Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = memantine derivatives

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 7037 KiB  
Article
In Silico and In Vivo Evaluation of a New Derivative from Memantine and Sinapic Acid (N-Sinapoyl-memantine) as a Candidate for the Management of Alzheimer’s Disease
by Andrey Popatanasov, Lyubka Tancheva, Reni Kalfin and Maya Chochkova
Crystals 2025, 15(6), 491; https://doi.org/10.3390/cryst15060491 - 22 May 2025
Viewed by 448
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disease which has a rather complex pathophysiology. During its course, several neurotransmitter neuronal systems get affected such as acetylcholinergic, glutamatergic, gamma-aminobutyric acid (GABA)ergic systems, etc. Such complex physiology requires a sophisticated approach to pharmaceutical [...] Read more.
Alzheimer’s disease (AD) is the most common neurodegenerative disease which has a rather complex pathophysiology. During its course, several neurotransmitter neuronal systems get affected such as acetylcholinergic, glutamatergic, gamma-aminobutyric acid (GABA)ergic systems, etc. Such complex physiology requires a sophisticated approach to pharmaceutical management. Therefore, multi-target drugs seem to be an appealing solution. In the present study, we designed and synthesized a hybrid molecule—N-sinapoylamide of memantine, whose parent molecules memantine (MEM) and sinapic acid have been shown in vivo to impact glutamatergic, acetylcholinergic, and GABA-ergic systems, respectively. In silico comparative testing of these molecules was performed, their patterns of interaction with the target enzymes or molecular complexes were analyzed, and some of the mechanisms of action were proposed. Consequently, in vivo testing was performed on a scopolamine mice model of AD and the results overly confirm part of the in silico findings. Therefore, the hybrid molecule (N-Sinapoyl-memantine) seems to be a potent candidate for further evaluation in the management of AD. Full article
(This article belongs to the Section Biomolecular Crystals)
Show Figures

Figure 1

19 pages, 3698 KiB  
Article
Synthesis and Characterization of Memantine-Loaded Niosomes for Enhanced Alzheimer’s Disease Targeting
by Hasan Turkez, Sena Oner, Ozge Caglar Yıldırım, Mehmet Enes Arslan, Marilisa Pia Dimmito, Çigdem Yuce Kahraman, Lisa Marinelli, Erdal Sonmez, Özlem Kiki, Abdulgani Tatar, Ivana Cacciatore, Antonio Di Stefano and Adil Mardinoglu
Pharmaceutics 2025, 17(2), 267; https://doi.org/10.3390/pharmaceutics17020267 - 17 Feb 2025
Viewed by 1224
Abstract
Background/Objectives: Over the past 25 years, numerous biological molecules, like recombinant lysosomal enzymes, neurotrophins, receptors, and therapeutic antibodies, have been tested in clinical trials for neurological diseases. However, achieving significant success in clinical applications has remained elusive. A primary challenge has been the [...] Read more.
Background/Objectives: Over the past 25 years, numerous biological molecules, like recombinant lysosomal enzymes, neurotrophins, receptors, and therapeutic antibodies, have been tested in clinical trials for neurological diseases. However, achieving significant success in clinical applications has remained elusive. A primary challenge has been the inability of these molecules to traverse the blood–brain barrier (BBB). Recognizing this hurdle, our study aimed to utilize niosomes as delivery vehicles, leveraging the “molecular Trojan horse” technology, to enhance the transport of molecules across the BBB. Methods: Previously synthesized memantine derivatives (MP1–4) were encapsulated into niosomes for improved BBB permeability, hypothesizing that this approach could minimize peripheral drug toxicity while ensuring targeted brain delivery. Using the human neuroblastoma (SH-SY5Y) cell line differentiated into neuron-like structures with retinoic acid and then exposed to amyloid beta 1–42 peptide, we established an in vitro Alzheimer’s disease (AD) model. In this model, the potential usability of MP1–4 was assessed through viability tests (MTT) and toxicological response analysis. The niosomes’ particle size and morphological structures were characterized using scanning electron microscopy (SEM), with their loading and release capacities determined via UV spectroscopy. Crucially, the ability of the niosomes to cross the BBB and their potential anti-Alzheimer efficacy were analyzed in an in vitro transwell system with endothelial cells. Results: The niosomal formulations demonstrated effective drug encapsulation (encapsulation efficiency: 85.3% ± 2.7%), controlled release (72 h release: 38.5% ± 1.2%), and stable morphology (PDI: 0.22 ± 0.03, zeta potential: −31.4 ± 1.5 mV). Among the derivatives, MP1, MP2, and MP4 exhibited significant neuroprotective effects, enhancing cell viability by approximately 40% (p < 0.05) in the presence of Aβ1-42 at a concentration of 47 µg/mL. The niosomal delivery system improved BBB permeability by 2.5-fold compared to free drug derivatives, as confirmed using an in vitro bEnd.3 cell model. Conclusions: Memantine-loaded niosomes provide a promising platform for overcoming BBB limitations and enhancing the therapeutic efficacy of Alzheimer’s disease treatments. This study highlights the potential of nanotechnology-based delivery systems in developing targeted therapies for neurodegenerative diseases. Further in vivo studies are warranted to validate these findings and explore clinical applications. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Graphical abstract

15 pages, 2894 KiB  
Article
Memantine and the Kynurenine Pathway in the Brain: Selective Targeting of Kynurenic Acid in the Rat Cerebral Cortex
by Renata Kloc and Ewa M. Urbanska
Cells 2024, 13(17), 1424; https://doi.org/10.3390/cells13171424 - 26 Aug 2024
Cited by 2 | Viewed by 1897
Abstract
Cytoprotective and neurotoxic kynurenines formed along the kynurenine pathway (KP) were identified as possible therapeutic targets in various neuropsychiatric conditions. Memantine, an adamantane derivative modulating dopamine-, noradrenaline-, serotonin-, and glutamate-mediated neurotransmission is currently considered for therapy in dementia, psychiatric disorders, migraines, or ischemia. [...] Read more.
Cytoprotective and neurotoxic kynurenines formed along the kynurenine pathway (KP) were identified as possible therapeutic targets in various neuropsychiatric conditions. Memantine, an adamantane derivative modulating dopamine-, noradrenaline-, serotonin-, and glutamate-mediated neurotransmission is currently considered for therapy in dementia, psychiatric disorders, migraines, or ischemia. Previous studies have revealed that memantine potently stimulates the synthesis of neuroprotective kynurenic acid (KYNA) in vitro via a protein kinase A-dependent mechanism. Here, the effects of acute and prolonged administration of memantine on brain kynurenines and the functional changes in the cerebral KP were assessed in rats using chromatographic and enzymatic methods. Five-day but not single treatment with memantine selectively activated the cortical KP towards neuroprotective KYNA. KYNA increases were accompanied by a moderate decrease in cortical tryptophan (TRP) and L-kynurenine (L-KYN) concentrations without changes in 3-hydroxykynurenine (3-HK) levels. Enzymatic studies revealed that the activity of cortical KYNA biosynthetic enzymes ex vivo was stimulated after prolonged administration of memantine. As memantine does not directly stimulate the activity of KATs’ proteins, the higher activity of KATs most probably results from the increased expression of the respective genes. Noteworthy, the concentrations of KYNA, 3-HK, TRP, and L-KYN in the striatum, hippocampus, and cerebellum were not affected. Selective cortical increase in KYNA seems to represent one of the mechanisms underlying the clinical efficacy of memantine. It is tempting to hypothesize that a combination of memantine and drugs could strongly boost cortical KYNA and provide a more effective option for treating cortical pathologies at early stages. Further studies should evaluate this issue in experimental animal models and under clinical scenarios. Full article
Show Figures

Figure 1

11 pages, 1934 KiB  
Brief Report
Locally Synthetized 17-β-Estradiol Reverses Amyloid-β-42-Induced Hippocampal Long-Term Potentiation Deficits
by Laura Bellingacci, Jacopo Canonichesi, Miriam Sciaccaluga, Alfredo Megaro, Petra Mazzocchetti, Michela Di Mauro, Cinzia Costa, Massimiliano Di Filippo, Vito Enrico Pettorossi and Alessandro Tozzi
Int. J. Mol. Sci. 2024, 25(3), 1377; https://doi.org/10.3390/ijms25031377 - 23 Jan 2024
Cited by 2 | Viewed by 1694
Abstract
Amyloid beta 1-42 (Aβ42) aggregates acutely impair hippocampal long-term potentiation (LTP) of synaptic transmission, and 17β-estradiol is crucial for hippocampal LTP. We tested whether boosting the synthesis of neural-derived 17β-estradiol (nE2) saves hippocampal LTP by the neurotoxic action of Aβ42. Electrophysiological recordings were [...] Read more.
Amyloid beta 1-42 (Aβ42) aggregates acutely impair hippocampal long-term potentiation (LTP) of synaptic transmission, and 17β-estradiol is crucial for hippocampal LTP. We tested whether boosting the synthesis of neural-derived 17β-estradiol (nE2) saves hippocampal LTP by the neurotoxic action of Aβ42. Electrophysiological recordings were performed to measure dentate gyrus (DG) LTP in rat hippocampal slices. Using a pharmacological approach, we tested the ability of nE2 to counteract the LTP impairment caused by acute exposure to soluble Aβ42 aggregates. nE2 was found to be required for LTP in DG under physiological conditions. Blockade of steroid 5α-reductase with finasteride, by increasing nE2 synthesis from testosterone (T), completely recovered LTP in slices treated with soluble Aβ42 aggregates. Modulation of the glutamate N-methyl-D aspartate receptor (NMDAR) by memantine effectively rescued the LTP deficit observed in slices exposed to Aβ42, and memantine prevented LTP reduction observed under the blocking of nE2 synthesis. nE2 is able to counteract Aβ42-induced synaptic dysfunction. This effect depends on a rapid, non-genomic mechanism of action of nE2, which may share a common pathway with glutamate NMDAR signaling. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

16 pages, 1971 KiB  
Article
Memantine Improves the Disturbed Glutamine and γ-Amino Butyric Acid Homeostasis in the Brain of Rats Subjected to Experimental Autoimmune Encephalomyelitis
by Beata Dąbrowska-Bouta, Lidia Strużyńska, Marta Sidoryk-Węgrzynowicz and Grzegorz Sulkowski
Int. J. Mol. Sci. 2023, 24(17), 13149; https://doi.org/10.3390/ijms241713149 - 24 Aug 2023
Cited by 3 | Viewed by 1735
Abstract
Glutamine (Gln), glutamate (Glu), and γ-amino butyric acid (GABA) are essential amino acids for brain metabolism and function. Astrocyte-derived Gln is the precursor for the two most important neurotransmitters in the central nervous system (CNS), which are the excitatory neurotransmitter Glu and the [...] Read more.
Glutamine (Gln), glutamate (Glu), and γ-amino butyric acid (GABA) are essential amino acids for brain metabolism and function. Astrocyte-derived Gln is the precursor for the two most important neurotransmitters in the central nervous system (CNS), which are the excitatory neurotransmitter Glu and the inhibitory neurotransmitter GABA. In addition to their roles in neurotransmission, these amino acids can be used as alternative substrates in brain metabolism that enable metabolic coupling between astrocytes and neurons in the glutamate–glutamine cycle (GGC). The disturbed homeostasis of these amino acids within the tripartite synapse may be involved in the pathogenesis of various neurological diseases. Interactions between astrocytes and neurons in terms of Gln, Glu, and GABA homeostasis were studied in different phases of experimental allergic encephalomyelitis (EAE) in Lewis rats. The results of the study showed a decrease in the transport (uptake and release) of Gln and GABA in both neuronal and astrocyte-derived fractions. These effects were fully or partially reversed when the EAE rats were treated with memantine, a NMDA receptor antagonist. Changes in the expression and activity of selected glutamine/glutamate metabolizing enzymes, such as glutamine synthase (GS) and phosphate-activated glutaminase (PAG), which were affected by memantine, were observed in different phases of EAE. The results suggested perturbed homeostasis of Gln, Glu, and GABA during EAE, which may indicate alterations in neuron–astrocyte coupling and dysfunction of the tripartite synapse. Memantine appears to partially regulate the disturbed relationships between Gln, Glu, and GABA. Full article
(This article belongs to the Special Issue Neurotransmitters in Neurodegenerative Diseases)
Show Figures

Figure 1

22 pages, 14817 KiB  
Article
The Combination of Baicalein and Memantine Reduces Oxidative Stress and Protects against β-amyloid-Induced Alzheimer’s Disease in Rat Model
by Ratnakar Jadhav and Yogesh A. Kulkarni
Antioxidants 2023, 12(3), 707; https://doi.org/10.3390/antiox12030707 - 13 Mar 2023
Cited by 16 | Viewed by 3192
Abstract
Alzheimer’s disease (AD) is a neuronal condition causing progressive loss of memory and cognitive dysfunction particularly in elders. An upsurge in the global old age population has led to a proportionate increase in the prevalence of AD. The current treatments for AD are [...] Read more.
Alzheimer’s disease (AD) is a neuronal condition causing progressive loss of memory and cognitive dysfunction particularly in elders. An upsurge in the global old age population has led to a proportionate increase in the prevalence of AD. The current treatments for AD are symptomatic and have debilitating side effects. A literature review and current research have directed scientists to explore natural products with better safety and efficacy profiles as new treatment options for AD. Baicalein, belonging to the flavone subclass of flavonoids, has been reported for its anti-oxidant, anti-inflammatory, AChE enzyme inhibitory activity and anti-amyloid protein aggregation activity, which collectively demonstrates its benefits as a neuroprotective agent. Presently, memantine, a NMDAR antagonist, is one of the important drugs used for treatment of Alzheimer’s disease. The current study aims to investigate the effect of baicalein in combination with memantine in β-amyloid-induced AD in albino Wistar rats. Baicalein (10 mg/kg) alone, 5 mg/kg and 10 mg/kg in combination with memantine (20 mg/kg) was administered for 21 days. Treatment with baicalein in combination with memantine showed significant improvement in behavioural studies. The combination treatment decreased oxidative stress, β-amyloid plaque formation and increased the expression of brain-derived neurotrophic factor (BDNF) in the brain. From the results, it can be concluded that treatment with baicalein and memantine could be beneficial for reducing the progression of neurodegeneration in rats. Baicalein has an additive effect in combination with memantine, making it a potential option for the treatment of AD. Full article
Show Figures

Graphical abstract

25 pages, 7439 KiB  
Article
Synthesis, In Silico, In Vivo, and Ex Vivo Evaluation of a Boron-Containing Quinolinate Derivative with Presumptive Action on mGluRs
by Mario Emilio Cuevas-Galindo, Brenda Anaid Rubio-Velázquez, Rosa Adriana Jarillo-Luna, Itzia I. Padilla-Martínez, Marvin A. Soriano-Ursúa and José G. Trujillo-Ferrara
Inorganics 2023, 11(3), 94; https://doi.org/10.3390/inorganics11030094 - 26 Feb 2023
Cited by 3 | Viewed by 2190
Abstract
In the brain, canonical excitatory neurotransmission is mediated by L-glutamate and its ionotropic (iGluR) and metabotropic (mGluR) receptors. The wide diversity of these often limits the development of glutamatergic drugs. This is due to the arduousness of achieving selectivity with specific ligands. [...] Read more.
In the brain, canonical excitatory neurotransmission is mediated by L-glutamate and its ionotropic (iGluR) and metabotropic (mGluR) receptors. The wide diversity of these often limits the development of glutamatergic drugs. This is due to the arduousness of achieving selectivity with specific ligands. In the present article, encouraged by reports of bioactive organoboron compounds, a diphenylboroxazolidone derived from quinolinate (BZQuin) was evaluated. BZQuin was synthesized with a yield of 87%. Its LD50 was 174 mg/kg in male CD-1 mice, as estimated by a modified Lorke’s method. BZQuin exerted a reduced ability to cause seizures when compared against its precursor, quinolinate. The latter suggested that it does not directly stimulate the ionotropic NMDA receptors or other ionic channels. The observation that the antiglutamatergic drugs riluzole and memantine displaced the BZQuin effect left the mGluRs as their possible targets. This is in line with results from molecular-docking simulations. During these simulations, BZQuin bound only to orthosteric sites on mGluR1, mGluR2, and mGluR7, with higher affinity than quinolinate. The survival of the neurons of mice previously administered with BZQuin or quinolinate was quantified in four neuroanatomical structures of the brain. The BZQuin effect was more appreciable in brain regions with a high expression of the previously mentioned mGluRs, while both antiglutamatergic drugs exerted a neuroprotective effect against it. Together, these results suggest that BZQuin exerts a positive influence on glutamatergic neurotransmission while selectively interacting with certain mGluRs. Full article
Show Figures

Graphical abstract

19 pages, 402 KiB  
Perspective
Supplementary Pharmacotherapy for the Behavioral Abnormalities Caused by Stressors in Humans, Focused on Post-Traumatic Stress Disorder (PTSD)
by Jeffrey Fessel
J. Clin. Med. 2023, 12(4), 1680; https://doi.org/10.3390/jcm12041680 - 20 Feb 2023
Cited by 7 | Viewed by 3320
Abstract
Used as a supplement to psychotherapy, pharmacotherapy that addresses all of the known metabolic and genetic contributions to the pathogenesis of psychiatric conditions caused by stressors would require an inordinate number of drugs. Far simpler is to address the abnormalities caused by those [...] Read more.
Used as a supplement to psychotherapy, pharmacotherapy that addresses all of the known metabolic and genetic contributions to the pathogenesis of psychiatric conditions caused by stressors would require an inordinate number of drugs. Far simpler is to address the abnormalities caused by those metabolic and genetic changes in the cell types of the brain that mediate the behavioral abnormality. Relevant data regarding the changed brain cell types are described in this article and are derived from subjects with the paradigmatic behavioral abnormality of PTSD and from subjects with traumatic brain injury or chronic traumatic encephalopathy. If this analysis is correct, then therapy is required that benefits all of the affected brain cell types; those are astrocytes, oligodendrocytes, synapses and neurons, endothelial cells, and microglia (the pro-inflammatory (M1) subtype requires switching to the anti-inflammatory (M2) subtype). Combinations are advocated using several drugs, erythropoietin, fluoxetine, lithium, and pioglitazone, that benefit all of the five cell types, and that should be used to form a two-drug combination, suggested as pioglitazone with either fluoxetine or lithium. Clemastine, fingolimod, and memantine benefit four of the cell types, and one chosen from those could be added to the two-drug combination to form a three-drug combination. Using low doses of chosen drugs will limit both toxicity and drug-drug interactions. A clinical trial is required to validate both the advocated concept and the choice of drugs. Full article
(This article belongs to the Section Mental Health)
23 pages, 7413 KiB  
Article
Neuroprotective Effect of Quercetin and Memantine against AlCl3-Induced Neurotoxicity in Albino Wistar Rats
by Ratnakar Jadhav and Yogesh A. Kulkarni
Molecules 2023, 28(1), 417; https://doi.org/10.3390/molecules28010417 - 3 Jan 2023
Cited by 25 | Viewed by 4210
Abstract
Recent evidences indicate that there is a substantial increase in worldwide cases of dementia. Alzheimer’s disease is the leading cause of dementia and may contribute to 60–70% of cases. Quercetin is a unique bioflavonoid that has numerous therapeutic benefits such as anti-allergy, anti-ulcer, [...] Read more.
Recent evidences indicate that there is a substantial increase in worldwide cases of dementia. Alzheimer’s disease is the leading cause of dementia and may contribute to 60–70% of cases. Quercetin is a unique bioflavonoid that has numerous therapeutic benefits such as anti-allergy, anti-ulcer, anti-inflammatory, anti-hypertensive, anti-cancer, immuno-modulatory, anti-infective, antioxidant, acetylcholinesterase inhibitory activity, neuroprotective effects, etc. In the present study, we evaluated the neuroprotective effect of orally administered quercetin with memantine in albino Wistar rats after inducing neurotoxicity through AlCl3 (100 mg/kg, p.o.). Chronic administration of AlCl3 resulted in poor retention of memory and significant oxidative damage. Various behavioral parameters, such as locomotor activity, Morris water maze, elevated plus maze, and passive avoidance test, were assessed on days 21 and 42 of the study. The animals were euthanatized following the completion of the last behavioral assessment. Various oxidative stress parameters were assessed to know the extent of oxidative damage to brain tissue. Quercetin with memantine has shown significant improvement in behavioral studies, inhibition of AChE activity, and reduction in oxidative stress parameters. Histopathological studies assessed for cortex and hippocampus using hematoxylin and eosin (H&E), and Congo red stain demonstrated a reduction in amyloid-β plaque formation after treatment of quercetin with memantine. Immunohistochemistry showed that quercetin with memantine treatment also improved the expression of brain-derived neurotrophic factor (BDNF) and inhibited amyloid-β plaque formation. The present study results demonstrated protective effects of treatment of quercetin with memantine in the neurotoxicity linked to aluminum chloride in albino Wistar rats. Full article
(This article belongs to the Special Issue Natural Products with Biological and Therapeutic Activity)
Show Figures

Figure 1

14 pages, 3169 KiB  
Article
Minocycline Attenuates Lipopolysaccharide-Induced Locomotor Deficit and Anxiety-like Behavior and Related Expression of the BDNF/CREB Protein in the Rat Medial Prefrontal Cortex (mPFC)
by Entesar Yaseen Abdo Qaid, Zuraidah Abdullah, Rahimah Zakaria and Idris Long
Int. J. Mol. Sci. 2022, 23(21), 13474; https://doi.org/10.3390/ijms232113474 - 3 Nov 2022
Cited by 14 | Viewed by 2277
Abstract
Neuroinflammation following lipopolysaccharide (LPS) administration induces locomotor deficits and anxiety-like behaviour. In this study, minocycline was compared to memantine, an NMDA receptor antagonist, for its effects on LPS-induced locomotor deficits and anxiety-like behaviour in rats. Adult male Sprague Dawley rats were administered either [...] Read more.
Neuroinflammation following lipopolysaccharide (LPS) administration induces locomotor deficits and anxiety-like behaviour. In this study, minocycline was compared to memantine, an NMDA receptor antagonist, for its effects on LPS-induced locomotor deficits and anxiety-like behaviour in rats. Adult male Sprague Dawley rats were administered either two different doses of minocycline (25 or 50 mg/kg/day, i.p.) or 10 mg/kg/day of memantine (i.p.) for 14 days four days prior to an LPS (5 mg/kg, i.p.) injection. Locomotor activity and anxiety-like behaviour were assessed using the open-field test (OFT). The phosphorylated tau protein level was measured using ELISA, while the expression and density of brain-derived neurotrophic factor (BDNF) and cAMP response element-binding (CREB) protein in the medial prefrontal cortex (mPFC) were measured using immunohistochemistry and Western blot, respectively. Minocycline treatment reduced locomotor deficits and anxiety-like behaviour associated with reduced phosphorylated tau protein levels, but it upregulated BDNF/CREB protein expressions in the mPFC in a comparable manner to memantine, with a higher dose of minocycline having better benefits. Minocycline treatment attenuated LPS-induced locomotor deficits and anxiety-like behaviour in rats and decreased phosphorylated tau protein levels, but it increased the expressions of the BDNF/CREB proteins in the mPFC. Full article
(This article belongs to the Special Issue Molecular Research in Antidepressant Response)
Show Figures

Figure 1

19 pages, 5862 KiB  
Article
Synthesis, Neuroprotective Effect and Physicochemical Studies of Novel Peptide and Nootropic Analogues of Alzheimer Disease Drug
by Radoslav Chayrov, Tatyana Volkova, German Perlovich, Li Zeng, Zhuorong Li, Martin Štícha, Rui Liu and Ivanka Stankova
Pharmaceuticals 2022, 15(9), 1108; https://doi.org/10.3390/ph15091108 - 5 Sep 2022
Cited by 6 | Viewed by 3828
Abstract
Glutamate is an excitatory neurotransmitter in the nervous system. Excessive glutamate transmission can lead to increased calcium ion expression, related to increased neurotoxicity. Memantine is used for treating patients with Alzheimer’s disease (AD) due to its protective action on the neurons against toxicity [...] Read more.
Glutamate is an excitatory neurotransmitter in the nervous system. Excessive glutamate transmission can lead to increased calcium ion expression, related to increased neurotoxicity. Memantine is used for treating patients with Alzheimer’s disease (AD) due to its protective action on the neurons against toxicity caused by over activation of N-methyl-D-aspartate receptors. Nootropics, also called “smart drugs”, are used for the treatment of cognitive deficits. In this work, we evaluate the neuroprotective action of four memantine analogues of glycine derivatives, including glycyl-glycine, glycyl-glycyl-glycine, sarcosine, dimethylglycine and three conjugates with nootropics, modafinil, piracetam and picamilon. The new structural memantine derivatives improved cell viability against copper-induced neurotoxicity in APPswe cells and glutamate-induced neurotoxicity in SH-SY5Y cells. Among these novel compounds, modafinil-memantine, piracetam-memantine, sarcosine-memantine, dimethylglycine-memantine, and glycyl-glycine-memantine were demonstrated with good EC50 values of the protective effects on APPswe cells, accompanied with moderate amelioration from glutamate-induced neurotoxicity. In conclusion, our study demonstrated that novel structural derivatives of memantine might have the potential to develop promising lead compounds for the treatment of AD. The solubility of memantine analogues with nootropics and memantine analogues with glycine derivatives in buffer solutions at pH 2.0 and pH 7.4 simulating the biological media at 298.15 K was determined and the mutual influence of the structural fragments in the molecules on the solubility behavior was analyzed. The significative correlation equations relating the solubility and biological properties with the structural HYBOT (Hydrogen Bond Thermodynamics) descriptors were derived. These equations would greatly simplify the task of the directed design of the memantine analogues with improved solubility and enhanced bioavailability. Full article
(This article belongs to the Special Issue New Applications and Developments in Synthetic Peptide Chemistry)
Show Figures

Figure 1

27 pages, 1755 KiB  
Review
Symptomatic and Disease-Modifying Therapy Pipeline for Alzheimer’s Disease: Towards a Personalized Polypharmacology Patient-Centered Approach
by Xavier Morató, Vanesa Pytel, Sara Jofresa, Agustín Ruiz and Mercè Boada
Int. J. Mol. Sci. 2022, 23(16), 9305; https://doi.org/10.3390/ijms23169305 - 18 Aug 2022
Cited by 37 | Viewed by 11557
Abstract
Since 1906, when Dr. Alois Alzheimer first described in a patient “a peculiar severe disease process of the cerebral cortex”, people suffering from this pathology have been waiting for a breakthrough therapy. Alzheimer’s disease (AD) is an irreversible, progressive neurodegenerative brain disorder and [...] Read more.
Since 1906, when Dr. Alois Alzheimer first described in a patient “a peculiar severe disease process of the cerebral cortex”, people suffering from this pathology have been waiting for a breakthrough therapy. Alzheimer’s disease (AD) is an irreversible, progressive neurodegenerative brain disorder and the most common form of dementia in the elderly with a long presymptomatic phase. Worldwide, approximately 50 million people are living with dementia, with AD comprising 60–70% of cases. Pathologically, AD is characterized by the deposition of amyloid β-peptide (Aβ) in the neuropil (neuritic plaques) and blood vessels (amyloid angiopathy), and by the accumulation of hyperphosphorylated tau in neurons (neurofibrillary tangles) in the brain, with associated loss of synapses and neurons, together with glial activation, and neuroinflammation, resulting in cognitive deficits and eventually dementia. The current competitive landscape in AD consists of symptomatic treatments, of which there are currently six approved medications: three AChEIs (donepezil, rivastigmine, and galantamine), one NMDA-R antagonist (memantine), one combination therapy (memantine/donepezil), and GV-971 (sodium oligomannate, a mixture of oligosaccharides derived from algae) only approved in China. Improvements to the approved therapies, such as easier routes of administration and reduced dosing frequencies, along with the developments of new strategies and combined treatments are expected to occur within the next decade and will positively impact the way the disease is managed. Recently, Aducanumab, the first disease-modifying therapy (DMT) has been approved for AD, and several DMTs are in advanced stages of clinical development or regulatory review. Small molecules, mAbs, or multimodal strategies showing promise in animal studies have not confirmed that promise in the clinic (where small to moderate changes in clinical efficacy have been observed), and therefore, there is a significant unmet need for a better understanding of the AD pathogenesis and the exploration of alternative etiologies and therapeutic effective disease-modifying therapies strategies for AD. Therefore, a critical review of the disease-modifying therapy pipeline for Alzheimer’s disease is needed. Full article
(This article belongs to the Collection Feature Papers in Molecular Neurobiology)
Show Figures

Figure 1

14 pages, 1189 KiB  
Review
Possible Antidepressant Effects of Memantine—Systematic Review with a Case Study
by Marek Krzystanek, Stanisław Surma, Artur Pałasz, Monika Romańczyk and Krzysztof Krysta
Pharmaceuticals 2021, 14(5), 481; https://doi.org/10.3390/ph14050481 - 18 May 2021
Cited by 12 | Viewed by 8243
Abstract
The treatment of bipolar depression is hampered by the inadequate efficacy of antidepressants, moderate effect of mood stabilizers, and the side effects of some second-generation antipsychotics. There is limited evidence to date regarding the antidepressant effects of memantine in bipolar depression. The aim [...] Read more.
The treatment of bipolar depression is hampered by the inadequate efficacy of antidepressants, moderate effect of mood stabilizers, and the side effects of some second-generation antipsychotics. There is limited evidence to date regarding the antidepressant effects of memantine in bipolar depression. The aim of the article was to provide a short review of preclinical and clinical studies on the antidepressant effect of memantine, and to present the case of a bipolar depression patient successfully treated with memantine. The described patient with bipolar disorder was unsuccessfully treated with two mood stabilizers. The addition of memantine at a dose of 20 mg/d to the treatment with lamotrigine and valproic acid resulted in a reduction in the severity of depression measured on the HDRS-17 scale by 35%, and by 47.1% after 7 weeks. The discussion presents experimental evidence for the antidepressant effect of memantine, as well as data from clinical trials in recurrent and bipolar depression. The presented case is the second report in the medical literature showing the antidepressant effect of memantine as an add-on treatment for bipolar depression. The described case and literature analysis indicate that memantine may be an effective and safe method of augmentation of mood stabilizing therapy in bipolar depression. Full article
(This article belongs to the Special Issue Psychopharmacology of Affective Disorders)
Show Figures

Graphical abstract

22 pages, 4148 KiB  
Article
Novel Multifunctional Ascorbic Triazole Derivatives for Amyloidogenic Pathway Inhibition, Anti-Inflammation, and Neuroprotection
by Jutamas Jiaranaikulwanitch, Hataichanok Pandith, Sarin Tadtong, Phanit Thammarat, Supat Jiranusornkul, Nattapong Chauthong, Supitcha Nilkosol and Opa Vajragupta
Molecules 2021, 26(6), 1562; https://doi.org/10.3390/molecules26061562 - 12 Mar 2021
Cited by 14 | Viewed by 4290
Abstract
Alzheimer’s disease (AD) is a common neurodegenerative disorder. The number of patients with AD is projected to reach 152 million by 2050. Donepezil, rivastigmine, galantamine, and memantine are the only four drugs currently approved by the United States Food and Drug Administration for [...] Read more.
Alzheimer’s disease (AD) is a common neurodegenerative disorder. The number of patients with AD is projected to reach 152 million by 2050. Donepezil, rivastigmine, galantamine, and memantine are the only four drugs currently approved by the United States Food and Drug Administration for AD treatment. However, these drugs can only alleviate AD symptoms. Thus, this research focuses on the discovery of novel lead compounds that possess multitarget regulation of AD etiopathology relating to amyloid cascade. The ascorbic acid structure has been designated as a core functional domain due to several characteristics, including antioxidant activities, amyloid aggregation inhibition, and the ability to be transported to the brain and neurons. Multifunctional ascorbic derivatives were synthesized by copper (I)-catalyzed azide–alkyne cycloaddition reaction (click chemistry). The in vitro and cell-based assays showed that compounds 2c and 5c exhibited prominent multifunctional activities as beta-secretase 1 inhibitors, amyloid aggregation inhibitors, and antioxidant, neuroprotectant, and anti-inflammatory agents. Significant changes in activities promoting neuroprotection and anti-inflammation were observed at a considerably low concentration at a nanomolar level. Moreover, an in silico study showed that compounds 2c and 5c were capable of being permeated across the blood–brain barrier by sodium-dependent vitamin C transporter-2. Full article
(This article belongs to the Special Issue Multifunctional Ligands Against Alzheimer's Disease)
Show Figures

Figure 1

20 pages, 5091 KiB  
Review
Memantine Derivatives as Multitarget Agents in Alzheimer’s Disease
by Giambattista Marotta, Filippo Basagni, Michela Rosini and Anna Minarini
Molecules 2020, 25(17), 4005; https://doi.org/10.3390/molecules25174005 - 2 Sep 2020
Cited by 47 | Viewed by 7431
Abstract
Memantine (3,5-dimethyladamantan-1-amine) is an orally active, noncompetitive N-methyl-D-aspartate receptor (NMDAR) antagonist approved for treatment of moderate-to-severe Alzheimer’s disease (AD), a neurodegenerative condition characterized by a progressive cognitive decline. Unfortunately, memantine as well as the other class of drugs licensed for AD treatment acting [...] Read more.
Memantine (3,5-dimethyladamantan-1-amine) is an orally active, noncompetitive N-methyl-D-aspartate receptor (NMDAR) antagonist approved for treatment of moderate-to-severe Alzheimer’s disease (AD), a neurodegenerative condition characterized by a progressive cognitive decline. Unfortunately, memantine as well as the other class of drugs licensed for AD treatment acting as acetylcholinesterase inhibitors (AChEIs), provide only symptomatic relief. Thus, the urgent need in AD drug development is for disease-modifying therapies that may require approaching targets from more than one path at once or multiple targets simultaneously. Indeed, increasing evidence suggests that the modulation of a single neurotransmitter system represents a reductive approach to face the complexity of AD. Memantine is viewed as a privileged NMDAR-directed structure, and therefore, represents the driving motif in the design of a variety of multi-target directed ligands (MTDLs). In this review, we present selected examples of small molecules recently designed as MTDLs to contrast AD, by combining in a single entity the amantadine core of memantine with the pharmacophoric features of known neuroprotectants, such as antioxidant agents, AChEIs and Aβ-aggregation inhibitors. Full article
(This article belongs to the Special Issue Multitarget Ligands)
Show Figures

Graphical abstract

Back to TopTop