Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = mesoporous bioactive glass nanospheres

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3461 KB  
Article
Osteoimmune Properties of Mesoporous Bioactive Nanospheres: A Study on T Helper Lymphocytes
by Laura Casarrubios, Mónica Cicuéndez, María Vallet-Regí, María Teresa Portolés, Daniel Arcos and María José Feito
Nanomaterials 2023, 13(15), 2183; https://doi.org/10.3390/nano13152183 - 26 Jul 2023
Cited by 5 | Viewed by 1818
Abstract
Bioactive mesoporous glass nanospheres (nanoMBGs) charged with antiosteoporotic drugs have great potential for the treatment of osteoporosis and fracture prevention. In this scenario, cells of the immune system are essential both in the development of disease and in their potential to stimulate therapeutic [...] Read more.
Bioactive mesoporous glass nanospheres (nanoMBGs) charged with antiosteoporotic drugs have great potential for the treatment of osteoporosis and fracture prevention. In this scenario, cells of the immune system are essential both in the development of disease and in their potential to stimulate therapeutic effects. In the present work, we hypothesize that nanoMBGs loaded with ipriflavone can exert a positive osteoimmune effect. With this objective, we assessed the effects of non-loaded and ipriflavone-loaded nanoparticles (nanoMBGs and nanoMBG-IPs, respectively) on CD4+ Th2 lymphocytes because this kind of cell is implicated in the inhibition of osseous loss by reducing the RANKL/OPG relationship through the secretion of cytokines. The results indicate that nanoMBGs enter efficiently in CD4+ Th2 lymphocytes, mainly through phagocytosis and clathrin-dependent mechanisms, without affecting the function of these T cells or inducing inflammatory mediators or oxidative stress, thus maintaining the reparative Th2 phenotype. Furthermore, the incorporation of the anti-osteoporotic drug ipriflavone reduces the potential unwanted inflammatory response by decreasing the presence of ROS and stimulating intracellular anti-inflammatory cytokine release like IL-4. These results evidenced that nanoMBG loaded with ipriflavone exerts a positive osteoimmune effect. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Figure 1

14 pages, 18306 KB  
Article
Improved Osseointegration of Selective Laser Melting Titanium Implants with Unique Dual Micro/Nano-Scale Surface Topography
by Xuetong Sun, Huaishu Lin, Chunyu Zhang, Ruiran Huang, Ying Liu, Gong Zhang and Si Di
Materials 2022, 15(21), 7811; https://doi.org/10.3390/ma15217811 - 5 Nov 2022
Cited by 10 | Viewed by 2856
Abstract
Selective laser melting manufacture of patient specific Ti implants is serving as a promising approach for bone tissue engineering. The success of implantation is governed by effective osseointegration, which depends on the surface properties of implants. To improve the bioactivity and osteogenesis, the [...] Read more.
Selective laser melting manufacture of patient specific Ti implants is serving as a promising approach for bone tissue engineering. The success of implantation is governed by effective osseointegration, which depends on the surface properties of implants. To improve the bioactivity and osteogenesis, the universal surface treatment for SLM-Ti implants is to remove the primitive roughness and then reengineer new roughness by various methods. In this study, the micro-sized partially melted Ti particles on the SLM-Ti surface were preserved for assembling mesoporous bioactive glass nanospheres to obtain a unique micro/nano- topography through combination of SLM manufacture and sol–gel processes. The results of simulated body fluid immersion test showed that bioactive ions (Ca, Si) can be continuously and stably released from the MBG nanospheres. The osseointegration properties of SLM-Ti samples, examined using pre-osteoblast cells, showed enhanced adhesion and osteogenic differentiation compared with commercial pure titanium commonly used as orthopedic implants. Overall, the developed approach of construction of the dual micro/nano topography generated on the SLM-Ti native surface could be critical to enhance musculoskeletal implant performance. Full article
(This article belongs to the Collection 3D Printing in Medicine and Biomedical Engineering)
Show Figures

Figure 1

22 pages, 7556 KB  
Article
Using Copper-Doped Mesoporous Bioactive Glass Nanospheres to Impart Anti-Bacterial Properties to Dental Composites
by Arooj Munir, Danijela Marovic, Liebert Parreiras Nogueira, Roger Simm, Ali-Oddin Naemi, Sander Marius Landrø, Magnus Helgerud, Kai Zheng, Matej Par, Tobias T. Tauböck, Thomas Attin, Zrinka Tarle, Aldo R. Boccaccini and Håvard J. Haugen
Pharmaceutics 2022, 14(10), 2241; https://doi.org/10.3390/pharmaceutics14102241 - 20 Oct 2022
Cited by 20 | Viewed by 5649
Abstract
Experimental dental resin composites containing copper-doped mesoporous bioactive glass nanospheres (Cu-MBGN) were developed to impart anti-bacterial properties. Increasing amounts of Cu-MBGN (0, 1, 5 and 10 wt%) were added to the BisGMA/TEGDMA resin matrix containing micro- and nano-fillers of inert glass, keeping the [...] Read more.
Experimental dental resin composites containing copper-doped mesoporous bioactive glass nanospheres (Cu-MBGN) were developed to impart anti-bacterial properties. Increasing amounts of Cu-MBGN (0, 1, 5 and 10 wt%) were added to the BisGMA/TEGDMA resin matrix containing micro- and nano-fillers of inert glass, keeping the resin/filler ratio constant. Surface micromorphology and elemental analysis were performed to evaluate the homogeneous distribution of filler particles. The study investigated the effects of Cu-MBGN on the degree of conversion, polymerization shrinkage, porosity, ion release and anti-bacterial activity on S. mutans and A. naeslundii. Experimental materials containing Cu-MBGN showed a dose-dependent Cu release with an initial burst and a further increase after 28 days. The composite containing 10% Cu-MBGN had the best anti-bacterial effect on S. mutans, as evidenced by the lowest adherence of free-floating bacteria and biofilm formation. In contrast, the 45S5-containing materials had the highest S. mutans adherence. Ca release was highest in the bioactive control containing 15% 45S5, which correlated with the highest number of open porosities on the surface. Polymerization shrinkage was similar for all tested materials, ranging from 3.8 to 4.2%, while the degree of conversion was lower for Cu-MBGN materials. Cu-MBGN composites showed better anti-bacterial properties than composites with 45S5 BG. Full article
Show Figures

Figure 1

18 pages, 4857 KB  
Article
Impact of Copper-Doped Mesoporous Bioactive Glass Nanospheres on the Polymerisation Kinetics and Shrinkage Stress of Dental Resin Composites
by Danijela Marovic, Matej Par, Tobias T. Tauböck, Håvard J. Haugen, Visnja Negovetic Mandic, Damian Wüthrich, Phoebe Burrer, Kai Zheng, Thomas Attin, Zrinka Tarle and Aldo R. Boccaccini
Int. J. Mol. Sci. 2022, 23(15), 8195; https://doi.org/10.3390/ijms23158195 - 25 Jul 2022
Cited by 11 | Viewed by 2917
Abstract
We embedded copper-doped mesoporous bioactive glass nanospheres (Cu-MBGN) with antibacterial and ion-releasing properties into experimental dental composites and investigated the effect of Cu-MBGN on the polymerisation properties. We prepared seven composites with a BisGMA/TEGDMA (60/40) matrix and 65 wt.% total filler content, added [...] Read more.
We embedded copper-doped mesoporous bioactive glass nanospheres (Cu-MBGN) with antibacterial and ion-releasing properties into experimental dental composites and investigated the effect of Cu-MBGN on the polymerisation properties. We prepared seven composites with a BisGMA/TEGDMA (60/40) matrix and 65 wt.% total filler content, added Cu-MBGN or a combination of Cu-MBGN and silanised silica to the silanised barium glass base, and examined nine parameters: light transmittance, degree of conversion (DC), maximum polymerisation rate (Rmax), time to reach Rmax, linear shrinkage, shrinkage stress (PSS), maximum PSS rate, time to reach maximum PSS rate, and depth of cure. Cu-MBGN without silica accelerated polymerisation, reduced light transmission, and had the highest DC (58.8 ± 0.9%) and Rmax (9.8 ± 0.2%/s), but lower shrinkage (3 ± 0.05%) and similar PSS (0.89 ± 0.07 MPa) versus the inert reference (0.83 ± 0.13 MPa). Combined Cu-MBGN and silica slowed the Rmax and achieved a similar DC but resulted in higher shrinkage. However, using a combined 5 wt.% Cu-MBGN and silica, the PSS resembled that of the inert reference. The synergistic action of 5 wt.% Cu-MBGN and silanised silica in combination with silanised barium glass resulted in a material with the highest likelihood for dental applications in future. Full article
(This article belongs to the Special Issue Nanomaterials in Biomedicine 2022)
Show Figures

Figure 1

12 pages, 2958 KB  
Article
Incorporation of Copper-Doped Mesoporous Bioactive Glass Nanospheres in Experimental Dental Composites: Chemical and Mechanical Characterization
by Danijela Marovic, Håvard J. Haugen, Visnja Negovetic Mandic, Matej Par, Kai Zheng, Zrinka Tarle and Aldo R. Boccaccini
Materials 2021, 14(10), 2611; https://doi.org/10.3390/ma14102611 - 17 May 2021
Cited by 28 | Viewed by 4917
Abstract
Experimental dental resin composites incorporating copper-doped mesoporous bioactive glass nanospheres (Cu-MBGN) were designed to impart antibacterial and remineralizing properties. The study evaluated the influence of Cu-MBGN on the mechanical properties and photopolymerization of resin composites. Cu-MBGN were synthesized using a microemulsion-assisted sol–gel method. [...] Read more.
Experimental dental resin composites incorporating copper-doped mesoporous bioactive glass nanospheres (Cu-MBGN) were designed to impart antibacterial and remineralizing properties. The study evaluated the influence of Cu-MBGN on the mechanical properties and photopolymerization of resin composites. Cu-MBGN were synthesized using a microemulsion-assisted sol–gel method. Increasing amounts of Cu-MBGN (0, 1, 5, and 10 wt %) were added to the organic polymer matrix with inert glass micro- and nanofillers while maintaining a constant resin/filler ratio. Six tests were performed: X-ray diffraction, scanning electron microscopy, flexural strength (FS), flexural modulus (FM), Vickers microhardness (MH), and degree of conversion (DC). FS and MH of Cu-MBGN composites with silica fillers showed no deterioration with aging, with statistically similar results at 1 and 28 days. FM was not influenced by the addition of Cu-MBGN but was reduced for all tested materials after 28 days. The specimens with 1 and 5% Cu-MBGN had the highest FS, FM, MH, and DC values at 28 days, while controls with 45S5 bioactive glass had the lowest FM, FS, and MH. DC was high for all materials (83.7–93.0%). Cu-MBGN composites with silica have a potential for clinical implementation due to high DC and good mechanical properties with adequate resistance to aging. Full article
(This article belongs to the Special Issue Bioactive Dental Materials)
Show Figures

Figure 1

17 pages, 2667 KB  
Article
Ipriflavone-Loaded Mesoporous Nanospheres with Potential Applications for Periodontal Treatment
by Laura Casarrubios, Natividad Gómez-Cerezo, María José Feito, María Vallet-Regí, Daniel Arcos and María Teresa Portolés
Nanomaterials 2020, 10(12), 2573; https://doi.org/10.3390/nano10122573 - 21 Dec 2020
Cited by 31 | Viewed by 3346
Abstract
The incorporation and effects of hollow mesoporous nanospheres in the system SiO2–CaO (nanoMBGs) containing ipriflavone (IP), a synthetic isoflavone that prevents osteoporosis, were evaluated. Due to their superior porosity and capability to host drugs, these nanoparticles are designed as a potential [...] Read more.
The incorporation and effects of hollow mesoporous nanospheres in the system SiO2–CaO (nanoMBGs) containing ipriflavone (IP), a synthetic isoflavone that prevents osteoporosis, were evaluated. Due to their superior porosity and capability to host drugs, these nanoparticles are designed as a potential alternative to conventional bioactive glasses for the treatment of periodontal defects. To identify the endocytic mechanisms by which these nanospheres are incorporated within the MC3T3-E1 cells, five inhibitors (cytochalasin B, cytochalasin D, chlorpromazine, genistein and wortmannin) were used before the addition of these nanoparticles labeled with fluorescein isothiocyanate (FITC–nanoMBGs). The results indicate that nanoMBGs enter the pre-osteoblasts mainly through clathrin-dependent mechanisms and in a lower proportion by macropinocytosis. The present study evidences the active incorporation of nanoMBG–IPs by MC3T3-E1 osteoprogenitor cells that stimulate their differentiation into mature osteoblast phenotype with increased alkaline phosphatase activity. The final aim of this study is to demonstrate the biocompatibility and osteogenic behavior of IP-loaded bioactive nanoparticles to be used for periodontal augmentation purposes and to shed light on internalization mechanisms that determine the incorporation of these nanoparticles into the cells. Full article
(This article belongs to the Special Issue Nano-Engineering Solutions for Dental Implant Applications)
Show Figures

Figure 1

21 pages, 3972 KB  
Article
An Immunological Approach to the Biocompatibility of Mesoporous SiO2-CaO Nanospheres
by María Montes-Casado, Adrian Sanvicente, Laura Casarrubios, María José Feito, José M. Rojo, María Vallet-Regí, Daniel Arcos, Pilar Portolés and María Teresa Portolés
Int. J. Mol. Sci. 2020, 21(21), 8291; https://doi.org/10.3390/ijms21218291 - 5 Nov 2020
Cited by 26 | Viewed by 4393
Abstract
Mesoporous bioactive glass nanospheres (NanoMBGs) have high potential for clinical applications. However, the impact of these nanoparticles on the immune system needs to be addressed. In this study, the biocompatibility of SiO2-CaO NanoMBGs was evaluated on different mouse immune cells, including [...] Read more.
Mesoporous bioactive glass nanospheres (NanoMBGs) have high potential for clinical applications. However, the impact of these nanoparticles on the immune system needs to be addressed. In this study, the biocompatibility of SiO2-CaO NanoMBGs was evaluated on different mouse immune cells, including spleen cells subsets, bone marrow-derived dendritic cells (BMDCs), or cell lines like SR.D10 Th2 CD4+ lymphocytes and DC2.4 dendritic cells. Flow cytometry and confocal microscopy show that the nanoparticles were rapidly and efficiently taken up in vitro by T and B lymphocytes or by specialized antigen-presenting cells (APCs) like dendritic cells (DCs). Nanoparticles were not cytotoxic and had no effect on cell viability or proliferation under T-cell (anti-CD3) or B cell (LPS) stimuli. Besides, NanoMBGs did not affect the balance of spleen cell subsets, or the production of intracellular or secreted pro- and anti-inflammatory cytokines (TNF-α, IFN-γ, IL-2, IL-6, IL-10) by activated T, B, and dendritic cells (DC), as determined by flow cytometry and ELISA. T cell activation surface markers (CD25, CD69 and Induced Costimulator, ICOS) were not altered by NanoMBGs. Maturation of BMDCs or DC2.4 cells in vitro was not altered by NanoMBGs, as shown by expression of Major Histocompatibility Complex (MHC) and costimulatory molecules (CD40, CD80, CD86), or IL-6 secretion. The effect of wortmannin and chlorpromazine indicate a role for phosphoinositide 3-kinase (PI3K), actin and clathrin-dependent pathways in NanoMBG internalization. We thus demonstrate that these NanoMBGs are both non-toxic and non-inflammagenic for murine lymphoid cells and myeloid DCs despite their efficient intake by the cells. Full article
(This article belongs to the Special Issue Ordered Mesoporous Materials)
Show Figures

Graphical abstract

12 pages, 24150 KB  
Article
Design and Evaluation of Europium Containing Mesoporous Bioactive Glass Nanospheres: Doxorubicin Release Kinetics and Inhibitory Effect on Osteosarcoma MG 63 Cells
by Ying Zhang, Meng Hu, Xiang Wang, Zhufa Zhou and Yu Liu
Nanomaterials 2018, 8(11), 961; https://doi.org/10.3390/nano8110961 - 21 Nov 2018
Cited by 36 | Viewed by 4435
Abstract
Functional ions and drug factors play a vital role in stimulating bone tissue regeneration as we understand it. In this work, europium-containing mesoporous bioactive glass nanospheres (Eu/MBGs), composed of 60% SiO2—(36–x)%CaO—x%Eu2O3—4%P2O5 (x = 0, [...] Read more.
Functional ions and drug factors play a vital role in stimulating bone tissue regeneration as we understand it. In this work, europium-containing mesoporous bioactive glass nanospheres (Eu/MBGs), composed of 60% SiO2—(36–x)%CaO—x%Eu2O3—4%P2O5 (x = 0, 0.5, 1, 2 mol%), were prepared by a facile sol-gel process. The results indicate that Eu ions play an important role to influence the microstructure of MBGs, in which a suitable concentration of Eu (1 mol%) increases their surface area (502 m2/g) as well as their pore volume (0.34 cm3/g). Proper doping of Eu ions in MBGs can observably induce apatite mineralization and improve the doxorubicin (DOX) release behavior. Furthermore, DOX-loaded Eu/MBGs could maintain a long-term inhibitory effect on the viability of osteosarcoma MG 63 cells. This work has demonstrated that it is possible to develop functional Eu/MBGs by combining excellent apatite-mineralization ability, controllable drug (DOX) release and antitumor functions for the therapy of bone tissue regeneration. Full article
(This article belongs to the Special Issue Sol-Gel Preparation of Nanomaterials)
Show Figures

Graphical abstract

12 pages, 1971 KB  
Article
Alendronate Functionalized Mesoporous Bioactive Glass Nanospheres
by Elisa Boanini, Silvia Panseri, Fabiola Arroyo, Monica Montesi, Katia Rubini, Anna Tampieri, Cristian Covarrubias and Adriana Bigi
Materials 2016, 9(3), 135; https://doi.org/10.3390/ma9030135 - 26 Feb 2016
Cited by 21 | Viewed by 6581
Abstract
In this work we synthesized mesoporous bioactive glass nanospheres (nMBG) with the aim to utilize them as substrates for loading one of the most potent amino-bisphosphonates, alendronate (AL). The results of the chemical and structural characterization show that the nMBG display a relatively [...] Read more.
In this work we synthesized mesoporous bioactive glass nanospheres (nMBG) with the aim to utilize them as substrates for loading one of the most potent amino-bisphosphonates, alendronate (AL). The results of the chemical and structural characterization show that the nMBG display a relatively high surface area (528 m2/g) and a mean pore volume of 0.63 cm3/g, both of which decrease on increasing alendronate content. It is possible to modulate the amount of AL loaded into the nanospheres up to a maximum value of about 17 wt %. In vitro tests were performed using a human osteosarcoma cell line (MG63) and a murine monocyte/macrophage cell line as osteoclast model (RAW 264.7). The results indicate that even the lower concentration of alendronate provokes decreased tumor cell viability, and that osteoclast activity exhibits an alendronate dose-dependent inhibition. The data suggest that nMBG can act as a suitable support for the local delivery of alendronate, and that the antiresorptive and antitumor properties of the functionalized mesoporous nanospheres can be modulated by varying the amount of alendronate loading. Full article
(This article belongs to the Special Issue Bioactive Glasses)
Show Figures

Figure 1

Back to TopTop