September 2022). The results show nodes of connection between different players and linked communities to #TheCrown while offering the traffic generated by the hashtag with different nodes and edges. Full article
(This article belongs to the Special Issue Democracy, Social Networks and Mediatization)
Show Figures

Figure 1

23 pages, 10006 KiB  
Article
Operational Tests for Delay-Tolerant Network between the Moon and Earth Using the Korea Pathfinder Lunar Orbiter in Lunar Orbit
by Inkyu Kim, Sang Ik Han and Dongsoo Har
Electronics 2024, 13(15), 3088; https://doi.org/10.3390/electronics13153088 - 4 Aug 2024
Cited by 1 | Viewed by 2124
Abstract
The Korea Pathfinder Lunar Orbiter (KPLO) was launched on 5 August 2022, equipped on the SpaceX Falcon 9 launch vehicle. At present, the KPLO is effectively carrying out its scientific mission in lunar orbit. The KPLO serves as a cornerstone for the development [...] Read more.
The Korea Pathfinder Lunar Orbiter (KPLO) was launched on 5 August 2022, equipped on the SpaceX Falcon 9 launch vehicle. At present, the KPLO is effectively carrying out its scientific mission in lunar orbit. The KPLO serves as a cornerstone for the development and validation of Korean space science and deep space technology. Among its payloads is the DTNPL, enabling the first-ever test of delay-tolerant network (DTN) technology for satellites in lunar orbit. DTN technology represents a significant advancement in space communication, offering stable communication capabilities characterized by high delay tolerance, reliability, and asymmetric communication speeds—a necessity for existing satellite and space communication systems to evolve. In this paper, we briefly give an overview of the Korea Lunar Exploration Program (KLEP) and present scientific data gathered through the KPLO mission. Specifically, we focus on the operational tests for DTN-ION conducted for message and file transfer, as well as real-time video streaming, during the initial operations of the KPLO. Lastly, this study offers insights and lessons learned from KPLO DTNPL operations, with the goal of providing valuable guidance for future advancements in space communication. Full article
(This article belongs to the Special Issue Delay Tolerant Networks and Applications, 2nd Edition)
Show Figures

Figure 1

17 pages, 5208 KiB  
Article
The Development of Simulation and Optimisation Tools with an Intuitive User Interface to Improve the Operation of Electric Arc Furnaces
by Simon Tomažič, Igor Škrjanc, Goran Andonovski and Vito Logar
Machines 2024, 12(8), 508; https://doi.org/10.3390/machines12080508 - 28 Jul 2024
Cited by 1 | Viewed by 1296
Abstract
The paper presents a novel decision support system designed to improve the efficiency and effectiveness of decision-making for electric arc furnace (EAF) operators. The system integrates two primary tools: the EAF Simulator, which is based on advanced mechanistic models, and the EAF Optimiser, [...] Read more.
The paper presents a novel decision support system designed to improve the efficiency and effectiveness of decision-making for electric arc furnace (EAF) operators. The system integrates two primary tools: the EAF Simulator, which is based on advanced mechanistic models, and the EAF Optimiser, which uses data-driven models trained on historical data. These tools enable the simulation and optimisation of furnace settings in real time and provide operators with important insights. A key objective was to develop a user-friendly interface with the Siemens Insights Hub Cloud Service and Node-RED that enables interactive management and support. The interface allows operators to analyse and compare past and simulated batches by adjusting the input data and parameters, resulting in improved optimisation and reduced costs. In addition, the system focuses on the collection and pre-processing of input data for the simulator and optimiser and uses Message Queuing Telemetry Transport (MQTT)communication between the user interfaces and models to ensure seamless data exchange. The EAF Simulator uses a comprehensive mathematical model to simulate the complex dynamics of heat and mass transfer, while the EAF Optimiser uses a fuzzy logic-based approach to predict optimal energy consumption. The integration with Siemens Edge Streaming Analytics ensures robust data collection and real-time responsiveness. The dual-interface design improves user accessibility and operational flexibility. This system has significant potential to reduce energy consumption by up to 10% and melting times by up to 15%, improving the efficiency and sustainability of the entire process. Full article
(This article belongs to the Section Industrial Systems)
Show Figures

Figure 1

Back to TopTop