Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (88)

Search Parameters:
Keywords = melt impregnation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 25056 KiB  
Article
Mineral Chemistry and Whole-Rock Analysis of Magnesian and Ferroan Granitic Suites of Magal Gebreel, South Eastern Desert: Clues for Neoproterozoic Syn- and Post-Collisional Felsic Magmatism
by El Saeed R. Lasheen, Gehad M. Saleh, Amira El-Tohamy, Farrage M. Khaleal, Mabrouk Sami, Ioan V. Sanislav and Fathy Abdalla
Minerals 2025, 15(7), 751; https://doi.org/10.3390/min15070751 - 17 Jul 2025
Viewed by 391
Abstract
The article provides a comprehensive analysis of the Magal Gebreel granitic suites (MGGs) using petrological (fieldwork, petrography, mineral chemistry, and bulk rock analysis) aspects to infer their petrogenesis and emplacement setting. Our understanding of the development of the northern portion of the Arabian [...] Read more.
The article provides a comprehensive analysis of the Magal Gebreel granitic suites (MGGs) using petrological (fieldwork, petrography, mineral chemistry, and bulk rock analysis) aspects to infer their petrogenesis and emplacement setting. Our understanding of the development of the northern portion of the Arabian Nubian Shield is significantly improved by the Neoproterozoic granitic rocks of the seldom studied MGGs in Egypt’s south Eastern Desert. According to detailed field, mineralogical, and geochemical assessments, they comprise syn-collision (granodiorites) and post-collision (monzogranites, syenogranites, and alkali feldspar rocks). Granodiorite has strong positive Pb, notable negative P, Ti, and Nb anomalies, and is magnesian in composition. They have high content of LREEs (light rare-earth elements) compared to HREEs (heavy rare-earth elements) and clear elevation of LFSEs (low-field strength elements; K Rb, and Ba) compared to HFSEs (high-field strength elements; Zr and Nb), which are in accord with the contents of I-type granites from the Eastern Desert. In this context, the granodiorites are indicative of an early magmatic phase that probably resulted from the partial melting of high K-mafic sources in the subduction zone. Conversely, the post-collision rocks have low contents of Mg#, CaO, P2O5, MgO, Fe2O3, Sr, and Ti, and high SiO2, Fe2O3/MgO, Nb, Ce, and Ga/Al, suggesting A-type features with ferroan affinity. Their P, Nb, Sr, Ba, and Ti negative anomalies are in accord with the findings for Eastern Desert granites of the A2-type. Furthermore, they exhibit a prominent negative anomaly in Eu and a small elevation of LREEs in relation to HREEs. The oxygen fugacity (fO2) for the rocks under investigation can be calculated using the biotite chemistry. The narrow Fe/(Fe + Mg) ratio range (0.6–0.75) indicates that they crystallized under moderately oxidizing conditions between ~QFM +0.1 and QFM +1. The A-type rocks were formed by the partial melting of a tonalite source (underplating rocks) in a post-collisional environment during the late period of extension via slab delamination. The lithosphere became somewhat impregnated with particular elements as a result of the interaction between the deeper crust and the upwelling mantle. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

19 pages, 9914 KiB  
Article
Lithium Orthosilicate Solid Porous Membranes for CO2 Capture Obtained from Silica Microfibers
by Joaquín Penide, Efstratios Stavrakakis, Félix Quintero, Danai Poulidi, Antonio Riveiro, Jesús del Val, Rafael Comesaña, Fernando Lusquiños and Juan Pou
Fibers 2025, 13(5), 59; https://doi.org/10.3390/fib13050059 - 7 May 2025
Viewed by 900
Abstract
Lithium orthosilicate (Li4SiO4) has demonstrated a high CO2 adsorption rate and capacity and its suitability to be implemented in industry as CO2 capture technology at high temperatures. The optimum solid adsorbent should present a porous structure to [...] Read more.
Lithium orthosilicate (Li4SiO4) has demonstrated a high CO2 adsorption rate and capacity and its suitability to be implemented in industry as CO2 capture technology at high temperatures. The optimum solid adsorbent should present a porous structure to maximize surface and enable a high sorption rate. In this work, we present an original approach based on the use of a novel architecture of precursors in the form of very thin free-standing solid silica fibers. An original technique called continuous fiberizing by laser melting (Cobiflas) was used to obtain membranes of pure silica fibers with diameters in the micrometer range, forming a porous membrane which offer a high surface and porous connectivity to be used as precursors without any supporting substrate. Then, we employed a method based on the impregnation of the silica fibers within a lithium-containing aqueous solution and subsequent calcination to obtain a porous solid adsorbent with the maximum proportion of lithium orthosilicate. This method is compared with the results obtained using a sol-gel powder method by analyzing their composition using X-Ray Diffraction (XRD), and their adsorption capacity and adsorption kinetics by Thermogravimetric analyses (TGA). As a result, an outstanding type of solid adsorbent is reported with a 31% adsorption capacity and a total regeneration capacity, which is over 0.8 efficiency with regard to the theoretical maximum adsorption of this material. Full article
Show Figures

Figure 1

20 pages, 7245 KiB  
Article
Development of Poplar Wood/Bio-Based Composite Phase-Change Material as Novel Ecofriendly Thermo-Regulative Material
by Ahmet Can, Osman Gencel, Ahmet Sarı, Gökhan Hekimoğlu, Abid Ustaoğlu, Ali Temiz, Ertuğrul Erdoğmuş and Özge Nur Erdeyer
Forests 2025, 16(5), 763; https://doi.org/10.3390/f16050763 - 30 Apr 2025
Cited by 2 | Viewed by 479
Abstract
This study examined the enhancement of thermal properties in wood through impregnation with tallow (TW) and myristic acid (MA) to create a bio-based phase-change material (BPCM) suitable for energy-storing interior building materials. Poplar sapwood was impregnated with TW/MA mixtures in ratios of 30:70, [...] Read more.
This study examined the enhancement of thermal properties in wood through impregnation with tallow (TW) and myristic acid (MA) to create a bio-based phase-change material (BPCM) suitable for energy-storing interior building materials. Poplar sapwood was impregnated with TW/MA mixtures in ratios of 30:70, 50:50, and 70:30. Leakage tests revealed a maximum leakage of 2.8% for the 30:70 ratio at 70 °C for 20 min. The weight percentage gain (WPG) reached 112.0%. Fourier transform infrared spectroscopy (FTIR) confirmed the physical combination of the TW/MA mixture and poplar wood. The mixture exhibited a phase-change temperature of 50.5 °C and latent heat of 172 J/g. The differential scanning calorimetry (DSC) results showed a latent heat capacity of 73.6 J/g and a melting temperature of 45.9 °C for the ratio of 50:50. Thermoregulation tests demonstrated an indoor temperature that was sustained within tolerable ranges and reduced room temperature fluctuation. Thermal conductivity decreased by 41.4% in tallow impregnated samples but increased by 10% in the TW/MA mixture. Wood samples impregnated with phase-change materials exhibited 90.71% fungal resistance. Overall, BPCMW showed promise for the practical storage and release of solar thermal energy, with tallow-impregnated wood (TW-W) displaying a superior performance, offering significant benefits in reducing building heating and cooling loads. Full article
Show Figures

Figure 1

19 pages, 8929 KiB  
Article
Shape-Stabilized Phase Change Materials with Expanded Graphite for Thermal Management of Photovoltaic Cells: Selection of Materials and Preparation of Panels
by Sereno Sacchet, Francesco Valentini, Marco Guidolin, Riccardo Po and Luca Fambri
Appl. Sci. 2025, 15(8), 4352; https://doi.org/10.3390/app15084352 - 15 Apr 2025
Viewed by 962
Abstract
Organic phase change materials (PCMs) have been widely studied for thermal management applications, such as the passive cooling of silicon photovoltaic (PV) cells, whose efficiency is negatively affected by rising temperature. The aim of the present study is to investigate the shape stabilization [...] Read more.
Organic phase change materials (PCMs) have been widely studied for thermal management applications, such as the passive cooling of silicon photovoltaic (PV) cells, whose efficiency is negatively affected by rising temperature. The aim of the present study is to investigate the shape stabilization of PCMs by using expanded graphite (EG) as a highly conductive supporting matrix, leading to the development of novel PCM/EG composites with melting temperatures in the range 30–50 °C. Different organic PCMs were selected and compared, i.e., two paraffins and a eutectic mixture of fatty acids (myristic and palmitic acid). The EG was vacuum-impregnated with organic PCMs, and, subsequently, powdery composites were cold-compacted to obtain dense heat-absorbing panels. The thermal conductivity was enhanced up to 6 W/m·K, guaranteeing composites with a melting enthalpy of 160 to 220 J/g. This study found that the EG vacuum impregnation method is suitable for PCM shape stabilization, and cold compaction allows for the formation of solid panels with improved thermal response. The obtained PCM/EG composites were utilized to produce panels of about 6 × 6 × 2 cm3, suitable for the thermal management of silicon PV. Full article
Show Figures

Figure 1

21 pages, 21473 KiB  
Article
The Method for Fabricating Proppant and Cenosphere Sand-Based Casting Molds Involving the Use of Binder Jetting 3D Printing with Furan Binder and Impregnation with Colloidal Silica Binder
by Viacheslav E. Bazhenov, Ksenia A. Deputatova, Andrey A. Rizhsky, Yuri V. Tselovalnik, Andrey I. Bazlov, Stanislav V. Chernyshikhin, Andrey V. Koltygin, Alexey S. Anishchenko, Vladimir D. Belov and Evgenii Yu. Shchedrin
J. Manuf. Mater. Process. 2025, 9(3), 96; https://doi.org/10.3390/jmmp9030096 - 15 Mar 2025
Viewed by 967
Abstract
Binder jetting is the most widely implemented additive technology for the fabrication of sand molds. However, the use of furan binder-jetting technology in the production of molds for vacuum casting is hindered by the thermal destruction of the furan binder accompanied by violent [...] Read more.
Binder jetting is the most widely implemented additive technology for the fabrication of sand molds. However, the use of furan binder-jetting technology in the production of molds for vacuum casting is hindered by the thermal destruction of the furan binder accompanied by violent gas emission that occurs during the mold heating process. This investigation explores the potential of using the molds obtained via furan binder jetting 3D printing and further impregnation in colloidal silica binder and sintering. Two distinct sands, proppant and cenosphere, were utilized in the fabrication of the mold components exhibiting different thermal properties. An examination of the structure of the initial sands and samples produced via different impregnation and sintering regimes was conducted via scanning electron microscopy with energy dispersive X-ray spectroscopy, X-ray diffractometry, thermogravimetric analysis, and micro computed tomography. Furthermore, the bending mechanical properties and linear shrinkage of the samples were determined. The experimental findings demonstrated that the specific impregnation and sintering regimes examined in this study yielded sufficient mechanical properties for the casting molds and the structure with cristobalite bridges. The mold assembly, composed of proppant and cenosphere sands-based parts, was produced, and impeller nickel-based superalloy castings were fabricated. The findings of this study demonstrate that the utilization of a furan binder-jetting technique, in conjunction with impregnation in colloidal silica binder, is a promising technology for the manufacture of high-melting-temperature alloy casting. Full article
Show Figures

Figure 1

14 pages, 3994 KiB  
Article
Impregnation of Se2S6 into a Nitrogen- and Sulfur-Co-Doped Functional Metal Carbides and Nitrides for High-Performance Li-S Batteries
by Lu Chen, Zhongyuan Zheng, Shuo Meng, Wenwei Wu, Weicheng Zhou, Shanshan Yang, Kexuan Liao, Yuanhui Zuo and Ting He
Molecules 2025, 30(5), 1070; https://doi.org/10.3390/molecules30051070 - 26 Feb 2025
Viewed by 524
Abstract
In this study, nitrogen- and sulfur-co-doped MXene (NS-MXene) was developed as a high-performance cathode material for lithium–sulfur (Li-S) batteries. Heterocyclic Se2S6 molecules were successfully confined within the NS-MXene structure using a simple melt impregnation method. The resulting NS-MXene exhibited a [...] Read more.
In this study, nitrogen- and sulfur-co-doped MXene (NS-MXene) was developed as a high-performance cathode material for lithium–sulfur (Li-S) batteries. Heterocyclic Se2S6 molecules were successfully confined within the NS-MXene structure using a simple melt impregnation method. The resulting NS-MXene exhibited a unique wrinkled morphology with a stable structure which facilitated rapid ion transport and provided a physical barrier to mitigate the shuttle effect of polysulfide. The introduction of nitrogen and sulfur heteroatoms into the MXene structure not only shifted the Ti d-band center towards the Fermi level but also significantly polarizes the MXene, enhancing the conversion kinetics and ion diffusion capability while preventing the accumulation of Li2S6. Additionally, the incorporation of Se and S in Se2S6 improved the conductivity compared to S alone, resulting in reduced polarization and enhanced electrical properties. Consequently, NS-MXene/Se2S6 exhibited excellent cycling stability, high reversible capacity, and reliable performance at high current densities and under extreme conditions, such as high sulfur loading and low electrolyte-to-sulfur ratios. This work presents a simple and effective strategy for designing heteroatom-doped MXene materials, offering promising potential for the development of high-performance, long-lasting Li-S batteries for practical applications. Full article
Show Figures

Figure 1

14 pages, 4861 KiB  
Article
Mechanical and Thermal Properties of 3D-Printed Continuous Bamboo Fiber-Reinforced PE Composites
by Haiyu Qiao, Qian Li, Yani Chen, Yayun Liu, Ning Jiang and Chuanyang Wang
Materials 2025, 18(3), 593; https://doi.org/10.3390/ma18030593 - 28 Jan 2025
Cited by 2 | Viewed by 1122
Abstract
Continuous fibers with outstanding mechanical performance due to the continuous enhancement effect, show wide application in aerospace, automobile, and construction. There has been great success in developing continuous synthetic fiber-reinforced composites, such as carbon fibers or glass fibers; however, most of which are [...] Read more.
Continuous fibers with outstanding mechanical performance due to the continuous enhancement effect, show wide application in aerospace, automobile, and construction. There has been great success in developing continuous synthetic fiber-reinforced composites, such as carbon fibers or glass fibers; however, most of which are nonrenewable, have a high processing cost, and energy consumption. Bio-sourced materials with high reinforced effects are attractive alternatives to achieve a low-carbon footprint. In this study, continuous bamboo fiber-reinforced polyethylene (CBF/PE) composites were prepared via a facile two-step method featuring alkali treatment followed by 3D printing. Alkali treatment as a key processing step increases surface area and surface wetting, which promote the formation of mechanical riveting among bamboo fibers and matrix. The obtained treated CBF (T-CBF) also shows improved mechanical properties, which enables a superior reinforcement effect. 3D printing, as a fast and local heating method, could melt the outer layer PE tube and impregnate molten plastics into fibers under pressure and heating. The resulting T-CBF/PE composite fibers can achieve a tensile strength of up to 15.6 MPa, while the matrix PE itself has a tensile strength of around 7.7 MPa. Additionally, the fracture morphology of printed bulks from composite fibers shows the alkali-treated fibers–PE interface is denser and could transfer more load. The printed bulks using T-CBF/PE shows increased tensile strength and Young’s modulus, with 77%- and 1.76-times improvement compared to pure PE. Finally, the effect of printing paraments on mechanical properties were analyzed. Therefore, this research presents a potential avenue for fabricating continuous natural fiber-reinforced composites. Full article
Show Figures

Figure 1

22 pages, 6292 KiB  
Review
Review of Bioinspired Composites for Thermal Energy Storage: Preparation, Microstructures and Properties
by Min Yu, Mengyuan Wang, Changhao Xu, Wei Zhong, Haoqi Wu, Peng Lei, Zeya Huang, Renli Fu, Francesco Gucci and Dou Zhang
J. Compos. Sci. 2025, 9(1), 41; https://doi.org/10.3390/jcs9010041 - 15 Jan 2025
Cited by 1 | Viewed by 1491
Abstract
Bioinspired composites for thermal energy storage have gained much attention all over the world. Bioinspired structures have several advantages as the skeleton for preparing thermal energy storage materials, including preventing leakage and improving thermal conductivity. Phase change materials (PCMs) play an important role [...] Read more.
Bioinspired composites for thermal energy storage have gained much attention all over the world. Bioinspired structures have several advantages as the skeleton for preparing thermal energy storage materials, including preventing leakage and improving thermal conductivity. Phase change materials (PCMs) play an important role in the development of energy storage materials because of their stable chemical/thermal properties and high latent heat storage capacity. However, their applications have been compromised, owing to low thermal conductivity and leakage. The plant-derived scaffolds (i.e., wood-derived SiC/Carbon) in the composites can not only provide higher thermal conductivity but also prevent leakage. In this paper, we review recent progress in the preparation, microstructures, properties and applications of bioinspired composites for thermal energy storage. Two methods are generally used for producing bioinspired composites, including the direct introduction of biomass-derived templates and the imitation of biological structures templates. Some of the key technologies for introducing PCMs into templates involves melting, vacuum impregnation, physical mixing, etc. Continuous and orderly channels inside the skeleton can improve the overall thermal conductivity, and the thermal conductivity of composites with biomass-derived, porous, silicon carbide skeleton can reach as high as 116 W/m*K. In addition, the tightly aligned microporous structure can cover the PCM well, resulting in good leakage resistance after up to 2500 hot and cold cycles. Currently, bioinspired composites for thermal energy storage hold the greatest promise for large-scale applications in the fields of building energy conservation and solar energy conversion/storage. This review provides guidance on the preparation methods, performance improvements and applications for the future research strategies of bioinspired composites for thermal energy storage. Full article
(This article belongs to the Section Composites Manufacturing and Processing)
Show Figures

Figure 1

13 pages, 3498 KiB  
Article
Effects of Preformed Composition and Pore Size on Microstructure and Properties of SiCf/SiC Composites via Reactive Melt Infiltration
by Haifeng Nie, Pingzhan Si, Quanxing Ren, Ziqiang Yin, Tihao Cao, Zhengren Huang, Qing Huang and Yinsheng Li
Materials 2024, 17(23), 5765; https://doi.org/10.3390/ma17235765 - 25 Nov 2024
Cited by 2 | Viewed by 1060
Abstract
This study investigated the influence of preformed composition and pore size on the microstructure and properties of SiCf/SiC composites fabricated via reactive melt infiltration (RMI). The process began with the impregnation of SiC fiber cloth with phenolic resin, followed by lamination [...] Read more.
This study investigated the influence of preformed composition and pore size on the microstructure and properties of SiCf/SiC composites fabricated via reactive melt infiltration (RMI). The process began with the impregnation of SiC fiber cloth with phenolic resin, followed by lamination and pyrolysis. Subsequent steps included further impregnations with phenolic resin, SiC slurry, and carbon black slurry, each followed by additional pyrolysis. This process resulted in three types of preforms, designated as PP, PS, and PC. These preforms exhibited a multimodal distribution of pore size, with peak pore diameters around 5 μm for PP, ranging from 200 nm to 4 μm for PS, and approximately 150 nm for PC. The preforms were then subjected to molten silicon infiltration at 1600 °C under vacuum for 1 h to create SiCf/SiC composites. The PP preform contained only pyrolytic carbon, leading to a composite with high closed porosity and unreacted carbon, resulting in poor mechanical properties. The PS preform, which was impregnated with SiC particles, displayed an optimized pore size distribution but retained significant amounts of residual silicon and carbon in the final composite. In contrast, the PC preform featured both an ideal pore size distribution and an adequate amount of carbon, achieving high density and low porosity with reduced residual phases in the final composite. This optimization led to a flexural strength of 152.4 ± 15.4 MPa, an elastic modulus of about 181.1 ± 0.1 GPa, and a thermal conductivity of 27.7 W/mK in the SiCf/SiC composites product. These findings underscore the importance of preform optimization in enhancing the performance of SiCf/SiC composites, potentially paving the way for more reliable nuclear fuel cladding solutions. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

18 pages, 7896 KiB  
Article
Form-Stable Phase-Change Materials Using Chemical Vapor Deposition-Derived Porous Supports: Carbon Nanotube/Diatomite Hybrid Powder and Carbon Nanotube Sponges
by Francesca Romana Lamastra, Mario Bragaglia, Lorenzo Paleari, Francesca Nanni, Francesco Fabborcino and Manuela Scarselli
Materials 2024, 17(23), 5721; https://doi.org/10.3390/ma17235721 - 22 Nov 2024
Cited by 2 | Viewed by 716
Abstract
In this work, two types of chemical vapor deposition (CVD)-derived porous supporting materials consisting of CNTs–decorated diatomite (CNT/DE) and CNT sponges (CNS) were developed to prepare novel form-stable phase-change material (PCM) composites by impregnation, using polyethylene glycol (PEG) as the PCM. The CNT/DE [...] Read more.
In this work, two types of chemical vapor deposition (CVD)-derived porous supporting materials consisting of CNTs–decorated diatomite (CNT/DE) and CNT sponges (CNS) were developed to prepare novel form-stable phase-change material (PCM) composites by impregnation, using polyethylene glycol (PEG) as the PCM. The CNT/DE support matrix showed highly entangled nanotubes (the weight ratio of CNTs to DE was 0.16) over and inside the porous structure of diatomite, giving the hybrid matrix an electrical response. The CNS that resulted was mainly composed of bent and interconnected CNTs forming a three-dimensional highly porous structure. XPS and FTIR results revealed that CNTs in both the supporting materials have a moderate amount of oxygen-containing functional groups. Both hosts allow for high PEG loading (about 75 wt%) without showing any PCM leakage during melting. Both form-stable PCM composites showed high thermal reliability upon a hundred melting–solidification DSC cycles (PEG/CNT/DE latent heat is 86 ± 4 J/g and PEG/CNS latent heat is 100 ± 2 J/g; melting temperature 34 °C). An analytical model was used to evaluate the passive cooling performance of the systems, simulating the thermal behaviour of a building wall containing the confined PCM in the hosts, resulting in a reduction in required cooling power of about 10%. The overall results suggest that the developed form-stable PCM composites could be considered promising additive materials for the production of building envelopes with thermal energy storage capability. Full article
Show Figures

Figure 1

13 pages, 6743 KiB  
Systematic Review
Advances in Loading Techniques and Quality by Design for Fused Deposition Modeling in Pharmaceutical Production: A Systematic Review
by Yusra Ahmed, Azza A. K. Mahmoud, Krisztina Ludasi and Tamás Sovány
Pharmaceuticals 2024, 17(11), 1496; https://doi.org/10.3390/ph17111496 - 7 Nov 2024
Cited by 3 | Viewed by 1464
Abstract
Background/Objectives: Three-dimensional printing technology has emerging interest in pharmaceutical manufacturing, offering new opportunities for personalized medicine and customized drug delivery systems. Fused deposition modeling (FDM) is highly regarded in the pharmaceutical industry because of its cost effectiveness, easy operation, and versatility in creating [...] Read more.
Background/Objectives: Three-dimensional printing technology has emerging interest in pharmaceutical manufacturing, offering new opportunities for personalized medicine and customized drug delivery systems. Fused deposition modeling (FDM) is highly regarded in the pharmaceutical industry because of its cost effectiveness, easy operation, and versatility in creating pharmaceutical dosage forms. This review investigates different methods of incorporating active pharmaceutical ingredients (APIs) into filament matrices for use in fused deposition modeling (FDM) 3D printing. Methods: Two electronic databases, the Web of Science and PubMed, were utilized to survey the literature. The selected keywords for this review were as follows: fused filament fabrication OR fused deposition modeling OR FDM OR FFF AND 3D printing AND loading techniques OR impregnation techniques AND solid dosage form. Results: This paper evaluates various loading techniques such as soaking, supercritical impregnation, microwave impregnation, and hot-melt extrusion, focusing on their effectiveness and capacity for drug incorporation. Additionally, this review includes a thorough risk assessment of the extrusion process using Ishikawa and SWOT analyses. Conclusions: Overall, this review provides comprehensive insights into the latest advancements in 3D printing for pharmaceutical applications and identifies key areas for future research and development. Full article
(This article belongs to the Special Issue Application of 3D Printing Technologies for Drug Delivery)
Show Figures

Figure 1

28 pages, 21028 KiB  
Article
Assessing Intra-Bundle Impregnation in Partially Impregnated Glass Fiber-Reinforced Polypropylene Composites Using a 2D Extended-Field and Multimodal Imaging Approach
by Sujith Sidlipura, Abderrahmane Ayadi and Mylène Lagardère Deléglise
Polymers 2024, 16(15), 2171; https://doi.org/10.3390/polym16152171 - 30 Jul 2024
Viewed by 1490
Abstract
This study evaluates multimodal imaging for characterizing microstructures in partially impregnated thermoplastic matrix composites made of woven glass fiber and polypropylene. The research quantifies the impregnation degree of fiber bundles within composite plates manufactured through a simplified compression resin transfer molding process. For [...] Read more.
This study evaluates multimodal imaging for characterizing microstructures in partially impregnated thermoplastic matrix composites made of woven glass fiber and polypropylene. The research quantifies the impregnation degree of fiber bundles within composite plates manufactured through a simplified compression resin transfer molding process. For comparison, a reference plate was produced using compression molding of film stacks. An original surface polishing procedure was introduced to minimize surface defects while polishing partially impregnated samples. Extended-field 2D imaging techniques, including polarized light, fluorescence, and scanning electron microscopies, were used to generate images of the same microstructure at fiber-scale resolutions throughout the plate. Post-processing workflows at the macro-scale involved stitching, rigid registration, and pixel classification of FM and SEM images. Meso-scale workflows focused on 0°-oriented fiber bundles extracted from extended-field images to conduct quantitative analyses of glass fiber and porosity area fractions. A one-way ANOVA analysis confirmed the reliability of the statistical data within the 95% confidence interval. Porosity quantification based on the conducted multimodal approach indicated the sensitivity of the impregnation degree according to the layer distance from the pool of melted polypropylene in the context of simplified-CRTM. The findings underscore the potential of multimodal imaging for quantitative analysis in composite material production. Full article
Show Figures

Figure 1

11 pages, 2022 KiB  
Article
Molten Bismuth–Bismuth/Zinc Oxide Composites for High-Temperature Thermal Energy Storage
by Cristina Maria Vladut, Daniel Lincu, Daniela Berger, Cristian Matei and Raul-Augustin Mitran
Inorganics 2024, 12(5), 126; https://doi.org/10.3390/inorganics12050126 - 23 Apr 2024
Cited by 2 | Viewed by 2317
Abstract
Thermal energy storage is at the leading edge of various applications, including waste heat recovery, solar storage and zero-energy buildings. Phase change materials (PCMs) can be utilized to store heat through reversible solid–liquid phase transitions. PCMs provide high energy storage capacity at a [...] Read more.
Thermal energy storage is at the leading edge of various applications, including waste heat recovery, solar storage and zero-energy buildings. Phase change materials (PCMs) can be utilized to store heat through reversible solid–liquid phase transitions. PCMs provide high energy storage capacity at a constant temperature. The volume change during the phase transition, on the other hand, causes inconsistency in crystallization and leakage, increasing the system’s complexity and shortening the lifetime of these materials. These shortcomings can be diminished by impregnation in a porous matrix or encapsulation with an inert shell, resulting in shape-stabilized PCMs that maintain their macroscopic shape during phase change. The synthesis and properties of Bi/ZnO nanocomposites were investigated in order to obtain shape-stabilized phase change materials. All samples consisted of metallic Bi and oxide, doped with 1–3% at. zinc. Heat storage capacities between 31 and 49 Jg−1 were obtained, depending on the mass fraction of the metal. All samples had good thermal reliability, retaining their heat storage properties after 50 consecutive heating–cooling cycles. An average oxide layer thickness of 75–100 nm is sufficient to prevent the molten metal leakage at temperatures above its melting point, resulting in shape-stabilized PCMs. Full article
(This article belongs to the Special Issue Novel Functional Ceramics)
Show Figures

Figure 1

15 pages, 11314 KiB  
Article
The Impact of PP-g-MAH on Mechanical Properties of Injection Molding of Long Glass Fiber/Polypropylene Pellets from Thermoplastic Pultrusion Process
by Ponlapath Tipboonsri and Anin Memon
J. Manuf. Mater. Process. 2024, 8(2), 53; https://doi.org/10.3390/jmmp8020053 - 2 Mar 2024
Cited by 1 | Viewed by 3530
Abstract
Long fiber thermoplastic pellets are pellets containing discontinuous reinforced fibers and a matrix, offering excellent mechanical properties, good processability, recyclability, and low cost. Typically, commercial LFTP is manufactured through the hot melt impregnation process, combining extrusion and pultrusion. Although there is a thermoplastic [...] Read more.
Long fiber thermoplastic pellets are pellets containing discontinuous reinforced fibers and a matrix, offering excellent mechanical properties, good processability, recyclability, and low cost. Typically, commercial LFTP is manufactured through the hot melt impregnation process, combining extrusion and pultrusion. Although there is a thermoplastic pultrusion process for LFTP production, characterized by a simple machine and an easy method, its mechanical properties have not yet approached those of commercial LFTP. In improving the mechanical characteristics of LFTP manufactured via thermoplastic pultrusion, this research employed polypropylene-graft-maleic anhydride as a coupling agent during the injection molding procedure. The LFTP is composed of polypropylene material reinforced with glass fiber. Mechanical and physical properties of the LFTP were investigated by introducing PP-g-MAH at concentrations of 4, 8, and 12 wt% through injection molding. The results revealed that, at a 4 wt% concentration of PP-g-MAH, the LFTP composites exhibited heightened tensile, flexural and impact strengths. However, these properties began to decrease upon exceeding 4 wt% PP-g-MAH. The enhanced interfacial adhesion among glass fibers, induced by PP-g-MAH, contributed to this improvement. Nonetheless, excessive amounts of PP-g-MAH led to a reduction in molecular weight, subsequently diminishing the impact strength, tensile modulus, and flexural modulus. In LFTP composites, both tensile and flexural strengths exhibited a positive correlation with the PP-g-MAH concentration, attributed to improved interfacial adhesion between glass fibers and polypropylene, coupled with a reduction in fiber pull-out. Based on morphological analysis by SEM, the incorporation of PP-g-MAH improved interfacial bonding and decreased fiber pull-out. The presence of maleic anhydride in the LFTPc was confirmed through the utilization of FTIR spectroscopy. Mechanical properties of LFTP containing 4 wt% PP-g-MAH were found to be equivalent to or superior to those of commercial LFTP, according to the results of a comparative analysis. Full article
(This article belongs to the Topic Advanced Composites Manufacturing and Plastics Processing)
Show Figures

Figure 1

14 pages, 6088 KiB  
Article
Glass-Containing Matrices Based on Borosilicate Glasses for the Immobilization of Radioactive Wastes
by Olga N. Koroleva, Lyubov A. Nevolina and Nadezhda M. Korobatova
J. Compos. Sci. 2023, 7(12), 505; https://doi.org/10.3390/jcs7120505 - 4 Dec 2023
Cited by 6 | Viewed by 2322
Abstract
Glass-containing materials are widely considered among the most reliable materials for the immobilization of radioactive waste materials. The present work considers the synthesis of glass–ceramic and glass crystalline composite materials based on borosilicate glasses. The synthesis of glass–ceramic materials was carried out by [...] Read more.
Glass-containing materials are widely considered among the most reliable materials for the immobilization of radioactive waste materials. The present work considers the synthesis of glass–ceramic and glass crystalline composite materials based on borosilicate glasses. The synthesis of glass–ceramic materials was carried out by a gradual temperature decrease, followed by crystallization for several hours. Sintering of crushed samples with crystalline components was carried out as an alternative procedure. Porous glasses were produced from glass melts by quenching. After impregnating the resulting porous materials with aqueous solutions of cesium nitrate, compaction of the glass was carried out to form glass crystalline composites. The thermochemical characteristics of the parent glasses were determined using the differential scanning calorimetry method. The phase composition and structure of the glass-containing materials were determined using X-ray phase analysis, X-ray spectral microanalysis, and Raman spectroscopy. Full article
Show Figures

Figure 1

Back to TopTop