Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = merozoite surface protein 2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 7640 KiB  
Article
Leveraging the Polymorphism of the Merozoite Surface Protein 2 (MSP2) to Engineer Molecular Tools for Predicting Malaria Episodes in a Community
by Edgar Mutebwa Kalimba, Sandra Fankem Noukimi, Jean-Bosco Mbonimpa, Cabirou Mounchili Shintouo, Radouane Ouali, Mariama Telly Diallo, Antoine Vicario, Samuel Vandecasteele, Abenwie Suh Nchang, Lahngong Methodius Shinyuy, Mary Teke Efeti, Aimee Nadine Nsengiyumva Ishimwe, Aloysie Basoma Biryuwenze, Arsene Musana Habimana, Louis de Mont Fort Ntwali Mugisha, Sara Ayadi, Robert Adamu Shey, Rose Njemini, Stephen Mbigha Ghogomu and Jacob Souopgui
Int. J. Mol. Sci. 2025, 26(11), 5277; https://doi.org/10.3390/ijms26115277 - 30 May 2025
Viewed by 679
Abstract
Malaria remains a significant public health challenge, particularly in endemic regions. The extensive genetic diversity of Plasmodium falciparum (Pf) complicates outbreak prediction and transmission control. One of its most polymorphic markers, merozoite surface protein 2 (MSP2), presents a potential target for [...] Read more.
Malaria remains a significant public health challenge, particularly in endemic regions. The extensive genetic diversity of Plasmodium falciparum (Pf) complicates outbreak prediction and transmission control. One of its most polymorphic markers, merozoite surface protein 2 (MSP2), presents a potential target for molecular surveillance. This cross-sectional study, conducted at King Faisal Hospital Rwanda (KFHR) from October 2021 to June 2023, assessed MSP2’s utility in malaria prediction. PfMSP2 was sequenced, and selected amplicons were cloned, expressed in bacteria, and purified. These antigens were tested against sera from malaria patients and geographically diverse healthy individuals, with complementary surveys contextualizing serological findings. Of the 75 processed monoallelic clinical isolates, 3D7 strains predominated over FC27. Three MSP2-derived biomarkers were produced, eliciting significantly low IgG responses in malaria patients and Belgian controls, but a complex pattern emerged in healthy individuals, with significant differences between Rwandan and Cameroonian samples. IgG3 was the predominant subclass in individuals with high IgG responses. Notably, Rwandan individuals with weak humoral responses to the tested antigens but also other with high responses experienced malaria episodes in the subsequent year. These findings highlight MSP2 polymorphism as a valuable tool for malaria surveillance and outbreak prediction. Integrating genotyping and serology could enable precise, community-specific malaria risk assessments, strengthening control strategies. Full article
(This article belongs to the Special Issue Molecular Research on Host-Parasite Interactions)
Show Figures

Figure 1

11 pages, 1328 KiB  
Review
Genotyping and Characterizing Plasmodium falciparum to Reveal Genetic Diversity and Multiplicity of Infection by Merozoite Surface Proteins 1 and 2 (msp-1 and msp-2) and Glutamate-Rich Protein (glurp) Genes
by Muharib Alruwaili, Abozer Y. Elderdery, Hasan Ejaz, Aisha Farhana, Muhammad Atif, Hayfa Almutary and Jeremy Mills
Trop. Med. Infect. Dis. 2024, 9(11), 284; https://doi.org/10.3390/tropicalmed9110284 - 20 Nov 2024
Viewed by 1752
Abstract
Resistance to current antimalarial drugs is steadily increasing, and new drugs are required. Drug efficacy trials remain the gold standard to assess the effectiveness of a given drug. The World Health Organization (WHO)’s recommendation for the optimal duration of follow-up for assessing antimalarial [...] Read more.
Resistance to current antimalarial drugs is steadily increasing, and new drugs are required. Drug efficacy trials remain the gold standard to assess the effectiveness of a given drug. The World Health Organization (WHO)’s recommendation for the optimal duration of follow-up for assessing antimalarial efficacy is a minimum of 28 days. However, assessing antimalarial drug efficacy in highly endemic regions can be challenging due to the potential risks of acquiring a new infection in the follow-up period, and thus, it may underestimate the efficacy of the given drugs. A new treatment should be introduced if treatment failure rates exceed 10%. Overestimation occurs as a result of retaining a drug with a clinical efficacy of less than 90% with increases in morbidity and mortality, while underestimation may occur due to a misclassification of new infections as treatment failures with tremendous clinical and economic implications. Therefore, molecular genotyping is necessary to distinguish true new infections from treatment failures to ensure accuracy in determining antimalarial efficacy. There are three genetic markers that are commonly used in antimalarial efficiency trials to discriminate between treatment failures and new infections. These include merozoite surface protein 1 (msp-1), merozoite surface protein 2 (msp-2), and glutamate-rich protein (glurp). The genotyping of P. falciparum by nested polymerase chain reaction (n-PCR) targeting these markers is discussed with the inherent limitations and uncertainties associated with the PCR technique and limitations enforced by the parasite’s biology itself. Full article
(This article belongs to the Special Issue The Global Burden of Malaria and Control Strategies)
Show Figures

Figure 1

21 pages, 2507 KiB  
Article
Design and Evaluation of Chimeric Plasmodium falciparum Circumsporozoite Protein-Based Malaria Vaccines
by William H. Stump, Hayley J. Klingenberg, Amy C. Ott, Donna M. Gonzales and James M. Burns
Vaccines 2024, 12(4), 351; https://doi.org/10.3390/vaccines12040351 - 25 Mar 2024
Cited by 2 | Viewed by 2719
Abstract
Efficacy data on two malaria vaccines, RTS,S and R21, targeting Plasmodium falciparum circumsporozoite protein (PfCSP), are encouraging. Efficacy may be improved by induction of additional antibodies to neutralizing epitopes outside of the central immunodominant repeat domain of PfCSP. We designed [...] Read more.
Efficacy data on two malaria vaccines, RTS,S and R21, targeting Plasmodium falciparum circumsporozoite protein (PfCSP), are encouraging. Efficacy may be improved by induction of additional antibodies to neutralizing epitopes outside of the central immunodominant repeat domain of PfCSP. We designed four rPfCSP-based vaccines in an effort to improve the diversity of the antibody response. We also evaluated P. falciparum merozoite surface protein 8 (PfMSP8) as a malaria-specific carrier protein as an alternative to hepatitis B surface antigen. We measured the magnitude, specificity, subclass, avidity, durability, and efficacy of vaccine-induced antibodies in outbred CD1 mice. In comparison to N-terminal- or C-terminal-focused constructs, immunization with near full-length vaccines, rPfCSP (#1) or the chimeric rPfCSP/8 (#2), markedly increased the breadth of B cell epitopes recognized covering the N-terminal domain, junctional region, and central repeat. Both rPfCSP (#1) and rPfCSP/8 (#2) also elicited a high proportion of antibodies to conformation-dependent epitopes in the C-terminus of PfCSP. Fusion of PfCSP to PfMSP8 shifted the specificity of the T cell response away from PfCSP toward PfMSP8 epitopes. Challenge studies with transgenic Plasmodium yoelii sporozoites expressing PfCSP demonstrated high and consistent sterile protection following rPfCSP/8 (#2) immunization. Of note, antibodies to conformational C-terminal epitopes were not required for protection. These results indicate that inclusion of the N-terminal domain of PfCSP can drive responses to protective, repeat, and non-repeat B cell epitopes and that PfMSP8 is an effective carrier for induction of high-titer, durable anti-PfCSP antibodies. Full article
(This article belongs to the Section Vaccines against Tropical and other Infectious Diseases)
Show Figures

Figure 1

13 pages, 1432 KiB  
Article
Meta-Analysis of Data from Four Clinical Trials in the Ivory Coast Assessing the Efficacy of Two Artemisinin-Based Combination Therapies (Artesunate-Amodiaquine and Artemether-Lumefantrine) between 2009 and 2016
by Akoua Valérie Bédia-Tanoh, Kondo Fulgence Kassi, Offianan André Touré, Serge Brice Assi, Akpa Paterne Gnagne, Koffi Daho Adoubryn, Emmanuel Bissagnene, Abibatou Konaté, Jean Sebastien Miezan, Kpongbo Etienne Angora, Henriette Vanga-Bosson, Pulchérie Christiane Kiki-Barro, Vincent Djohan, William Yavo and Eby Ignace Hervé Menan
Trop. Med. Infect. Dis. 2024, 9(1), 10; https://doi.org/10.3390/tropicalmed9010010 - 29 Dec 2023
Cited by 1 | Viewed by 2379
Abstract
The combinations of artemether-lumefantrine (AL) and artesunate-amodiaquine (ASAQ) are used as first-line treatments for uncomplicated malaria in the Ivory Coast. Different studies document the efficacy of two artemisinin-based combination therapies (ACTs) (AL and ASAQ) in the Ivory Coast. However, there is no meta-analysis [...] Read more.
The combinations of artemether-lumefantrine (AL) and artesunate-amodiaquine (ASAQ) are used as first-line treatments for uncomplicated malaria in the Ivory Coast. Different studies document the efficacy of two artemisinin-based combination therapies (ACTs) (AL and ASAQ) in the Ivory Coast. However, there is no meta-analysis examining the data set of these studies. The purpose of this work was to determine the prevalence of malaria treatment failure cases in randomized control trials with two artemisinin-based combination therapies (AL versus ASAQ) in the Ivory Coast between 2009 to 2016. This study is a meta-analysis of data from the results of four previous multicenter, open-label, randomized clinical trial studies evaluating the clinical and parasitological efficacy of artemether-lumefantrine and artesunate-amodiaquine conducted between 2009 and 2016 following World Health Organization (WHO) protocol at sentinel sites in the Ivory Coast. These drug efficacy data collected between 2009 and 2016 were analyzed. During these studies, to distinguish between recrudescence and new infection, molecular genotyping of genes encoding merozoite surface protein 1 and 2 was carried out using nested polymerase chain reaction (PCR). A total of 1575 patients enrolled in the four studies, including 768 in the AL arm and 762 in the ASAQ arm, which were fully followed either for 28 days or 42 days according to WHO protocol. The adequate clinical and parasitological response (ACPR) was higher than 95% in the two groups (intention to treat (ITT): AL = 96.59% and ASAQ = 96.81; Per Protocol (PP): AL = 99.48% and ASAQ = 99.61%) after PCR correction at day 28. Aggregate data analysis (2009–2016) showed that at day 28, the proportions of patients with recurrent infection was higher in the AL group (ITT: 3.79%, PP: 3.9%) than in the ASAQ group (ITT: 2.17%, PP: 2.23%). After PCR correction, most treatment failures were classified as new infections (AL group (ITT: 0.13%, PP: 0.13%); ASAQ group (ITT: 0.39%, PP: 0.39%). The recrudescent infections rate was high, at 0.39% compared to 0.13% for ASAQ and AL, respectively, for both ITT and PP, no significant difference. However, the Kaplan–Meier curve of cumulative treatment success showed a significant difference between the two groups after PCR from 2012–2013 (p = 0.032). Overall, ASAQ and AL have been shown to be effective drugs for the treatment of uncomplicated P. falciparum malaria in the study areas, 14 years after deployment of these drugs. Full article
Show Figures

Figure 1

12 pages, 1304 KiB  
Article
Comparative study of Plasmodium falciparum msp-1 and msp-2 Genetic Diversity in Isolates from Rural and Urban Areas in the South of Brazzaville, Republic of Congo
by Marcel Tapsou Baina, Abel Lissom, Naura Veil Assioro Doulamo, Jean Claude Djontu, Dieu Merci Umuhoza, Jacques Dollon Mbama-Ntabi, Steve Diafouka-Kietela, Jolivet Mayela, Georges Missontsa, Charles Wondji, Ayola Akim Adegnika, Etienne Nguimbi, Steffen Borrmann and Francine Ntoumi
Pathogens 2023, 12(5), 742; https://doi.org/10.3390/pathogens12050742 - 22 May 2023
Cited by 4 | Viewed by 2718
Abstract
Polymorphisms in the genes encoding the merozoite surface proteins msp-1 and msp-2 are widely used markers for characterizing the genetic diversity of Plasmodium falciparum. This study aimed to compare the genetic diversity of circulating parasite strains in rural and urban settings in the [...] Read more.
Polymorphisms in the genes encoding the merozoite surface proteins msp-1 and msp-2 are widely used markers for characterizing the genetic diversity of Plasmodium falciparum. This study aimed to compare the genetic diversity of circulating parasite strains in rural and urban settings in the Republic of Congo after the introduction of artemisinin-based combination therapy (ACT) in 2006. A cross-sectional survey was conducted from March to September 2021 in rural and urban areas close to Brazzaville, during which Plasmodium infection was detected using microscopy (and nested-PCR for submicroscopic infection). The genes coding for merozoite proteins-1 and -2 were genotyped by allele-specific nested PCR. Totals of 397 (72.4%) and 151 (27.6%) P. falciparum isolates were collected in rural and urban areas, respectively. The K1/msp-1 and FC27/msp-2 allelic families were predominant both in rural (39% and 64%, respectively) and urban (45.4% and 54.5% respectively) areas. The multiplicity of infection (MOI) was higher (p = 0.0006) in rural areas (2.9) compared to urban settings (2.4). The rainy season and the positive microscopic infection were associated with an increase in MOI. These findings reveal a higher P. falciparum genetic diversity and MOI in the rural setting of the Republic of Congo, which is influenced by the season and the participant clinical status. Full article
(This article belongs to the Special Issue Genomics and Epidemiology of Protozoan Parasites)
Show Figures

Figure 1

11 pages, 1959 KiB  
Article
Genetic Diversity and Population Genetic Structure Analysis of Plasmodium knowlesi Thrombospondin-Related Apical Merozoite Protein (TRAMP) in Clinical Samples
by Md Atique Ahmed, Rehan Haider Zaidi, Gauspasha Yusuf Deshmukh, Ahmed Saif, Mohammed Abdulrahman Alshahrani, Syeda Sabiha Salam, Mohammed Mohieldien Abbas Elfaki, Jin-Hee Han, Saurav Jyoti Patgiri and Fu-Shi Quan
Genes 2022, 13(11), 1944; https://doi.org/10.3390/genes13111944 - 25 Oct 2022
Cited by 3 | Viewed by 3056
Abstract
The simian malaria parasite Plasmodium knowlesi causes a high number of zoonotic infections in Malaysia. The thrombospondin-related apical merozoite protein (TRAMP) is an essential ligand for binding to the erythrocyte cell surface, whereby it facilitates the invasion. This study is the first attempt [...] Read more.
The simian malaria parasite Plasmodium knowlesi causes a high number of zoonotic infections in Malaysia. The thrombospondin-related apical merozoite protein (TRAMP) is an essential ligand for binding to the erythrocyte cell surface, whereby it facilitates the invasion. This study is the first attempt to determine the genetic diversity, phylogeography, natural selection and population structure from 97 full-length PkTRAMP gene sequences originating from Malaysia. We found low levels of nucleotide diversity (π~0.0065) for the full-length gene despite samples originating from geographically separated regions (i.e., Peninsular Malaysia and Malaysian Borneo). The rate of synonymous substitutions was significantly higher than that of non-synonymous substitutions, indicating a purifying selection for the full-length gene within the clinical samples. The population genetic analysis revealed that the parasite population is undergoing a significant population expansion. The analysis of the amino acid sequence alignment of 97 PkTRAMP sequences identified 15 haplotypes, of which a major shared haplotype was noted Hap 1 (n = 68, Sarawak; n = 34, Sabah; n = 12, Peninsular Malaysia; n = 22). The phylogenetic analysis using DNA sequences identified two clusters that separated due to geographical distance and three mixed clusters with samples from both Peninsular Malaysia and Malaysian Borneo. Population structure analyses indicated two distinct sub-populations (K = 2). Our findings point to the potential for independent parasite evolution, which could make zoonotic malaria control and elimination even more challenging. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

15 pages, 2764 KiB  
Article
Guiding the Immune Response to a Conserved Epitope in MSP2, an Intrinsically Disordered Malaria Vaccine Candidate
by Jeffrey Seow, Sreedam C. Das, Rodrigo A. V. Morales, Ricardo Ataide, Bankala Krishnarjuna, Mitchell Silk, David K. Chalmers, Jack Richards, Robin F. Anders, Christopher A. MacRaild and Raymond S. Norton
Vaccines 2021, 9(8), 855; https://doi.org/10.3390/vaccines9080855 - 4 Aug 2021
Cited by 3 | Viewed by 3036
Abstract
The malaria vaccine candidate merozoite surface protein 2 (MSP2) has shown promise in clinical trials and is in part responsible for a reduction in parasite densities. However, strain-specific reductions in parasitaemia suggested that polymorphic regions of MSP2 are immuno-dominant. One strategy to bypass [...] Read more.
The malaria vaccine candidate merozoite surface protein 2 (MSP2) has shown promise in clinical trials and is in part responsible for a reduction in parasite densities. However, strain-specific reductions in parasitaemia suggested that polymorphic regions of MSP2 are immuno-dominant. One strategy to bypass the hurdle of strain-specificity is to bias the immune response towards the conserved regions. Two mouse monoclonal antibodies, 4D11 and 9H4, recognise the conserved C-terminal region of MSP2. Although they bind overlapping epitopes, 4D11 reacts more strongly with native MSP2, suggesting that its epitope is more accessible on the parasite surface. In this study, a structure-based vaccine design approach was applied to the intrinsically disordered antigen, MSP2, using a crystal structure of 4D11 Fv in complex with its minimal binding epitope. Molecular dynamics simulations and surface plasmon resonance informed the design of a series of constrained peptides that mimicked the 4D11-bound epitope structure. These peptides were conjugated to keyhole limpet hemocyanin and used to immunise mice, with high to moderate antibody titres being generated in all groups. The specificities of antibody responses revealed that a single point mutation can focus the antibody response towards a more favourable epitope. This structure-based approach to peptide vaccine design may be useful not only for MSP2-based malaria vaccines, but also for other intrinsically disordered antigens. Full article
(This article belongs to the Special Issue Vaccines Development in Australia)
Show Figures

Figure 1

9 pages, 1360 KiB  
Article
Evaluation of Histidine-Rich Proteins 2 and 3 Gene Deletions in Plasmodium falciparum in Endemic Areas of the Brazilian Amazon
by Leandro Góes, Nathália Chamma-Siqueira, José Mário Peres, José Maria Nascimento, Suiane Valle, Ana Ruth Arcanjo, Marcus Lacerda, Liana Blume, Marinete Póvoa and Giselle Viana
Int. J. Environ. Res. Public Health 2021, 18(1), 123; https://doi.org/10.3390/ijerph18010123 - 26 Dec 2020
Cited by 14 | Viewed by 3381
Abstract
Histidine-rich proteins 2 and 3 gene (pfhrp2 and pfhrp3) deletions affect the efficacy of rapid diagnostic tests (RDTs) based on the histidine-rich protein 2 (HRP2), compromising the correct identification of the Plasmodium falciparum species. Therefore, molecular surveillance is necessary for the [...] Read more.
Histidine-rich proteins 2 and 3 gene (pfhrp2 and pfhrp3) deletions affect the efficacy of rapid diagnostic tests (RDTs) based on the histidine-rich protein 2 (HRP2), compromising the correct identification of the Plasmodium falciparum species. Therefore, molecular surveillance is necessary for the investigation of the actual prevalence of this phenomenon and the extent of the disappearance of these genes in these areas and other South American countries, thus guiding national malaria control programs on the appropriate use of RDTs. This study aimed to evaluate the pfhrp2 and pfhrp3 gene deletion in P. falciparum in endemic areas of the Brazilian Amazon. Aliquots of DNA from the biorepository of the Laboratory of Basic Research in Malaria, Evandro Chagas Institute, with a positive diagnosis for P. falciparum infection as determined by microscopy and molecular assays, were included. Monoinfection was confirmed by nested-polymerase chain reaction assay, and DNA quality was assessed by amplification of the merozoite surface protein-2 gene (msp2). The pfhrp2 and pfhrp3 genes were amplified using primers for the region between exons 1 and 2 and for all extension of exon 2. Aliquots of DNA from 192 P. falciparum isolates were included in the study, with 68.7% (132/192) from the municipality of Cruzeiro do Sul (Acre) and 31.3% (60/192) from Manaus (Amazonas). Of this total, 82.8% (159/192) of the samples were considered of good quality. In the state of Acre, 71.7% (71/99) showed pfhrp2 gene deletion and 94.9% (94/99) showed pfhrp3 gene deletion, while in the state of Amazonas, 100.0% (60/60) of the samples showed pfhrp2 gene deletion and 98.3% (59/60) showed pfhrp3 gene deletion. Moreover, 79.8% (127/159) of isolates displayed gene deletion. Our findings confirm the presence of a parasite population with high frequencies of pfhrp2 and pfhrp3 gene deletions in the Brazilian Amazon region. This suggests reconsidering the use of HRP2-based RDTs in the Acre and Amazonas states and calls attention to the importance of molecular surveillance and mapping of pfhrp2/pfhrp3 deletions in this area and in other locations in the Amazon region to guarantee appropriate patient care, control and ultimately contribute to achieving P. falciparum malaria elimination. Full article
(This article belongs to the Special Issue Geo-Epidemiology of Malaria)
Show Figures

Figure 1

Back to TopTop