Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (118)

Search Parameters:
Keywords = membrane fouling behavior

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1000 KiB  
Article
Sustainable Protein Recovery and Wastewater Valorization in Shrimp Processing by Ultrafiltration
by Samar Ltaief, Aurélie Matéos, Adrien Forestier, Khaled Walha and Loubna Firdaous
Foods 2025, 14(12), 2044; https://doi.org/10.3390/foods14122044 - 10 Jun 2025
Viewed by 598
Abstract
This study investigated the use of ultrafiltration for sustainable protein recovery and the treatment of shrimp washing wastewater (SWW). Three ultrafiltration membranes with molecular weight cut-offs of 5, 10, and 50 kDa were tested using a combined ultrafiltration–diafiltration process (UF-DF). The performance of [...] Read more.
This study investigated the use of ultrafiltration for sustainable protein recovery and the treatment of shrimp washing wastewater (SWW). Three ultrafiltration membranes with molecular weight cut-offs of 5, 10, and 50 kDa were tested using a combined ultrafiltration–diafiltration process (UF-DF). The performance of each membrane was assessed based on protein recovery efficiency, chemical oxygen demand (COD) reduction, turbidity, fouling behavior, and cleaning efficiency. The 5 kDa membrane showed superior performance, achieving over 90% protein and COD rejection and producing the highest protein-enriched retentate. It also exhibited the lowest fouling index and best cleaning recovery, confirming its suitability for protein concentration and wastewater treatment. This research highlights UF-DF as a promising, eco-efficient technology for valorizing seafood processing effluents by recovering high-value proteins and reducing environmental discharge loads. Full article
Show Figures

Figure 1

15 pages, 2665 KiB  
Article
Development of Thermo-Responsive and Salt-Adaptive Ultrafiltration Membranes Functionalized with PNIPAM-co-PDMAC Copolymer
by Lauran Mama, Johanne Pirkin-Benameur, Vincent Bouad, David Fournier, Patrice Woisel, Joël Lyskawa, Karim Aissou and Damien Quemener
Membranes 2025, 15(6), 164; https://doi.org/10.3390/membranes15060164 - 28 May 2025
Cited by 1 | Viewed by 1029
Abstract
Access to clean water remains a critical global challenge, exacerbated by population growth, industrial activity, and climate change. In response, this study presents the development and characterization of thermo-responsive and salt-adaptive ultrafiltration membranes functionalized with a poly(N-isopropylacrylamide)–co-poly(dimethylacrylamide) (PNIPAM-co-PDMAC) copolymer. By combining the thermo-responsive [...] Read more.
Access to clean water remains a critical global challenge, exacerbated by population growth, industrial activity, and climate change. In response, this study presents the development and characterization of thermo-responsive and salt-adaptive ultrafiltration membranes functionalized with a poly(N-isopropylacrylamide)–co-poly(dimethylacrylamide) (PNIPAM-co-PDMAC) copolymer. By combining the thermo-responsive properties of PNIPAM with the hydrophilic characteristics of PDMAC, these membranes exhibit dual-stimuli responsiveness to temperature and ionic strength, allowing for precise control of permeability and fouling resistance. The experimental results demonstrated that the copolymer’s hydration state and dynamic pore size modulation are sensitive to changes in salinity and temperature, with sodium chloride (NaCl) significantly influencing the transition behavior. Preliminary fouling tests confirmed the antifouling capabilities of these membranes, with salt-triggered hydration transitions effectively reducing irreversible fouling and extending membrane durability. The membranes’ reversible properties and adaptability to dynamic operating conditions highlight their potential to enhance the efficiency and sustainability of water treatment processes. Future investigations will focus on scaling up the fabrication process and assessing the long-term stability of these membranes under real-world conditions. This study underscores the promise of smart membrane systems for advancing global water sustainability. Full article
Show Figures

Figure 1

22 pages, 2908 KiB  
Article
Evaluation of the Genericity of an Adaptive Optimal Control Approach to Optimize Membrane Filtration Systems
by Aymen Chaaben, Fatma Ellouze, Nihel Ben Amar, Alain Rapaport, Marc Heran and Jérôme Harmand
Membranes 2025, 15(6), 157; https://doi.org/10.3390/membranes15060157 - 22 May 2025
Viewed by 660
Abstract
This study explores the application and robustness of an adaptive optimal control (AOC) strategy to optimize the operation of membrane filtration systems. The proposed control is based on a constant flux model where fouling is primarily due to cake layer formation. The algorithm [...] Read more.
This study explores the application and robustness of an adaptive optimal control (AOC) strategy to optimize the operation of membrane filtration systems. The proposed control is based on a constant flux model where fouling is primarily due to cake layer formation. The algorithm dynamically finds the optimal ratio between the filtration (F) and backwash (BW) time ratio in response to system disturbances, thereby adapting the operational state of the membrane in order to optimize its performance in terms of energy consumption. The strategy was successfully applied to both microfiltration (MF) and ultrafiltration (UF) systems and quantitatively demonstrated its effectiveness in reducing energy consumption and controlling fouling. It proved robust against model uncertainties and demonstrated real-time adaptability even under varying and realistic disturbance conditions. The implementation of this control strategy facilitated real-time adaptation of the filtration/backwash (F/BW) ratio in response to dynamic system disturbances. The result underlines that the control behavior is predominantly driven by fluctuations in mixed liquor suspended solids (MLSSs). Compared to conventional fixed-time modes, the AOC led to significant energy savings, ranging from 7% to 30%, and membrane lifespan extension, mainly through more efficient permeate pump usage. Full article
(This article belongs to the Special Issue A Commemorative Special Issue in Honor of Professor Simon Judd)
Show Figures

Figure 1

16 pages, 4236 KiB  
Article
Halloysite-Nanotube-Mediated High-Flux γ-Al2O3 Ultrafiltration Membranes for Semiconductor Wastewater Treatment
by Shining Geng, Dazhi Chen, Zhenghua Guo, Qian Li, Manyu Wen, Jiahui Wang, Kaidi Guo, Jing Wang, Yu Wang, Liang Yu, Xinglong Li and Xiaohu Li
Membranes 2025, 15(5), 130; https://doi.org/10.3390/membranes15050130 - 27 Apr 2025
Viewed by 776
Abstract
The wastewater from Chemical Mechanical Polishing (CMP) generated in the semiconductor industry contains a significant concentration of suspended particles and necessitates rigorous treatment to meet environmental standards. Ceramic ultrafiltration membranes offer significant advantages in treating such high-solid wastewater, including a high separation efficiency, [...] Read more.
The wastewater from Chemical Mechanical Polishing (CMP) generated in the semiconductor industry contains a significant concentration of suspended particles and necessitates rigorous treatment to meet environmental standards. Ceramic ultrafiltration membranes offer significant advantages in treating such high-solid wastewater, including a high separation efficiency, environmental friendliness, and straightforward cleaning and maintenance. However, the preparation of high-precision ceramic ultrafiltration membranes with a smaller pore size (usually <20 nm) is very complicated, requiring the repeated construction of transition layers, which not only increases the time and economic costs of manufacturing but also leads to an elevated transport resistance. In this work, halloysite nanotubes (HNTs), characterized by their high aspect ratio and lumen structure, were utilized to create a high-porosity transition layer using a spray-coating technique, onto which a γ-Al2O3 ultrafiltration selective layer was subsequently coated. Compared to the conventional α-Al2O3 transition multilayers, the HNTs-derived transition layer not only had an improved porosity but also had a reduced pore size. As such, this strategy tended to simplify the preparation process for the ceramic membranes while reducing the transport resistance. The resulting high-flux γ-Al2O3 ultrafiltration membranes were used for the high-efficiency treatment of CMP wastewater, and the fouling behaviors were investigated. As expected, the HNTs-mediated γ-Al2O3 ultrafiltration membranes exhibited excellent water flux (126 LMH) and high rejection (99.4%) of inorganic particles in different solvent systems. In addition, such membranes demonstrated good operation stability and regeneration performance, showing promise for their application in the high-efficiency treatment of CMP wastewater in the semiconductor industry. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

15 pages, 1820 KiB  
Article
Nickel and Cobalt Recovery from Spent Lithium-Ion Batteries via Electrodialysis Metathesis
by Adam Isaksson, Juan Anaya Garzon, Ida Strandkvist and Lena Sundqvist Öqvist
Membranes 2025, 15(4), 97; https://doi.org/10.3390/membranes15040097 - 25 Mar 2025
Cited by 1 | Viewed by 1195
Abstract
Recycling of spent lithium-ion batteries is important due to the increasing demand for electric vehicles and efforts to realize a circular economy. There is a need to develop environmentally friendly processes for the refining of nickel, cobalt, and other metals contained in the [...] Read more.
Recycling of spent lithium-ion batteries is important due to the increasing demand for electric vehicles and efforts to realize a circular economy. There is a need to develop environmentally friendly processes for the refining of nickel, cobalt, and other metals contained in the batteries. Electrodialysis is an appealing method for recycling of battery metals with selective separation and low chemical input. In this study, sodium sulfate was used in an electrodialysis metathesis procedure to sequentially separate EDTA-chelated nickel and cobalt. Replacing hitherto used sulfuric acid with sodium sulfate mitigates membrane fouling caused by precipitation of EDTA. It was possible to separate up to 97.9% of nickel and 96.6% of cobalt at 0.10 M, a 30-times higher concentration than previously reported for electrodialysis of similar solutions. Through the thermally activated persulfate method, new to this application, 99.7% of nickel and 87.0% of cobalt could be precipitated from their EDTA chelates. Impurity behavior during electrodialysis of battery leachates has not previously been described in the literature. It is paramount to remove copper, iron, and phosphorous prior to electrodialysis since they contaminate the nickel product. Aluminum was difficult to remove in the solution purification step and ended up in all electrodialysis products. Full article
(This article belongs to the Special Issue Research on Electrodialytic Processes)
Show Figures

Figure 1

15 pages, 1783 KiB  
Article
Surface-Charge Characterization of Nanocomposite Cellulose Acetate/Silver Membranes and BSA Permeation Performance
by Ana Sofia Figueiredo, María Guadalupe Sánchez-Loredo, Maria Norberta de Pinho and Miguel Minhalma
Membranes 2025, 15(2), 61; https://doi.org/10.3390/membranes15020061 - 11 Feb 2025
Cited by 3 | Viewed by 1293
Abstract
Membrane processes are a reality in a wide range of industrial applications, and efforts to continuously enhance their performance are being pursued. The major drawbacks encountered are related to the minimization of polarization concentration, fouling, and biofouling formation. In this study, silver nanoparticles [...] Read more.
Membrane processes are a reality in a wide range of industrial applications, and efforts to continuously enhance their performance are being pursued. The major drawbacks encountered are related to the minimization of polarization concentration, fouling, and biofouling formation. In this study, silver nanoparticles were added to the casting solutions of cellulose acetate membranes in order to obtain new hybrid membranes that present characteristics inherent to the silver nanoparticles, namely antibacterial behavior that leads to biofouling reduction. A systematic study was developed to assess the effect of ionic strength, membrane polymeric structure, and silver nanoparticle incorporation on the cellulose acetate (CA) membrane surface charge. Surface charge was quantified by streaming potential measurements and it was correlated with BSA permeation performance. CA membranes were prepared by the phase-inversion method using three casting-solution compositions, to obtain membranes with different polymeric structures (CA400-22, CA400-30, CA400-34). The nanocomposite CA/silver membranes (CA/Ag) were prepared through the incorporation of silver nanoparticles (0.1 and 0.4 wt% Ag) in the casting solutions of the membranes. To evaluate the electrolyte concentration effect on the membranes zeta potential and surface charge, two potassium chloride solutions of 1 mM and 5 mM were used, in the pH range between 4 and 9. The results show that the zeta-potential values of CA/Ag membranes were less negative when compared to the silver-free membranes, and almost independent of the silver content and the pH of the solution. The influence of the protein solution pH and the protein charge in the BSA solutions permeation was studied. The pH conditions that led to the lower permeate fluxes were observed at the isoelectric point of BSA, pH = 4.8. Full article
(This article belongs to the Section Membrane Fabrication and Characterization)
Show Figures

Figure 1

16 pages, 5210 KiB  
Article
Synthesis of a Free-Standing Ternary WO3/CNT/ZnO–Chitosan Composite Photocatalytic Membrane for the Mitigation of Protein Fouling in Membranes
by Wei Tze Chong, Sze Mun Lam, Yit Thai Ong and Trong-Ming Don
Polymers 2025, 17(4), 437; https://doi.org/10.3390/polym17040437 - 7 Feb 2025
Viewed by 859
Abstract
The application of membrane filtration, particularly micro- and ultra-filtration, in food and pharmaceutical industries often faces the issue of protein fouling. In this study, we aimed to fabricate a free-standing ternary tungsten trioxide/carbon nanotube/zinc oxide (WO3/CNT/ZnO)–chitosan composite photocatalytic membrane via wet [...] Read more.
The application of membrane filtration, particularly micro- and ultra-filtration, in food and pharmaceutical industries often faces the issue of protein fouling. In this study, we aimed to fabricate a free-standing ternary tungsten trioxide/carbon nanotube/zinc oxide (WO3/CNT/ZnO)–chitosan composite photocatalytic membrane via wet processing and infiltration techniques to address the fouling issue. Infiltration with low molecular weight chitosan was found to enhance the mechanical stability of the ternary composite photocatalytic membrane. The ternary composite photocatalytic membrane with a 0.16 g ternary photocatalyst load demonstrated 86% efficiency in the degradation of bovine serum albumin (BSA) under sunlight irradiation for 120 min. A reduction in permeation flux accompanied by an increase in BSA rejection was observed as the loading of the ternary photocatalyst in the ternary composite photocatalytic membrane was increased. This can be associated with the decreased average porosity and mean pore radius. The ternary composite photocatalytic membrane demonstrated reasonably good antifouling behavior with an Rfr of 82% and an Rif of 18%. The antifouling property demonstrated by the ternary composite photocatalytic membrane is important in maintaining the reusability of the membrane. Full article
(This article belongs to the Special Issue Polymeric Membrane Science and Surface Modification Technologies)
Show Figures

Graphical abstract

15 pages, 2566 KiB  
Article
Evaluation of Ceramic Membrane Filtration for Alternatives to Microplastics in Cosmetic Formulations Using FlowCam Analysis
by Seung Yeon Kim, Soyoun Kim and Chanhyuk Park
Membranes 2025, 15(1), 35; https://doi.org/10.3390/membranes15010035 - 19 Jan 2025
Viewed by 1667
Abstract
The rapid expansion of the cosmetics industry has significantly increased the adoption of alternative microplastics in response to increasingly stringent global environmental regulations. This study presents a comparative analysis of the treatment performance of silica powder and cornstarch—common alternatives for microplastics in cosmetics—using [...] Read more.
The rapid expansion of the cosmetics industry has significantly increased the adoption of alternative microplastics in response to increasingly stringent global environmental regulations. This study presents a comparative analysis of the treatment performance of silica powder and cornstarch—common alternatives for microplastics in cosmetics—using ceramic membrane filtration combined with flow imaging microscopy (FlowCam) to analyze particle behavior. Bench-scale crossflow filtration experiments were performed with commercially available alumina ceramic membranes. By analyzing high-resolution images from FlowCam, the transport and retention behaviors of the two microplastic alternatives were examined by comparing their morphological properties. Despite their similar particle sizes, the cornstarch demonstrated a higher removal efficiency (82%) than the silica (72%) in the ceramic membrane filtration due to its greater tendency to aggregate. This increased tendency for aggregation suggests that cornstarch may contribute to faster fouling, while the stability and uniformity of silica particles result in less fouling. The FlowCam analysis revealed that the cornstarch particles experienced a slight increase in circularity and compactness over time, likely due to physical swelling and aggregation, while the silica particles retained their shape and structural integrity. These findings highlight the impact of the morphological properties of alternative microplastics on their filtration behavior and fouling potential. Full article
(This article belongs to the Special Issue Ceramic Membranes for Removal of Emerging Pollutants)
Show Figures

Figure 1

14 pages, 3242 KiB  
Article
Effect of Sodium Hypochlorite Disinfection on Polyvinylidene Fluoride Membranes in Microplastic Ultrafiltration
by Guanghua Wang, Tongyu Li, Wenxuan Yin, Jianhua Zhou and Dongwei Lu
Water 2025, 17(1), 99; https://doi.org/10.3390/w17010099 - 2 Jan 2025
Cited by 2 | Viewed by 2213
Abstract
With the widespread use of plastic products, microplastic (MP) pollution has become an important factor threatening the water environment and human health. Ultrafiltration (UF) technology, based on organic polymer membranes, is a common method to remove MPs in water treatment processes, offering high [...] Read more.
With the widespread use of plastic products, microplastic (MP) pollution has become an important factor threatening the water environment and human health. Ultrafiltration (UF) technology, based on organic polymer membranes, is a common method to remove MPs in water treatment processes, offering high removal efficiency and scalability. However, in water treatment plants (WTPs), oxidation pretreatment is often applied before UF, and the presence of oxidants can affect membrane performance. In this study, we constructed a polyvinylidene fluoride (PVDF) ultrafiltration membrane for a gravity filtration system to investigate the impact of sodium hypochlorite oxidation pretreatment on the removal of polystyrene (PS) MPs under gravity filtration. As a result, pre-chlorination reduced PS microplastic deposition on membranes by improving flux stability (15.1%) but significantly decreased the removal rate (from 36.6% to 22.6%). Pre-oxidation facilitated a shift in fouling behavior toward intermediate blocking while reducing standard blocking and enhancing irreversible fouling recovery. However, continuous chlorine exposure increased membrane porosity and pore size, substituted fluorine with chlorine, and led to organic carbon leaching, indicating pre-oxidation jeopardizes membrane stability and separation performance. These findings provide insights into the development of novel strategies aimed at enhancing the efficiency and sustainability of membrane treatment processes in WTPs. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

23 pages, 7243 KiB  
Article
The Operational Performance of an Ultrafiltration Pilot Unit for the Treatment of Ultra-Concentrated Brines
by Giuseppe Scelfo, Paula Serrano-Tari, Ritamaria Raffaelli, Fabrizio Vicari, Isabel Oller, Andrea Cipollina, Alessandro Tamburini and Giorgio Micale
Membranes 2024, 14(12), 276; https://doi.org/10.3390/membranes14120276 - 20 Dec 2024
Viewed by 1128
Abstract
The valorization of ultra-concentrated seawater brines, named bitterns, requires preliminary purification processes, such as membrane filtration, before they can be fully exploited. This study investigates the performance of an ultrafiltration pilot plant aimed at separating organic matter and large particles from real bitterns. [...] Read more.
The valorization of ultra-concentrated seawater brines, named bitterns, requires preliminary purification processes, such as membrane filtration, before they can be fully exploited. This study investigates the performance of an ultrafiltration pilot plant aimed at separating organic matter and large particles from real bitterns. An empirical model for the bittern viscosity was developed to better characterize the membrane. Distinct variations in permeability, fouling resistance and rejection coefficient were observed under operational pressures ranging from 2 to 4 bar. Working at low pressure (2 bar), the pilot plant achieves permeability and rejection coefficient values of 17 L/m2hbar and 95%, respectively. Foulant behavior was characterized by determining a “fouling resistance”, obtaining an average value of 1013 m−1. Tests with three distinct bittern samples were conducted to assess the influence of chemical composition and organic matter content on membrane permeability and fouling characteristics. The collected data enabled a comprehensive characterization of the ultrafiltration pilot unit working with this particular saline feed solution, which has very high technical–economic potential. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

16 pages, 8245 KiB  
Article
System Dynamics Modeling of Scale Formation in Membrane Distillation Systems for Seawater and RO Brine Treatment
by Yonghyun Shin, Jaewuk Koo and Sangho Lee
Membranes 2024, 14(12), 252; https://doi.org/10.3390/membranes14120252 - 28 Nov 2024
Viewed by 1361
Abstract
To overcome the limitations of traditional Reverse Osmosis (RO) desalination, Membrane Distillation (MD) has gained attention as an effective solution for improving the treatment of seawater and RO brine. Despite its potential, the formation of inorganic scales, particularly calcium sulfate (CaSO4), [...] Read more.
To overcome the limitations of traditional Reverse Osmosis (RO) desalination, Membrane Distillation (MD) has gained attention as an effective solution for improving the treatment of seawater and RO brine. Despite its potential, the formation of inorganic scales, particularly calcium sulfate (CaSO4), continues to pose a major challenge. This research aims to explore the scaling mechanisms in MD systems through a combination of experimental analysis and dynamic modeling. Using real seawater and RO brine as feed sources, the scaling behavior was examined under various operational conditions, such as temperature and feed concentration. Optical Coherence Tomography (OCT) was utilized to monitor the real-time development of fouling layers, offering valuable insights into surface crystal formation processes. A System Dynamics Model (SDM) was created based on the experimental data to predict flux decline trends with precision. The model correlated well with experimental observations, highlighting key factors that drive scaling severity. This integrated approach deepens our understanding of scaling dynamics and provides actionable strategies to mitigate fouling in MD systems, thereby enhancing the efficiency and stability of MD desalination operations. Ultimately, this study underscores the potential of combining OCT with system dynamics modeling as a powerful approach for visualizing and validating scaling processes, offering a practical framework for optimizing MD performance and contributing to more sustainable desalination practices. Full article
(This article belongs to the Special Issue Advances in Membrane Distillation)
Show Figures

Figure 1

26 pages, 1739 KiB  
Review
Review of the Integrated Approaches for Monitoring and Treating Parabens in Water Matrices
by Denga Ramutshatsha-Makhwedzha and Tshimangadzo S. Munonde
Molecules 2024, 29(23), 5533; https://doi.org/10.3390/molecules29235533 - 22 Nov 2024
Cited by 1 | Viewed by 1640
Abstract
Due to their antibacterial and antifungal properties, parabens are commonly used as biocides and preservatives in food, cosmetics, and pharmaceuticals. Parabens have been reported to exist in various water matrices at low concentrations, which renders the need for sample preparation before their quantification [...] Read more.
Due to their antibacterial and antifungal properties, parabens are commonly used as biocides and preservatives in food, cosmetics, and pharmaceuticals. Parabens have been reported to exist in various water matrices at low concentrations, which renders the need for sample preparation before their quantification using analytical techniques. Thus, sample preparation methods such as solid-phase extraction (SPE), rotating-disk sorptive extraction (RDSE), and vortex-assisted dispersive liquid–liquid extraction (VA-DLLE) that are commonly used for parabens extraction and preconcentration have been discussed. As a result of sample preparation methods, analytical techniques now detect parabens at trace levels ranging from µg/L to ng/L. These compounds have been detected in water, air, soil, and human tissues. While the full impact of parabens on human health and ecosystems is still being debated in the scientific community, it is widely recognized that parabens can act as endocrine disruptors. Furthermore, some studies have suggested that parabens may have carcinogenic effects. The presence of parabens in the environment is primarily due to wastewater discharges, which result in widespread contamination and their concentrations increased during the COVID-19 pandemic waves. Neglecting the presence of parabens in water exposes humans to these compounds through contaminated food and drinking water. Although there are reviews that focus on the occurrence, fate, and behavior of parabens in the environment, they frequently overlook critical aspects such as removal methods, policy development, and regulatory frameworks. Addressing this gap, the effective treatment of parabens in water relies on combined approaches that address both cost and operational challenges. Membrane filtration methods, such as nanofiltration (NF) and reverse osmosis (RO), demonstrate high efficacy but are hindered by maintenance and energy costs due to extensive fouling. Innovations in anti-fouling and energy efficiency, coupled with pre-treatment methods like adsorption, help mitigate these costs and enhance scalability. Furthermore, combining adsorption with advanced oxidation processes (AOPs) or biological treatments significantly improves economic and energy efficiency. Integrating systems like O₃/UV with activated carbon, along with byproduct recovery strategies, further advances circular economy goals by minimizing waste and resource use. This review provides a thorough overview of paraben monitoring in wastewater, current treatment techniques, and the regulatory policies that govern their presence. Furthermore, it provides perspectives that are critical for future scientific investigations and shaping policies aimed at mitigating the risks of parabens in drinking water. Full article
Show Figures

Figure 1

13 pages, 1372 KiB  
Article
Effect of the Total Saponins of Bupleurum chinense DC. Water Extracts Following Ultrafiltration Pretreatment on Macroporous Resin Adsorption
by Ruihong Wang, Hongbo Liu, Zhishu Tang, Huaxu Zhu, Huan Liu, Ran Guo, Zhongxing Song, Hongbo Xu, Bo Li, Guolong Li and Yue Zhang
Molecules 2024, 29(21), 5153; https://doi.org/10.3390/molecules29215153 - 31 Oct 2024
Viewed by 1176
Abstract
Macroporous resin is an efficient separation technology that plays a crucial role in the separation and purification of traditional Chinese medicine (TCM). However, the application of macroporous resins in TCM pharmaceuticals is hindered by serious fouling caused by the complex materials used in [...] Read more.
Macroporous resin is an efficient separation technology that plays a crucial role in the separation and purification of traditional Chinese medicine (TCM). However, the application of macroporous resins in TCM pharmaceuticals is hindered by serious fouling caused by the complex materials used in TCM. This study examines the impact of ultrafiltration (UF) membrane technology on the macroporous resin adsorption behavior of TCM extracts. In this paper, Bupleurum chinense DC. (B. chinense) water extracts were included as an example to study the effect of UF pretreatment on the macroporous resin adsorption of total saponins. The study results indicated that the adsorption of total saponins constituents from the water extracts of B. chinense on the macroporous resin followed the pseudo-second-order kinetic model and the Langmuir model. The thermodynamic parameters of adsorption, including enthalpy changes and Gibbs free energies, were negative, while entropy changes were positive. These results demonstrated that the total saponin components form a monolayer adsorption layer by spontaneous thermal adsorption on the macroporous resin, and that the adsorption rate is not determined by the rate of intraparticle diffusion. Following treatment with a UF membrane with an average molecular weight cut-off of 50 kDa, the protein, starch, pectin, tannin, and other impurities in the water extracts of B. chinense were reduced, while the total saponin content was retained at 82.32%. The adsorption kinetic model of the saponin constituents on the macroporous resin remained unchanged and was consistent with both the second-order kinetic model and the Langmuir model; the adsorption rate of the second-order kinetic model increased by 1.3 times and in the Langmuir model at 25 °C, the adsorption performance improved by 1.16 times compared to the original extracts. This study revealed that UF technology as a pretreatment method can reduce the fouling of macroporous resin by TCM extracts and improve the adsorption performance of macroporous resin. Full article
Show Figures

Figure 1

83 pages, 5867 KiB  
Review
Fouling of Reverse Osmosis (RO) and Nanofiltration (NF) Membranes by Low Molecular Weight Organic Compounds (LMWOCs), Part 1: Fundamentals and Mechanism
by Yasushi Maeda
Membranes 2024, 14(10), 221; https://doi.org/10.3390/membranes14100221 - 17 Oct 2024
Cited by 6 | Viewed by 6229
Abstract
Reverse osmosis (RO) and nanofiltration (NF) are ubiquitous technologies in modern water treatment, finding applications across various sectors. However, the availability of high-quality water suitable for RO/NF feed is diminishing due to droughts caused by global warming, increasing demand, and water pollution. As [...] Read more.
Reverse osmosis (RO) and nanofiltration (NF) are ubiquitous technologies in modern water treatment, finding applications across various sectors. However, the availability of high-quality water suitable for RO/NF feed is diminishing due to droughts caused by global warming, increasing demand, and water pollution. As concerns grow over the depletion of precious freshwater resources, a global movement is gaining momentum to utilize previously overlooked or challenging water sources, collectively known as “marginal water”. Fouling is a serious concern when treating marginal water. In RO/NF, biofouling, organic and colloidal fouling, and scaling are particularly problematic. Of these, organic fouling, along with biofouling, has been considered difficult to manage. The major organic foulants studied are natural organic matter (NOM) for surface water and groundwater and effluent organic matter (EfOM) for municipal wastewater reuse. Polymeric substances such as sodium alginate, humic acid, and proteins have been used as model substances of EfOM. Fouling by low molecular weight organic compounds (LMWOCs) such as surfactants, phenolics, and plasticizers is known, but there have been few comprehensive reports. This review aims to shed light on fouling behavior by LMWOCs and its mechanism. LMWOC foulants reported so far are summarized, and the role of LMWOCs is also outlined for other polymeric membranes, e.g., UF, gas separation membranes, etc. Regarding the mechanism of fouling, it is explained that the fouling is caused by the strong interaction between LMWOC and the membrane, which causes the water permeation to be hindered by LMWOCs adsorbed on the membrane surface (surface fouling) and sorbed inside the membrane pores (internal fouling). Adsorption amounts and flow loss caused by the LMWOC fouling were well correlated with the octanol-water partition coefficient (log P). In part 2, countermeasures to solve this problem and applications using the LMWOCs will be outlined. Full article
(This article belongs to the Collection Featured Reviews in Membrane Science)
Show Figures

Figure 1

16 pages, 3326 KiB  
Article
Typical Heterotrophic and Autotrophic Nitrogen Removal Process Coupled with Membrane Bioreactor: Comparison of Fouling Behavior and Characterization
by Qiushan Liu, Tong Zhou, Yuru Liu, Wenjun Wu, Yufei Wang, Guohan Liu, Na Wei, Guangshuo Yin and Jin Guo
Membranes 2024, 14(10), 214; https://doi.org/10.3390/membranes14100214 - 7 Oct 2024
Cited by 1 | Viewed by 1908
Abstract
There is limited research on the relationship between membrane fouling and microbial metabolites in the nitrogen removal process coupled with membrane bioreactors (MBRs). In this study, we compared anoxic-oxic (AO) and partial nitritation–anammox (PNA), which were selected as representative heterotrophic and autotrophic biological [...] Read more.
There is limited research on the relationship between membrane fouling and microbial metabolites in the nitrogen removal process coupled with membrane bioreactors (MBRs). In this study, we compared anoxic-oxic (AO) and partial nitritation–anammox (PNA), which were selected as representative heterotrophic and autotrophic biological nitrogen removal–coupled MBR processes for their fouling behavior. At the same nitrogen loading rate of 100 mg/L and mixed liquor suspended solids (MLSS) concentration of 4000 mg/L, PNA-MBR exhibited more severe membrane fouling compared to AO-MBR, as evidenced by monitoring changes in transmembrane pressure (TMP). In the autotrophic nitrogen removal process, without added organic carbon, the supernatant of PNA-MBR had higher concentrations of protein, polysaccharides, and low-molecular-weight humic substances, leading to a rapid flux decline. Extracellular polymeric substances (EPS) extracted from suspended sludge and cake sludge in PNA-MBR also contributed to more severe membrane fouling than in AO-MBR. The EPS subfractions of PNA-MBR exhibited looser secondary structures in protein and stronger surface hydrophobicity, particularly in the cake sludge, which contained higher contents of humic substances with lower molecular weights. The higher abundances of Candidatus Brocadia and Chloroflexi in PNA-MBR could lead to the production of more hydrophobic organics and humic substances. Hydrophobic metabolism products as well as anammox bacteria were deposited on the hydrophobic membrane surface and formed serious fouling. Therefore, hydrophilic membrane modification is more urgently needed to mitigate membrane fouling when running PNA–MBR than AO–MBR. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

Back to TopTop