In Silico and In Vivo Evaluation of a New Derivative from Memantine and Sinapic Acid (N-Sinapoyl-memantine) as a Candidate for the Management of Alzheimer’s Disease
Abstract
:1. Introduction
2. Results and Discussion
2.1. Compound Synthesis
2.2. Physico-Chemical Analysis of the Compounds
2.3. QSAR and Docking Results
2.4. Biochemical Testing Results
2.5. Behavioral Testing Results
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Reagents
5.2. Chemical and Structural Analysis
5.2.1. X-Ray Diffraction Analysis
5.2.2. ATR-IR Spectroscopy
5.2.3. NMR Spectroscopy
5.2.4. Animals
5.2.5. Experimental Protocol of the AD Model
5.2.6. Drug Treatment and Experimental Design
5.3. Behavioral Tests
5.3.1. Step-Through Passive Avoidance Learning Test
5.3.2. Hole-Board Test
5.3.3. Forced Swim Test
5.3.4. Formalin Pain Test
5.3.5. Determination of Acetylcholinesterase (AChE) Activity
5.3.6. Molecular Docking and Screening
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, J.; Gao, Y.; Gao, Y.; Munsell, B.C.; Shen, D. Detecting anatomical landmarks for fast Alzheimer’s disease diagnosis. IEEE Trans. Med. Imaging 2016, 35, 2524–2533. [Google Scholar] [CrossRef] [PubMed]
- Hampel, H.; Mesulam, M.-M.; Cuello, A.C.; Farlow, M.R.; Giacobini, E.; Grossberg, G.T.; Khachaturian, A.S.; Vergallo, A.; Cavedo, E.; Snyder, P.J.; et al. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain 2018, 141, 1917–1933. [Google Scholar] [CrossRef] [PubMed]
- Jann, M.W.; Shirley, K.L.; Small, G.W. Clinical pharmacokinetics and pharmacodynamics of cholinesterase inhibitors. Clin. Pharmacokinet. 2002, 41, 719–739. [Google Scholar] [CrossRef] [PubMed]
- Koola, M.M. Galantamine-Memantine combination in the treatment of Alzheimer’s disease and beyond. Psychiatry Res. 2020, 293, 113409. [Google Scholar] [CrossRef]
- Vishwas, S.; Awasthi, A.; Corrie, L.; Singh, S.K.; Gulati, M. Multiple target-based combination therapy of galantamine, me-mantine and lycopene for the possible treatment of Alzheimer’s disease. Med. Hypotheses 2020, 143, 109879. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, P.; Feng, J.; Wu, M. Dysfunction of NMDA receptors in Alzheimer’s disease. Neurol. Sci. 2016, 37, 1039–1047. [Google Scholar] [CrossRef]
- Liu, J.; Chang, L.; Song, Y.; Li, H.; Wu, Y. The role of NMDA receptors in Alzheimer’s disease. Front. Neurosci. 2019, 13, 43. [Google Scholar] [CrossRef]
- Limapichat, W.; Yu, W.Y.; Branigan, E.; Lester, H.A.; Dougherty, D.A. Key binding interactions for memantine in the NMDA receptor. ACS Chem. Neurosci. 2013, 4, 255–260. [Google Scholar] [CrossRef]
- Al_hussaniy, H.A.; Alkhafaje, Z.; Altamimi, Z.S.; Oraibi, A.I.; Abdalhassan, A.H.; Abdulhamza, H.M.; AL-Zobaidy, M.J. Me-mantine and its role in parkinsonism, seizure, depression, migraine headache, and Alzheimer’s disease. Pharmacia 2023, 70, 291–297. [Google Scholar] [CrossRef]
- Garcia-Marin, V.; Blazquez-Llorca, L.; Rodriguez, J.R.; Boluda, S.; Muntane, G.; Ferrer, I.; DeFelipe, J. Diminished perisomat-ic GABAergic terminals on cortical neurons adjacent to amyloid plaques. Front. Neuroanat. 2009, 3, 1102. [Google Scholar] [CrossRef]
- Petrache, A.L.; Rajulawalla, A.; Shi, A.; Wetzel, A.; Saito, T.; Saido, T.C.; Harvey, K.; Ali, A.B. Aberrant excitatory–inhibitory synaptic mechanisms in entorhinal cortex microcircuits during the pathogenesis of Alzheimer’s disease. Cereb. Cortex 2019, 29, 1834–1850. [Google Scholar] [CrossRef] [PubMed]
- Nićiforović, N.; Abramovič, H. Sinapic acid and its derivatives: Natural sources and bioactivity. Compr. Rev. Food Sci. Food Saf. 2014, 13, 34–51. [Google Scholar] [CrossRef]
- Hameed, H.; Aydin, S.; Başaran, N. Sinapic acid: Is it safe for humans. FABAD J. Pharm. Sci. 2016, 41, 39. [Google Scholar]
- Maddox, C.E.; Laur, L.M.; Tian, L. Antibacterial activity of phenolic compounds against the phytopathogen Xylella fastidi-osa. Curr. Microbiol. 2010, 60, 53–58. [Google Scholar] [CrossRef]
- Kikuzaki, H.; Hisamoto, M.; Hirose, K.; Akiyama, K.; Taniguchi, H. Antioxidant properties of ferulic acid and its related compounds. J. Agric. Food Chem. 2002, 50, 2161–2168. [Google Scholar] [CrossRef]
- Shahid, M.; Raish, M.; Ahmad, A.; Bin Jardan, Y.A.; Ansari, M.A.; Ahad, A.; Alkharfy, K.M.; Alaofi, A.L.; Al-Jenoobi, F.I. Sin-apic acid ameliorates acetic acid-induced ulcerative colitis in rats by suppressing inflammation, oxidative stress, and apop-tosis. Molecules 2022, 27, 4139. [Google Scholar] [CrossRef]
- Zou, Y.; Kim, A.R.; Kim, J.E.; Choi, J.S.; Chung, H.Y. Peroxynitrite scavenging activity of sinapic acid (3, 5-dimethoxy-4-hydroxycinnamic acid) isolated from Brassica juncea. J. Agric. Food Chem. 2002, 50, 5884–5890. [Google Scholar] [CrossRef]
- Yun, K.J.; Koh, D.J.; Kim, S.H.; Park, S.J.; Ryu, J.H.; Kim, D.G.; Lee, J.-Y.; Lee, K.T. Anti-inflammatory effects of sinapic acid through the suppression of inducible nitric oxide synthase, cyclooxygase-2, and proinflammatory cytokines expressions via nuclear factor-κB inactivation. J. Agric. Food Chem. 2008, 56, 10265–10272. [Google Scholar] [CrossRef]
- Hudson, E.A.; Dinh, P.A.; Kokubun, T.; Simmonds, M.S.; Gescher, A. Characterization of potentially chemopreventive phe-nols in extracts of brown rice that inhibit the growth of human breast and colon cancer cells. Cancer Epidemiol. Biomark. Prev. 2000, 9, 1163–1170. [Google Scholar]
- Kanchana, G.; Shyni, W.J.; Rajadurai, M.; Periasamy, R. Evaluation of antihyperglycemic effect of sinapic acid in normal and streptozotocin-induced diabetes in albino rats. Glob. J. Pharmacol. 2011, 5, 33–39. [Google Scholar]
- Kim, D.H.; Yoon, B.H.; Jung, W.Y.; Kim, J.M.; Park, S.J.; Park, D.H.; Huh, Y.; Park, C.; Cheong, J.H.; Lee, K.-T.; et al. Sinapic acid attenuates kainic acid-induced hippocampal neuronal damage in mice. Neuropharmacology 2010, 59, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Chen, C. Sinapic acid and its derivatives as medicine in oxidative stress-induced diseases and aging. Oxidative Med. Cell. Longev. 2016, 2016, 3571614. [Google Scholar] [CrossRef] [PubMed]
- Georgiev, L.; Chochkova, M.; Totseva, I.; Seizova, K.; Marinova, E.; Ivanova, G.; Ninova, M.; Najdenski, H.; Milkova, T. Anti-tyrosinase, antioxidant and antimicrobial activities of hydroxycinnamoylamides. Med. Chem. Res. 2013, 22, 4173–4182. [Google Scholar] [CrossRef]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 1996, 20, 933–956. [Google Scholar] [CrossRef]
- Rice-Evans, C.; Miller, N.; Paganga, G. Antioxidant properties of phenolic compounds. Trends Plant Sci. 1997, 2, 152–159. [Google Scholar] [CrossRef]
- Nenadis, N.; Tsimidou, M. Observations on the estimation of scavenging activity of phenolic compounds using rapid 1, 1-diphenyl-2-picrylhydrazyl (DPPH•) tests. J. Am. Oil Chem. Soc. 2002, 79, 1191–1195. [Google Scholar] [CrossRef]
- Hotta, H.; Nagano, S.; Ueda, M.; Tsujino, Y.; Koyama, J.; Osakai, T. Higher radical scavenging activities of polyphenolic antioxidants can be ascribed to chemical reactions following their oxidation. Biochim. Et Biophys. Acta (BBA)-Gen. Subj. 2002, 1572, 123–132. [Google Scholar] [CrossRef]
- Brown, G.C.; Borutaite, V. Interactions between nitric oxide, oxygen, reactive oxygen species and reactive nitrogen species. Biochem. Soc. Trans. 2006, 34 Pt 5, 953–956. [Google Scholar] [CrossRef]
- Torreilles, F.; Salman-Tabcheh, S.; Guérin, M.C.; Torreilles, J. Neurodegenerative disorders: The role of peroxynitrite. Brain Res. Rev. 1999, 30, 153–163. [Google Scholar] [CrossRef]
- Klotz, L.O.; Schroeder, P.; Sies, H. Peroxynitrite signaling: Receptor tyrosine kinases and activation of stress-responsive pathways. Free Radic. Biol. Med. 2002, 33, 737–743. [Google Scholar] [CrossRef]
- Lee, I.S.; Choi, G.Y.; Sreelatha, I.; Yoon, J.W.; Youn, S.H.; Maeng, S.; Park, J.H. Effect of sinapic acid on scopolamine-induced learning and memory impairment in SD rats. Brain Sci. 2023, 13, 427. [Google Scholar] [CrossRef] [PubMed]
- Verma, V.; Singh, D.; Kh, R. Sinapic acid alleviates oxidative stress and neuro-inflammatory changes in sporadic model of Alzheimer’s disease in rats. Brain Sci. 2020, 10, 923. [Google Scholar] [CrossRef]
- Yoon, B.H.; Jung, J.W.; Lee, J.-J.; Cho, Y.-W.; Jang, C.-G.; Jin, C.; Oh, T.H.; Ryu, J.H. Anxiolytic-like effects of sinapic acid in mice. Life Sci. 2007, 81, 234–240. [Google Scholar] [CrossRef]
- Lee, H.E.; Kim, D.H.; Park, S.J.; Kim, J.M.; Lee, Y.W.; Jung, J.M.; Lee, C.H.; Hong, J.G.; Liu, X.; Cai, M.; et al. Neuroprotective effect of sinapic acid in a mouse model of amyloid β1–42 protein-induced Alzheimer’s disease. Pharmacol. Biochem. Behav. 2012, 103, 260–266. [Google Scholar] [CrossRef]
- Poyraz, F.S.; Akbaş, G.; Duranoğlu, D.; Acar, S.; Mansuroğlu, B.; Ersöz, M. Sinapic-Acid-Loaded Nanoparticles Optimized via Experimental Design Methods: Cytotoxic, Antiapoptotoic, Antiproliferative, and Antioxidant Activity. ACS Omega 2024, 9, 40329–40345. [Google Scholar] [CrossRef]
- Xia, P.; Chen, H.S.V.; Zhang, D.; Lipton, S.A. Memantine preferentially blocks extrasynaptic over synaptic NMDA receptor currents in hippocampal autapses. J. Neurosci. 2010, 30, 11246–11250. [Google Scholar] [CrossRef]
- Song, X.; Jensen, M.Ø.; Jogini, V.; Stein, R.A.; Lee, C.-H.; Mchaourab, H.S.; Shaw, D.E.; Gouaux, E. Mechanism of NMDA receptor channel block by MK-801 and memantine. Nature 2018, 556, 515–519. [Google Scholar] [CrossRef]
- Tang, B.C.; Wang, Y.T.; Ren, J. Basic information about memantine and its treatment of Alzheimer’s disease and other clini-cal applications. Ibrain 2023, 9, 340–348. [Google Scholar] [CrossRef]
- Świetlik, D.; Białowąs, J.; Kusiak, A.; Krasny, M. Virtual therapy with the NMDA antagonist memantine in hippocampal models of moderate to severe Alzheimer’s disease, in silico trials. Pharmaceuticals 2022, 15, 546. [Google Scholar] [CrossRef]
- Świetlik, D.; Kusiak, A.; Ossowska, A. Computational modeling of therapy with the NMDA antagonist in neurodegenera-tive disease: Information theory in the mechanism of action of Memantine. Int. J. Environ. Res. Public Health 2022, 19, 4727. [Google Scholar] [CrossRef]
- Ghasemi, M.; Amini-Khoei, H.; Bijad, E.; Rafieian-Kopaei, M.; Sureda, A.; Lorigooini, Z. Sinapinic acid as a potential thera-peutic agent for epilepsy through targeting NMDA receptors and nitrite level. Sci. Rep. 2024, 14, 24941. [Google Scholar] [CrossRef] [PubMed]
- Marotta, G.; Basagni, F.; Rosini, M.; Minarini, A. Memantine derivatives as multitarget agents in Alzheimer’s disease. Molecules 2020, 25, 4005. [Google Scholar] [CrossRef]
- Guo, J.; Wang, Z.; Liu, R.; Huang, Y.; Zhang, N.; Zhang, R. Memantine, donepezil, or combination therapy—What is the best therapy for Alzheimer’s disease? A network meta-analysis. Brain Behav. 2020, 10, e01831. [Google Scholar] [CrossRef] [PubMed]
- Veysanoglu, S.; Ertas, B.; Guler, E.; Topal, F.; Ozcan, G.S.; Duruksu, G.; Ece, B.; Cam, C.S.; Aydemir, O.; Cam, M.E. In vitro and in vivo evaluation of multi-target-directed Rivastigmine/Memantine/Gingko biloba-loaded nanofibers against Alz-heimer’s disease. J. Drug Deliv. Sci. Technol. 2023, 86, 104691. [Google Scholar] [CrossRef]
- Balazs, N.; Bereczki, D.; Kovács, T. Cholinesterase inhibitors and memantine for the treatment of Alzheimer and non-Alzheimer dementias. Clin. Neurosci./Ideggyogy. Szle. 2021, 74, 379–387. [Google Scholar] [CrossRef]
- Yunusa, I.; Alsahali, S.; Rane, A.; Eguale, T. Comparative value of cholinesterase inhibitors and memantine in persons with moderate-to-severe Alzheimer’s disease in the United States: A cost-effectiveness analysis. J. Alzheimer’s Dis. Rep. 2021, 5, 705–713. [Google Scholar] [CrossRef]
- Kaniakova, M.; Nepovimova, E.; Kleteckova, L.; Skrenkova, K.; Holubova, K.; Chrienova, Z.; Hepnarova, V.; Kucera, T.; Kobrlova, T.; Vales, K.; et al. Combination of memantine and 6-chlorotacrine as novel multi-target compound against Alz-heimer’s disease. Curr. Alzheimer Res. 2019, 16, 821–833. [Google Scholar] [CrossRef]
- Spilovska, K.; Korabecny, J.; Horova, A.; Musilek, K.; Nepovimova, E.; Drtinova, L.; Gazova, Z.; Siposova, K.; Dolezal, R.; Jun, D.; et al. Design, synthesis and in vitro testing of 7-methoxytacrine-amantadine analogues: A novel cholinesterase in-hibitors for the treatment of Alzheimer’s disease. Med. Chem. Res. 2015, 24, 2645–2655. [Google Scholar] [CrossRef]
- Jevtić, I.I.; Suručić, R.V.; Tovilović-Kovačević, G.; Zogović, N.; Kostić-Rajačić, S.V.; Andrić, D.B.; Penjišević, J.Z. Multi-target potential of newly designed tacrine-derived cholinesterase inhibitors: Synthesis, computational and pharmacological study. Bioorganic Med. Chem. 2024, 101, 117649. [Google Scholar] [CrossRef]
- Naki, T.; Matshe, W.M.R.; Balogun, M.O.; Sinha Ray, S.; Egieyeh, S.A.; Aderibigbe, B.A. Polymer drug conjugates containing memantine, tacrine and cinnamic acid: Promising nanotherapeutics for the treatment of Alzheimer’s disease. J. Microencap-Sul. 2023, 40, 15–28. [Google Scholar] [CrossRef]
- Ruwizhi, N.; Aderibigbe, B.A. Cinnamic acid derivatives and their biological efficacy. Int. J. Mol. Sci. 2020, 21, 5712. [Google Scholar] [CrossRef] [PubMed]
- Chochkova, M.; Jiang, H.; Kyoseva, R.; Stoykova, B.; Tsvetanova, E.; Alexandrova, A.; Liu, R.; Li, Z.; Mitrev, Y.; Dimi-trova-Sbirkova, H.; et al. Cinnamoyl-memantine hybrids: Synthesis, X-ray crystallography and biological activities. J. Mol. Struct. 2021, 1234, 130147. [Google Scholar] [CrossRef]
- Chochkova, M.; Georgieva, A.; Ilieva, T.; Andreeva, M.; Pramatarov, G.; Petek, N.; Petrova, P.; Štícha, M.; Mitrev, Y.; Svete, J. Hybridization of Aminoadamantanes with cinnamic acid analogues and elucidation of their antioxidant profile. J. Chem. 2022, 2022, 7582587. [Google Scholar] [CrossRef]
- Spasova, M.; Kortenska-Kancheva, V.; Totseva, I.; Ivanova, G.; Georgiev, L.; Milkova, T. Synthesis of cinnamoyl and hy-droxycinnamoyl amino acid conjugates and evaluation of their antioxidant activity. J. Pept. Sci. Off. Publ. Eur. Pept. Soc. 2006, 12, 369–375. [Google Scholar]
- Socrates, G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts; John Wiley & Sons: London, UK, 2001. [Google Scholar]
- Heacock, R.A.; Marion, L. The infrared spectra of secondary amines and their salts. Can. J. Chem. 1956, 34, 1782–1795. [Google Scholar] [CrossRef]
- Nakanishi, K. Infrared Absorption Spectroscopy: Practical; Holden-Day: San Francisco, CA, USA, 1962. [Google Scholar]
- Deb, P.K.; Sharma, A.; Piplani, P.; Akkinepally, R.R. Molecular docking and receptor-specific 3D-QSAR studies of acetylcho-linesterase inhibitors. Mol. Divers. 2012, 16, 803–823. [Google Scholar] [CrossRef]
- Atanasova, M.; Yordanov, N.; Dimitrov, I.; Berkov, S.; Doytchinova, I. Molecular docking study on galantamine derivatives as cholinesterase inhibitors. Mol. Inform. 2015, 34, 394–403. [Google Scholar] [CrossRef]
- Silman, I.; Sussman, J.L. Acetylcholinesterase: How is structure related to function? Chem.-Biol. Interact. 2008, 175, 3–10. [Google Scholar] [CrossRef]
- Miller, P.S.; Aricescu, A.R. Crystal structure of a human GABAA receptor. Nature 2014, 512, 270–275. [Google Scholar] [CrossRef]
- Zhu, S.; Noviello, C.M.; Teng, J.; Walsh, R.M., Jr.; Kim, J.J.; Hibbs, R.E. Structure of a human synaptic GABAA receptor. Nature 2018, 559, 67–72. [Google Scholar] [CrossRef]
- Laverty, D.; Thomas, P.; Field, M.; Andersen, O.J.; Gold, M.G.; Biggin, P.C.; Gielen, M.; Smart, T.G. Crystal structures of a GABAA-receptor chimera reveal new endogenous neurosteroid-binding sites. Nat. Struct. Mol. Biol. 2017, 24, 977–985. [Google Scholar] [CrossRef] [PubMed]
- Bais, S.; Kumari, R.; Prashar, Y. Therapeutic effect of Sinapic acid in aluminium chloride induced dementia of Alzheimer’s type in rats. J. Acute Dis. 2017, 6, 154–162. [Google Scholar] [CrossRef]
- Szwajgier, D.; Borowiec, K. Phenolic acids from malt are efficient acetylcholinesterase and butyrylcholinesterase inhibitors. J. Inst. Brew. 2012, 118, 40–48. [Google Scholar] [CrossRef]
- Minkeviciene, R.; Banerjee, P.; Tanila, H. Cognition-enhancing and anxiolytic effects of memantine. Neuropharmacology 2008, 54, 1079–1085. [Google Scholar] [CrossRef]
- Ghasemi, M.; Raza, M.; Dehpour, A.R. NMDA receptor antagonists augment antidepressant-like effects of lithium in the mouse forced swimming test. J. Psychopharmacol. 2010, 24, 585–594. [Google Scholar] [CrossRef]
- Réus, G.Z.; Stringari, R.B.; Kirsch, T.R.; Fries, G.R.; Kapczinski, F.; Roesler, R.; Quevedo, J. Neurochemical and behavioural effects of acute and chronic memantine administration in rats: Further support for NMDA as a new pharmacological target for the treatment of depression? Brain Res. Bull. 2010, 81, 585–589. [Google Scholar] [CrossRef]
- Hansen, K.B.; Yi, F.; Perszyk, R.E.; Menniti, F.S.; Traynelis, S.F. NMDA Receptors in the Central Nervous System. In NMDA Receptors. Methods in Molecular Biology; Burnashev, N., Szepetowski, P., Eds.; Humana Press: New York, NY, USA, 2017; Volume 1677. [Google Scholar]
- Coderre, T.J.; Melzack, R. The role of NMDA receptor-operated calcium channels in persistent nociception after forma-lin-induced tissue injury. J. Neurosci. 1992, 12, 3671–3675. [Google Scholar] [CrossRef]
- Vaccarino, A.L.; Marek, P.; Kest, B.; Weber, E.; Keana, J.F.; Liebeskind, J.C. NMDA receptor antagonists, MK-801 and ACEA-1011, prevent the development of tonic pain following subcutaneous formalin. Brain Res. 1993, 615, 331–334. [Google Scholar] [CrossRef]
- Karakida, F.; Ikeya, Y.; Tsunakawa, M.; Yamaguchi, T.; Ikarashi, Y.; Takeda, S.; Aburada, M. Cerebral protective and cogni-tion-improving effects of sinapic acid in rodents. Biol. Pharm. Bull. 2007, 30, 514–519. [Google Scholar] [CrossRef]
- Abdel-Aal, R.A.; Assi, A.A.A.; Kostandy, B.B. Memantine prevents aluminum-induced cognitive deficit in rats. Behav. Brain Res. 2011, 225, 31–38. [Google Scholar] [CrossRef]
- Chou, T.H.; Epstein, M.; Michalski, K.; Fine, E.; Biggin, P.C.; Furukawa, H. Structural insights into binding of therapeutic channel blockers in NMDA receptors. Nat. Struct. Mol. Biol. 2022, 29, 507–518. [Google Scholar] [CrossRef] [PubMed]
- Agilent Technologies. P. CrysAlis; Version 171.36.20; Agilent Technologies UK Ltd.: Yarnton, UK, 2011. [Google Scholar]
- Sheldrick, G.M. A short history of SHELX. Found. Crystallogr. 2008, 64, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Farrugia, L.J. WinGX and ORTEP for Windows: An update. Appl. Crystallogr. 2012, 45, 849–854. [Google Scholar] [CrossRef]
- Macrae, C.F.; Bruno, I.J.; Chisholm, J.A.; Edgington, P.R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; Van De Streek, J.; Wood, P.A. Mercury CSD 2.0–new features for the visualization and investigation of crystal structures. Appl. Crys-tallogr. 2008, 41, 466–470. [Google Scholar] [CrossRef]
- Spek, A.L. Structure validation in chemical crystallography. Biol. Crystallogr. 2009, 65, 148–155. [Google Scholar] [CrossRef]
- Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Biovia, D.S. Biovia Studio; Dassault Systèmes: San Diego, CA, USA, 2019. [Google Scholar]
- Tancheva, L.P.; Popatanasov, A.B.; Dragomanova, S.T.; Tzvetanova, E.R.; Aleksandrova, S.M.; Alova, L.G.; Stefanova, M.; Kalfin, R.E. New mechanisms in preventive effect of ellagic acid on cognition in mice with Alzheimer’s disease type de-mentia. Bulg. Chem. Commun. 2018, 50, 20–24. [Google Scholar]
- Li, F.; Chen, X.; Wang, F.; Xu, S.; Chang, L.; Anwyl, R.; Wang, Q. Chronic pre-treatment with memantine prevents amy-loid-beta protein-mediated long-term potentiation disruption. Neural Regen. Res. 2013, 8, 49–55. [Google Scholar]
- de Moura, F.C.; Godinho, W.D.; Vieira, L.L.; da Silva, C.; Martins, P.M.S.; de Castro Brito, G.A. Current Research on Therapy in Alzheimer’s Disease Experimental Model: Beta-Amyloid1-42 Induction. J. Adv. Res. Pharm. Biol. Sci. 2015, 2208, 2360. [Google Scholar] [CrossRef]
- Jarvik, M.E.; Kopp, R. An improved one-trial passive avoidance learning situation. Psychol. Rep. 1967, 21, 221–224. [Google Scholar] [CrossRef]
- Aguirre-Hernández, E.; Martínez, A.L.; González-Trujano, M.E.; Moreno, J.; Vibrans, H.; Soto-Hernández, M. Pharmacolog-ical evaluation of the anxiolytic and sedative effects of Tilia americana L. var. mexicana in mice. J. Ethnopharmacol. 2007, 109, 140–145. [Google Scholar] [CrossRef] [PubMed]
- Dubuisson, D.; Dennis, S.G. The formalin test: A quantitative study of the analgesic effects of morphine, meperidine, and brain stem stimulation in rats and cats. Pain 1977, 4, 161–174. [Google Scholar] [CrossRef]
- Hunskaar, S.; Fasmer, O.B.; Hole, K. Formalin test in mice, a useful technique for evaluating mild analgesics. J. Neurosci. Methods 1985, 14, 69–76. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef]
- Hsu, K.C.; Chen, Y.F.; Lin, S.R.; Yang, J.M. iGEMDOCK: A graphical environment of enhancing GEMDOCK using pharmacological interactions and post-screening analysis. BMC Bioinform. 2011, 12, 1–11. [Google Scholar] [CrossRef]
- Shlyahtun, A.G.; Raduta, E.F.; Sutko, I.P.; Kasper, E.V.; Bogdevich, E.V.; Sevko, A.A. Screening of molecular targets that de-termine the hypoglycemic effect of lupane triterpenoids. In Proceedings of the International Scientific Conference “Physi-cochemical Biology as the Basis of Modern Medicine”, Minsk, Belarus, 21 May 2021; Khrustalev, V.V., Taganovich, A.D., Khrustaleva, T.A., Eds.; BGMU Press: Minsk, Belarus, 2021; pp. 362–363. [Google Scholar]
- Azad, I.; Khan, T.; Maurya, A.K.; Irfan Azad, M.; Mishra, N.; Alanazi, A.M. Identification of severe acute respiratory syn-drome coronavirus-2 inhibitors through in silico structure-based virtual screening and molecular interaction studies. J. Mol. Recognit. 2021, 34, e2918. [Google Scholar] [CrossRef]
- Laskowski, R.A.; Swindells, M.B. LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model. 2011, 51, 2778–2786. [Google Scholar] [CrossRef]
- Adasme, M.F.; Linnemann, K.L.; Bolz, S.N.; Kaiser, F.; Salentin, S.; Haupt, V.J.; Schroeder, M. PLIP 2021: Expanding the scope of the protein–ligand interaction profiler to DNA and RNA. Nucleic Acids Res. 2021, 49, W530–W534. [Google Scholar] [CrossRef]
- RStudio Team. RStudio: Integrated Development for R; RStudio, Inc.: Boston, MA, USA, 2019. [Google Scholar]
- Yang, H.; Lou, C.; Sun, L.; Li, J.; Cai, Y.; Wang, Z.; Li, W.; Liu, G.; Tang, Y. admetSAR 2.0: Web-service for prediction and optimization of chemical ADMET properties. Bioinformatics 2019, 35, 1067–1069. [Google Scholar] [CrossRef]
- Dong, J.; Wang, N.-N.; Yao, Z.-J.; Zhang, L.; Cheng, Y.; Ouyang, D.; Lu, A.-P.; Cao, D.-S. ADMETlab: A platform for system-atic ADMET evaluation based on a comprehensively collected ADMET database. J. Cheminform. 2018, 10, 29. [Google Scholar] [CrossRef]
Compound 1 | Bond 1 | Length diff. % | Bond 2 | Compound 2 | Order | Type |
---|---|---|---|---|---|---|
SINA | C1–C2 | 0.890 | C16–C17 | SINA-MEM | 2 | Double |
SINA | C1–C6 | 0.840 | C16–C21 | SINA-MEM | 1 | Single |
SINA | C1–C7 | −0.880 | C16–C15 | SINA-MEM | 1 | Single |
SINA | C2–H2 | −0.015 | C17–H17 | SINA-MEM | 1 | Single |
SINA | C2–C3 | −1.041 | C17–C18 | SINA-MEM | 1 | Single |
SINA | C3–O15 | −1.022 | O2–C18 | SINA-MEM | 1 | Single |
SINA | C3–C4 | 1.272 | C19–C18 | SINA-MEM | 2 | Double |
SINA | C4–C5 | −1.079 | C20–C19 | SINA-MEM | 1 | Single |
SINA | C4–O14 | −0.851 | O3–C19 | SINA-MEM | 1 | Single |
SINA | C5–O12 | 1.177 | O4–C20 | SINA-MEM | 1 | Single |
SINA | C5–C6 | 0.476 | C20–C21 | SINA-MEM | 2 | Double |
SINA | C6–H6 | 0.039 | C15–H15 | SINA-MEM | 1 | Single |
SINA | C7–H7 | −0.021 | C14–H14 | SINA-MEM | 1 | Single |
SINA | C7–C8 | 1.900 | C14–C15 | SINA-MEM | 2 | Double |
SINA | C8–C9 | −2.483 | C13–C14 | SINA-MEM | 1 | Single |
SINA | C8–H8 | −0.003 | C21–H21 | SINA-MEM | 1 | Single |
SINA | C9–O11 | 0.953 | O1–C13 | SINA-MEM | 2 | Double |
SINA | O12–C13 | 2.789 | O2–C22 | SINA-MEM | 1 | Single |
SINA | C13–H13B | 0.047 | C22–H22A | SINA-MEM | 1 | Single |
SINA | C13–H13A | 0.079 | C22–H22B | SINA-MEM | 1 | Single |
SINA | C13–H13C | 0.020 | C22–H22C | SINA-MEM | 1 | Single |
SINA | O14–H14 | 7.100 | O3–H3 | SINA-MEM | 1 | Single |
SINA | O15–C16 | −1.160 | O4–C23 | SINA-MEM | 1 | Single |
SINA | C16–H16C | 0.159 | C23–H23A | SINA-MEM | 1 | Single |
SINA | C16–H16A | 0.013 | C23–H23B | SINA-MEM | 1 | Single |
SINA | C16–H16B | −0.035 | C23–H23C | SINA-MEM | 1 | Single |
O-H (Phenol) | C=O | C=C (trans) | C=C (Aromatic) | C-O-C_1 | C-O-C_2 | -OCH3 | |
---|---|---|---|---|---|---|---|
SINA | 3290.5 | 1660.83 | 1615.22 | 1558.02 | 1328.84 | 1041.45 | 2836.12 |
SINA-MEM | 3281.25 | 1662.42 | 1610.81 | 1557.07 | 1326.88 | 1040.33 | 2835.49 |
Atom Number | 1H Chemical Shift (Multiplicity, J in Hz) | 13C Chemical Shift |
---|---|---|
1 | - | 52.7 |
2, 9 | 1.64 (d, 12.1) 1.61 (d, 12.0) | 47.5 |
3, 5 | - | 32.2 |
4 | 1.12 (m) | 50.6 |
6, 10 | 1.34 (d, 12.0) 1.26 (d, 11.9) | 42.7 |
7 | 2.09 (m) | 29.9 |
8 | 1.81 (m) | 39.9 |
11, 12 | 0.83 (s) | 30.5 |
1′ | - | 164.9 |
2′ | 6.51 (d, 15.6) | 121.3 |
3′ | 7.20 (d, 15.6) | 138.6 |
4′ | - | 125.8 |
5′ | 6.8 (s) | 105.3 |
6′ | - | 148.4 |
7′ | - | 137.4 |
6′-OMe | 3.78 (s) | 56.2 |
7′-OH | 8.76 (s) | - |
NH | 7.47 (s) | |
Numeration of the carbon atoms in the new hybrid compound |
FACTORS | SINA-MEM VALUE | SINA-MEM PROBABILITY | MEM VALUE | MEM PROBABILITY | SINA VALUE | SINA PROBABILITY |
---|---|---|---|---|---|---|
Human intestinal absorption | + | 0.9434 | + | 0.9759 | + | 0.9774 |
Caco-2 | - | 0.6593 | + | 0.7723 | + | 0.5291 |
Blood–brain barrier | + | 0.9426 | + | 0.9968 | + | 0.8958 |
Human oral bioavailability | + | 0.5571 | + | 0.8857 | + | 0.6286 |
Subcellular localzation | Mitochondria | 0.4927 | Lysosomes | 0.9686 | Mitochondria | 0.8118 |
OATP2B1 inhibitor | - | 1.0000 | - | 0.8649 | - | 1.0000 |
OATP1B1 inhibitor | + | 0.8969 | + | 0.9698 | + | 0.8888 |
OATP1B3 inhibitor | + | 0.9596 | + | 0.9500 | + | 0.9763 |
MATE1 inhibitor | - | 0.8600 | - | 0.5400 | - | 0.9200 |
OCT2 inhibitor | - | 0.9500 | - | 0.6500 | - | 0.9750 |
BSEP inhibitor | + | 0.6056 | - | 0.8326 | - | 0.7876 |
P-glycoprotein inhibitor | - | 0.7762 | - | 0.9625 | - | 0.9628 |
P-glycoprotein substrate | - | 0.7512 | - | 0.8811 | - | 0.9400 |
CYP3A4 substrate | + | 0.5868 | - | 0.6095 | - | 0.6637 |
CYP2C9 substrate | - | 0.7936 | - | 1.0000 | - | 0.6110 |
CYP2D6 substrate | - | 0.8276 | + | 0.3579 | - | 0.8502 |
CYP3A4 inhibition | - | 0.8143 | - | 0.8309 | - | 0.8748 |
CYP2C9 inhibition | - | 0.8227 | - | 0.9281 | - | 0.8380 |
CYP2C19 inhibition | - | 0.7947 | - | 0.9025 | - | 0.7182 |
CYP2D6 inhibition | - | 0.8631 | - | 0.8720 | - | 0.9297 |
CYP1A2 inhibition | - | 0.5936 | - | 0.9327 | - | 0.8445 |
CYP inhibitory promiscuity | - | 0.5429 | - | 0.6795 | - | 0.7608 |
UGT catelyzed | + | 0.8000 | - | 0.0000 | + | 0.6000 |
Carcinogenicity (binary) | - | 0.6581 | - | 0.7286 | - | 0.8025 |
Carcinogenicity (trinary) | Non-required | 0.4507 | Non-required | 0.5777 | Non-required | 0.6699 |
Ames mutagenesis | - | 0.5400 | - | 0.7000 | - | 0.8200 |
Human either-a-go-go inhibition | - | 0.5375 | - | 0.7219 | - | 0.8521 |
micronuclear | + | 0.8000 | - | 0.7400 | + | 0.7000 |
Human hepatotoxicity | + | 0.567 | + | 0.694 | + | 0.702 |
Acute oral toxicity (a) | III | 0.4847 | III | 0.7138 | III | 0.4500 |
Estrogen receptor binding | + | 0.8350 | - | 0.8414 | - | 0.5000 |
Androgen receptor binding | + | 0.7126 | - | 0.5614 | + | 0.5248 |
Thyroid receptor binding | + | 0.8121 | - | 0.6810 | - | 0.5940 |
Glucocorticoid receptor binding | + | 0.6864 | - | 0.8488 | - | 0.7463 |
Aromatase binding | + | 0.8041 | - | 0.7437 | - | 0.8089 |
PPAR gamma | + | 0.7385 | - | 0.7060 | - | 0.6295 |
Mem | SINA-MEM | SINA | GNT | |
---|---|---|---|---|
Estimated Free Energy of Binding [kcal/mol] | −8.02 | −8.61 | −5.36 | −8.79 |
Estimated Inhibition Constant, Ki [T = 298.15 K] | 1.32 µM | 488.86 nM | 118.51 µM | 360.71 nM |
Final Intermolecular Energy [kcal/mol] | −8.32 | −10.40 | −7.15 | −9.39 |
Electrostatic Energy [kcal/mol] | −0.87 | −0.19 | +0.06 | −0.52 |
Final Total Internal Energy [kcal/mol] | +0.07 | −0.66 | −1.11 | −0.85 |
Torsional Free Energy [kcal/mol] | +0.30 | +1.79 | +1.79 | +0.60 |
Unbound System’s Energy [=(2)] [kcal/mol] | +0.07 | −0.66 | −1.11 | −0.85 |
MEM | SINA | SINA-MEM | FYP | |
---|---|---|---|---|
Estimated Free Energy of Binding [kcal/mol] | −7.37 | −5.76 | −7.52 | −7.55 |
Estimated Inhibition Constant, Ki [T = 298.15 K] | 3.99 µM | 59.96 µM | 3.08 µM | 2.94 µM |
Final Intermolecular Energy [kcal/mol] | −7.66 | −7.55 | −9.31 | −8.44 |
Electrostatic Energy [kcal/mol] | −1.92 | −0.42 | −0.51 | +0.03 |
Final Total Internal Energy [kcal/mol] | +0.07 | −1.17 | −1.50 | −0.56 |
Torsional Free Energy [kcal/mol] | +0.30 | +1.79 | +1.79 | +0.89 |
Unbound System’s Energy [=(2)] [kcal/mol] | +0.07 | −1.17 | −1.50 | −0.56 |
MEM | SINA-MEM | SINA | |
---|---|---|---|
Estimated Free Energy of Binding [kcal/mol] | −6.13 | −8.91 | −4.59 |
Estimated Inhibition Constant, Ki [T = 298.15 K] | 32.34 µM | 294.18 nM | 428.54 µM |
Final Intermolecular Energy [kcal/mol] | −6.42 | −10.70 | −6.38 |
Electrostatic Energy [kcal/mol] | −0.32 | −0.08 | +0.20 |
Final Total Internal Energy [kcal/mol] | +0.07 | −1.48 | −1.17 |
Torsional Free Energy [kcal/mol] | +0.30 | +1.79 | +1.79 |
Unbound System’s Energy [=(2)] [kcal/mol] | +0.07 | −1.48 | −1.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popatanasov, A.; Tancheva, L.; Kalfin, R.; Chochkova, M. In Silico and In Vivo Evaluation of a New Derivative from Memantine and Sinapic Acid (N-Sinapoyl-memantine) as a Candidate for the Management of Alzheimer’s Disease. Crystals 2025, 15, 491. https://doi.org/10.3390/cryst15060491
Popatanasov A, Tancheva L, Kalfin R, Chochkova M. In Silico and In Vivo Evaluation of a New Derivative from Memantine and Sinapic Acid (N-Sinapoyl-memantine) as a Candidate for the Management of Alzheimer’s Disease. Crystals. 2025; 15(6):491. https://doi.org/10.3390/cryst15060491
Chicago/Turabian StylePopatanasov, Andrey, Lyubka Tancheva, Reni Kalfin, and Maya Chochkova. 2025. "In Silico and In Vivo Evaluation of a New Derivative from Memantine and Sinapic Acid (N-Sinapoyl-memantine) as a Candidate for the Management of Alzheimer’s Disease" Crystals 15, no. 6: 491. https://doi.org/10.3390/cryst15060491
APA StylePopatanasov, A., Tancheva, L., Kalfin, R., & Chochkova, M. (2025). In Silico and In Vivo Evaluation of a New Derivative from Memantine and Sinapic Acid (N-Sinapoyl-memantine) as a Candidate for the Management of Alzheimer’s Disease. Crystals, 15(6), 491. https://doi.org/10.3390/cryst15060491