Synthesis and Characterization of Memantine-Loaded Niosomes for Enhanced Alzheimer’s Disease Targeting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Memantine Derivatives (MP1–4)
2.2. Human Fibroblast Cell Cultures and Micronucleus Analysis
2.3. Synthesis of Niosomal Delivery Systems
2.4. Characterization and Size Distribution of Loaded Niosomes
2.5. Drug Loading Analyses of Niosomes
2.6. Drug Release Analysis
2.7. SH-SY5Y Cell Cultures and Differentiation with Retinoic Acid
2.8. MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) Cell Viability Investigations
2.9. In Vitro Blood–Brain Barrier (BBB) Permeability Analyses
2.10. Statistical Analyses
3. Results
3.1. Cytotoxicity and Genotoxicity Analyses of MP1–4 on Human Dermal Fibroblast (HDFa) Cell Cultures
3.2. Characterization Analyses of Niosomes
3.3. Anti-Alzheimer’s Disease Potential of the Synthesized Compounds
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AD | Alzheimer’s disease |
BBB | Blood–brain barrier |
MTT | 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide |
MP1–4 | Memantine derivatives 1 to 4 |
SEM | Scanning electron microscopy |
UV | Ultraviolet |
RA | Retinoic acid |
Aß1-42 | Amyloid beta 1-42 peptide |
PDI | Polydispersity index |
ZP | Zeta potential |
SH-SY5Y | Human neuroblastoma cell line |
DMEM | Dulbecco’s modified Eagle’s medium |
PBS | Phosphate-buffered saline |
References
- Sousa, J.A.; Bernardes, C.; Bernardo-Castro, S.; Lino, M.; Albino, I.; Ferreira, L.; Brás, J.; Guerreiro, R.; Tábuas-Pereira, M.; Baldeiras, I.; et al. Reconsidering the Role of Blood-Brain Barrier in Alzheimer’s Disease: From Delivery to Target. Front. Aging Neurosci. 2023, 15, 1102809. [Google Scholar] [CrossRef] [PubMed]
- Saraiva, C.; Praça, C.; Ferreira, R.; Santos, T.; Ferreira, L.; Bernardino, L. Nanoparticle-Mediated Brain Drug Delivery: Overcoming Blood-Brain Barrier to Treat Neurodegenerative Diseases. J. Control. Release 2016, 235, 34–47. [Google Scholar] [CrossRef] [PubMed]
- Pardridge, W.M. Drug Transport across the Blood-Brain Barrier. J. Cereb. Blood Flow Metab. 2012, 32, 1959–1972. [Google Scholar] [CrossRef] [PubMed]
- Cacciatore, I.; Fornasari, E.; Marinelli, L.; Eusepi, P.; Ciulla, M.; Ozdemir, O.; Tatar, A.; Turkez, H.; Di Stefano, A. Memantine-Derived Drugs as Potential Antitumor Agents for the Treatment of Glioblastoma. Eur. J. Pharm. Sci. 2017, 109, 402–411. [Google Scholar] [CrossRef]
- Parsons, C.G.; Danysz, W.; Dekundy, A.; Pulte, I. Memantine and Cholinesterase Inhibitors: Complementary Mechanisms in the Treatment of Alzheimer’s Disease. Neurotox. Res. 2013, 24, 358–369. [Google Scholar] [CrossRef]
- Fornasari, E.; Marinelli, L.; Di Stefano, A.; Eusepi, P.; Turkez, H.; Fulle, S.; Di Filippo, E.S.; Scarabeo, A.; Di Nicola, S.; Cacciatore, I. Synthesis and Antioxidant Properties of Novel Memantine Derivatives. Cent. Nerv. Syst. Agents Med. Chem. 2017, 17, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Hamada, Y.; Miyamoto, N.; Kiso, Y. Novel β-Amyloid Aggregation Inhibitors Possessing a Turn Mimic. Bioorg. Med. Chem. Lett. 2015, 25, 1572–1576. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Lin, X.; Hu, R.; Sun, N.; Hao, J.; Gao, C. Toxicological Differences Between NMDA Receptor Antagonists and Cholinesterase Inhibitors. Am. J. Alzheimer’s Dis. Other Dementiasr 2016, 31, 405–412. [Google Scholar] [CrossRef]
- Bozdağ Pehlivan, S. Nanotechnology-Based Drug Delivery Systems for Targeting, Imaging and Diagnosis of Neurodegenerative Diseases. Pharm. Res. 2013, 30, 2499–2511. [Google Scholar] [CrossRef]
- Guerra, M.; Blázquez, J.L.; Rodríguez, E.M. Blood-Brain Barrier and Foetal-Onset Hydrocephalus, with a View on Potential Novel Treatments beyond Managing CSF Flow. Fluids Barriers CNS 2017, 14, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Komarova, Y.A.; Kruse, K.; Mehta, D.; Malik, A.B. Protein Interactions at Endothelial Junctions and Signaling Mechanisms Regulating Endothelial Permeability. Circ. Res. 2017, 120, 179–206. [Google Scholar] [CrossRef] [PubMed]
- Kreuter, J. Drug Delivery to the Central Nervous System by Polymeric Nanoparticles: What Do We Know? Adv. Drug Deliv. Rev. 2014, 71, 2–14. [Google Scholar] [CrossRef]
- Patil, S.; Sandberg, A.; Heckert, E.; Self, W.; Seal, S. Protein Adsorption and Cellular Uptake of Cerium Oxide Nanoparticles as a Function of Zeta Potential. Biomaterials 2007, 28, 4600–4607. [Google Scholar] [CrossRef] [PubMed]
- Siafaka, P.I.; Mutlu, G.; Okur, N.Ü. Alzheimer’s Disease and Its Related Dementia Types: A Review on Their Management Via Nanotechnology Based Therapeutic Strategies. Curr. Alzheimer Res. 2021, 17, 1239–1261. [Google Scholar] [CrossRef] [PubMed]
- Turkez, H.; Arslan, M.E.; Selvitopi, H.; Kadi, A.; Oner, S.; Mardinoglu, A. Drug Synergism of Anticancer Action in Combination with Favipiravir and Paclitaxel on Neuroblastoma Cells. Medicina 2023, 60, 82. [Google Scholar] [CrossRef]
- Ahad, A.; Raish, M.; Al-Jenoobi, F.I.; Al-Mohizea, A.M. Sorbitane Monostearate and Cholesterol Based Niosomes for Oral Delivery of Telmisartan. Curr. Drug Deliv. 2018, 15, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Zaid Alkilani, A.; Abu-Zour, H.; Alshishani, A.; Abu-Huwaij, R.; Basheer, H.A.; Abo-Zour, H. Formulation and Evaluation of Niosomal Alendronate Sodium Encapsulated in Polymeric Microneedles: In Vitro Studies, Stability Study and Cytotoxicity Study. Nanomaterials 2022, 12, 3570. [Google Scholar] [CrossRef]
- Serdar, B.S.; Erkmen, T.; Ergür, B.U.; Akan, P.; Koçtürk, S. Comparison of Medium Supplements in Terms of the Effects on the Differentiation of SH-SY5Y Human Neuroblastoma Cell Line. Neurol. Sci. Neurophysiol. 2020, 37, 82–88. [Google Scholar] [CrossRef]
- Park, J.S.; Choe, K.; Khan, A.; Jo, M.H.; Park, H.Y.; Kang, M.H.; Park, T.J.; Kim, M.O. Establishing Co-Culture Blood–Brain Barrier Models for Different Neurodegeneration Conditions to Understand Its Effect on BBB Integrity. Int. J. Mol. Sci. 2023, 24, 5283. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, T.; Aljaeid, B. Preparation, Characterization, and Potential Application of Chitosan, Chitosan Derivatives, and Chitosan Metal Nanoparticles in Pharmaceutical Drug Delivery. Drug Des. Devel. Ther. 2016, 483, 5283. [Google Scholar] [CrossRef] [PubMed]
- Manca, M.L.; Castangia, I.; Zaru, M.; Nácher, A.; Valenti, D.; Fernàndez-Busquets, X.; Fadda, A.M.; Manconi, M. Development of Curcumin Loaded Sodium Hyaluronate Immobilized Vesicles (Hyalurosomes) and Their Potential on Skin Inflammation and Wound Restoring. Biomaterials 2015, 71, 100–109. [Google Scholar] [CrossRef]
- Uchegbu, I.F.; Florence, A.T. Non-Ionic Surfactant Vesicles (Niosomes): Physical and Pharmaceutical Chemistry. Adv. Colloid Interface Sci. 1995, 58, 1–55. [Google Scholar] [CrossRef]
- Zhang, C.; Wan, X.; Zheng, X.; Shao, X.; Liu, Q.; Zhang, Q.; Qian, Y. Dual-Functional Nanoparticles Targeting Amyloid Plaques in the Brains of Alzheimer’s Disease Mice. Biomaterials 2014, 35, 456–465. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Zhang, C.; Guo, Q.; Wan, X.; Shao, X.; Liu, Q.; Zhang, Q. Dual-Functional Nanoparticles for Precise Drug Delivery to Alzheimer’s Disease Lesions: Targeting Mechanisms, Pharmacodynamics and Safety. Int. J. Pharm. 2017, 525, 237–248. [Google Scholar] [CrossRef] [PubMed]
- Mourtas, S.; Lazar, A.N.; Markoutsa, E.; Duyckaerts, C.; Antimisiaris, S.G. Multifunctional Nanoliposomes with Curcumin–lipid Derivative and Brain Targeting Functionality with Potential Applications for Alzheimer Disease. Eur. J. Med. Chem. 2014, 80, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Haasbroek-Pheiffer, A.; Van Niekerk, S.; Van der Kooy, F.; Cloete, T.; Steenekamp, J.; Hamman, J. In Vitro and Ex Vivo Experimental Models for Evaluation of Intranasal Systemic Drug Delivery as Well as Direct Nose-to-brain Drug Delivery. Biopharm. Drug Dispos. 2023, 44, 94–112. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, I.; Ahmed, R. Fabrication and In Vitro Characterization of Carrageenan-Based Hydrogel for Drug Delivery Application. J. Appl. Pharm. 2021, 13, 1–6. [Google Scholar]
- Martins, S.; Tho, I.; Reimold, I.; Fricker, G.; Souto, E.; Ferreira, D.; Brandl, M. Brain Delivery of Camptothecin by Means of Solid Lipid Nanoparticles: Formulation Design, In Vitro and In Vivo Studies. Int. J. Pharm. 2012, 439, 49–62. [Google Scholar] [CrossRef] [PubMed]
- Pillai, J.J.; Thulasidasan, A.K.T.; Anto, R.J.; Chithralekha, D.N.; Narayanan, A.; Kumar, G.S. Folic Acid Conjugated Cross-Linked Acrylic Polymer (FA-CLAP) Hydrogel for Site Specific Delivery of Hydrophobic Drugs to Cancer Cells. J. Nanobiotechnol. 2014, 12, 25. [Google Scholar] [CrossRef] [PubMed]
- Aday, S.; Li, W.; Karp, J.M.; Joshi, N. An In Vitro Blood-Brain Barrier Model to Study the Penetration of Nanoparticles. BIO-PROTOCOL 2022, 12, e4334. [Google Scholar] [CrossRef]
- Petrovskaya, A.V.; Barykin, E.P.; Tverskoi, A.M.; Varshavskaya, K.B.; Mitkevich, V.A.; Petrushanko, I.Y.; Makarov, A.A. Blood–Brain Barrier Transwell Modeling. Mol. Biol. 2022, 56, 1020–1027. [Google Scholar] [CrossRef]
- Qosa, H.; Mohamed, L.A.; Al Rihani, S.B.; Batarseh, Y.S.; Duong, Q.-V.; Keller, J.N.; Kaddoumi, A. High-Throughput Screening for Identification of Blood-Brain Barrier Integrity Enhancers: A Drug Repurposing Opportunity to Rectify Vascular Amyloid Toxicity. J. Alzheimer’s Dis. 2016, 53, 1499–1516. [Google Scholar] [CrossRef]
- Patel, M.M.; Patel, B.M. Crossing the Blood–Brain Barrier: Recent Advances in Drug Delivery to the Brain. CNS Drugs 2017, 31, 109–133. [Google Scholar] [CrossRef] [PubMed]
- Hassanzadeh, G.; Fallahi, Z.; Khanmohammadi, M.; Elmizadeh, H.; Sharifzadeh, M.; Nouri, K.; Heydarian, Z.; Mahakizadeh, S.; Zendedel, A.; Beyer, C.; et al. Effect of Magnetic Tacrine-Loaded Chitosan Nanoparticles on Spatial Learning, Memory, Amyloid Precursor Protein and Seladin-1 Expression in the Hippocampus of Streptozotocin-Exposed Rats. Int. Clin. Neurosci. J. 2016, 3, 26–31. [Google Scholar]
- Ag Seleci, D.; Seleci, M.; Walter, J.-G.; Stahl, F.; Scheper, T. Niosomes as Nanoparticular Drug Carriers: Fundamentals and Recent Applications. J. Nanomater. 2016, 2016, 1–13. [Google Scholar] [CrossRef]
- Kakkar, V.; Singh, S.; Singla, D.; Kaur, I.P. Exploring Solid Lipid Nanoparticles to Enhance the Oral Bioavailability of Curcumin. Mol. Nutr. Food Res. 2011, 55, 495–503. [Google Scholar] [CrossRef] [PubMed]
Formulations | Surfactant | Drug | Lipid–Drug Molar Ratio | Drug Concentration (mg/mL) | Surfactant: Cholesterol Molar Ratio |
---|---|---|---|---|---|
N1 | Span60 | MP1 | 2 | 1 | 2:1 |
N2 | Span60 | MP2 | 2 | 1 | 2:1 |
N3 | Span60 | MP3 | 2 | 1 | 2:1 |
N4 | Span60 | MP4 | 2 | 1 | 2:1 |
N5 | Span60 | - | - | - | 2:1 |
Treatments | Nuclear Abnormalities (NA) | |||
---|---|---|---|---|
Isolates | Total MN | Total Lobbed | Total Notched | Mean NA/1000 Cells ± SD |
(−) Ctrl | 4 | 3 | 5 | 0.012 ± 0.002 a |
MP1 | 5 | 3 | 5 | 0.013 ± 0.001 a |
MP2 | 4 | 5 | 3 | 0.012 ± 0.002 a |
MP3 | 3 | 5 | 3 | 0.011 ± 0.001 a |
MP4 | 5 | 4 | 4 | 0.013 ± 0.003 a |
Group | ZP (mV) | d.nm | PDI | Drug Loading (%) |
---|---|---|---|---|
N1 | −20.8 | 300 | 0.8 | 89 |
N2 | −19.7 | 192 | 0.9 | 53 |
N3 | −22.6 | 181 | 0.345 | 91 |
N4 | −21.5 | 302 | 0.882 | 87 |
N5 | −14.4 | 170 | 0.302 | - |
Cell Population (%) | ||||
---|---|---|---|---|
Group | G1 Phase | G2 Phase | S Phase | G2/G1 |
(−) Control | 44.32 ± 1.42 | 12.64 ± 0.65 | 40.82 ± 3.12 | 2.22 ± 0.08 |
RA Treated | 72.45 ± 3.78 * | 5.34 ± 0.17 * | 18.65 ± 3.23 * | 3.56 ± 0.17 |
Compounds (MP) | IC50 (µg/mL) |
---|---|
MP1 | 5618.61 |
MP2 | 456.79 |
MP3 | 576.40 |
MP4 | 658.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turkez, H.; Oner, S.; Yıldırım, O.C.; Arslan, M.E.; Dimmito, M.P.; Kahraman, Ç.Y.; Marinelli, L.; Sonmez, E.; Kiki, Ö.; Tatar, A.; et al. Synthesis and Characterization of Memantine-Loaded Niosomes for Enhanced Alzheimer’s Disease Targeting. Pharmaceutics 2025, 17, 267. https://doi.org/10.3390/pharmaceutics17020267
Turkez H, Oner S, Yıldırım OC, Arslan ME, Dimmito MP, Kahraman ÇY, Marinelli L, Sonmez E, Kiki Ö, Tatar A, et al. Synthesis and Characterization of Memantine-Loaded Niosomes for Enhanced Alzheimer’s Disease Targeting. Pharmaceutics. 2025; 17(2):267. https://doi.org/10.3390/pharmaceutics17020267
Chicago/Turabian StyleTurkez, Hasan, Sena Oner, Ozge Caglar Yıldırım, Mehmet Enes Arslan, Marilisa Pia Dimmito, Çigdem Yuce Kahraman, Lisa Marinelli, Erdal Sonmez, Özlem Kiki, Abdulgani Tatar, and et al. 2025. "Synthesis and Characterization of Memantine-Loaded Niosomes for Enhanced Alzheimer’s Disease Targeting" Pharmaceutics 17, no. 2: 267. https://doi.org/10.3390/pharmaceutics17020267
APA StyleTurkez, H., Oner, S., Yıldırım, O. C., Arslan, M. E., Dimmito, M. P., Kahraman, Ç. Y., Marinelli, L., Sonmez, E., Kiki, Ö., Tatar, A., Cacciatore, I., Di Stefano, A., & Mardinoglu, A. (2025). Synthesis and Characterization of Memantine-Loaded Niosomes for Enhanced Alzheimer’s Disease Targeting. Pharmaceutics, 17(2), 267. https://doi.org/10.3390/pharmaceutics17020267