Molten Bismuth–Bismuth/Zinc Oxide Composites for High-Temperature Thermal Energy Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Synthesis of Bi/ZnO Samples
2.3. Characterization
3. Results and Discussion
3.1. Physico–Chemical Characterization
3.2. Thermal Energy Storage Capacity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cekirge, H.M.; Erturan, S.E.; Thorsen, R.S. The CSP (Concentrated Solar Power) Plant with Brayton Cycle: A Third Generation CSP System. Am. J. Mod. Energy 2020, 6, 43–50. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, C.Y.; Markides, C.N.; Wang, H.; Li, W. Medium- and high-temperature latent and thermochemical heat storage using metals and metallic compounds as heat storage media: A technical review. Appl. Energy 2020, 280, 115950. [Google Scholar] [CrossRef]
- Mitran, R.-A.; Ioniţǎ, S.; Lincu, D.; Berger, D.; Matei, C. A Review of Composite Phase Change Materials Based on Porous Silica Nanomaterials for Latent Heat Storage Applications. Molecules 2021, 26, 241. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Xiao, X.; Ma, Z.W. A review of the composite phase change materials: Fabrication, characterization, mathematical modeling and application to performance enhancement. Appl. Energy 2016, 165, 472–510. [Google Scholar] [CrossRef]
- Geissbühler, L.; Kolman, M.; Zanganeh, G.; Haselbacher, A.; Steinfeld, A. Analysis of industrial-scale high-temperature combined sensible/latent thermal energy storage. Appl. Therm. Eng. 2016, 101, 657–668. [Google Scholar] [CrossRef]
- Aftab, W.; Huang, X.; Wu, W.; Liang, Z.; Mahmood, A.; Zou, R. Nanoconfined Phase Change Materials for Thermal Energy Applications. Energy Environ. Sci. 2018, 11, 1392–1424. [Google Scholar] [CrossRef]
- Hidaka, H.; Yamazaki, M.; Yabe, M.; Kakiuchi, H.; Ona, E.P.; Kojima, Y.; Matsuda, H. New PCMs prepared from erythritol-polyalcohols mixtures for latent heat storage between 80 and 100 C. J. Chem. Eng. Jpn. 2004, 37, 1155–1162. [Google Scholar] [CrossRef]
- Garay Ramirez, B.M.L.; Glorieux, C.; San Martin Martinez, E.; Flores Cuautle, J.J.A. Tuning of thermal properties of sodium acetate trihydrate by blending with polymer and silver nanoparticles. Appl. Therm. Eng. 2014, 62, 838–844. [Google Scholar] [CrossRef]
- Marske, F.; Martins de Souza e Silva, J.; Wehrspohn, R.B.; Hahn, T.; Enke, D. Synthesis of monolithic shape-stabilized phase change materials with high mechanical stability via a porogen-assisted in situ sol–gel process. RSC Adv. 2020, 10, 3072–3083. [Google Scholar] [CrossRef]
- Mitran, R.A.; Berger, D.; Matei, C. Phase Change Materials Based on Mesoporous Silica. Curr. Org. Chem. 2018, 22, 2644–2663. [Google Scholar] [CrossRef]
- Wang, Y.; Song, Y.; Li, S.; Zhang, T.; Zhang, D.; Guo, P. Thermophysical properties of three-dimensional palygorskite based composite phase change materials. Appl. Clay Sci. 2020, 184, 105367. [Google Scholar] [CrossRef]
- Chang, C.; Nie, X.; Li, X.; Tao, P.; Fu, B.; Wang, Z.; Xu, J.; Ye, Q.; Zhang, J.; Song, C.; et al. Bioinspired roll-to-roll solar-thermal energy harvesting within form-stable flexible composite phase change materials. J. Mater. Chem. A 2020, 8, 20970–20978. [Google Scholar] [CrossRef]
- Qi, H.; Zhang, T.; Zhang, D.; Wang, K.; Wang, Y. Paraffin/chitosan composite phase change materials fabricated by piercing-solidifying method for thermal energy storage. AIP Adv. 2020, 10, 035218. [Google Scholar] [CrossRef]
- Fukahori, R.; Nomura, T.; Zhu, C.; Sheng, N.; Okinaka, N.; Akiyama, T. Thermal analysis of Al–Si alloys as high-temperature phase-change material and their corrosion properties with ceramic materials. Appl. Energy 2016, 163, 1–8. [Google Scholar] [CrossRef]
- Zhang, F.; Zhong, Y.; Yang, X.; Lin, J.; Zhu, Z. Encapsulation of metal-based phase change materials using ceramic shells prepared by spouted bed CVD method. Sol. Energy Mater. Sol. Cells 2017, 170, 137–142. [Google Scholar] [CrossRef]
- Hsu, T.-H.; Chung, C.-H.; Chung, F.-J.; Chang, C.-C.; Lu, M.-C.; Chueh, Y.-L. Thermal hysteresis in phase-change materials: Encapsulated metal alloy core-shell microparticles. Nano Energy 2018, 51, 563–570. [Google Scholar] [CrossRef]
- Tran, N.; Zhao, W.; Carlson, F.; Davidson, J.H.; Stein, A. Metal Nanoparticle-Carbon Matrix Composites with Tunable Melting Temperature as Phase-Change Materials for Thermal Energy Storage. ACS Appl. Nano Mater. 2018, 1, 1894–1903. [Google Scholar] [CrossRef]
- Sun, J.; Simon, S.L. The melting behavior of aluminum nanoparticles. Thermochim. Acta 2007, 463, 32–40. [Google Scholar] [CrossRef]
- Lincu, D.; Ioniţă, S.; Trică, B.; Culita, D.C.; Matei, C.; Berger, D.; Mitran, R.-A. Bismuth-mesoporous silica-based phase change materials for thermal energy storage. Appl. Mater. Today 2022, 29, 101663. [Google Scholar] [CrossRef]
- Shin, S.J.; Guzman, J.; Yuan, C.W.; Liao, C.Y.; Boswell-Koller, C.N.; Stone, P.R.; Dubon, O.D.; Minor, A.M.; Watanabe, M.; Beeman, J.W.; et al. Embedded binary eutectic alloy nanostructures: A new class of phase change materials. Nano Lett. 2010, 10, 2794–2798. [Google Scholar] [CrossRef]
- Wei, H.; Qiu, C.; Wang, C.; Lin, K.; Yang, S.; Han, J.; Lu, Y.; Liu, X. Development of phase change materials using hydrolyzed Al-Bi composite powder for solar energy storage. Chem. Eng. J. 2021, 421, 127836. [Google Scholar] [CrossRef]
- Krüger, J.; Winkler, P.; Lüderitz, E.; Lück, M.; Wolf, H.U. Bismuth, Bismuth Alloys, and Bismuth Compounds. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley: Hoboken, NJ, USA, 2003. [Google Scholar] [CrossRef]
- Archer, D.G. Enthalpy of Fusion of Bismuth: A Certified Reference Material for Differential Scanning Calorimetry. J. Chem. Eng. Data 2004, 49, 1364–1367. [Google Scholar] [CrossRef]
- Bramfitt, B.L. A Study of the Supercooling Behavior of High Purity Liquid Bismuth. Ph.D. Thesis, University of Missouri at Rolla, Rolla, MO, USA, 1966. [Google Scholar]
- Liu, M.; Ma, Y.; Wu, H.; Wang, R.Y. Metal Matrix–Metal Nanoparticle Composites with Tunable Melting Temperature and High Thermal Conductivity for Phase-Change Thermal Storage. ACS Nano 2015, 9, 1341–1351. [Google Scholar] [CrossRef] [PubMed]
- Hugo, K.C. Confinement effects on freezing and melting. J. Phys. Condens. Matter 2001, 13, R95. [Google Scholar]
- Mitran, R.-A.; Lincu, D.; Berger, D.; Matei, C. FDU-12 cubic mesoporous silica as matrix for phase change materials using bismuth or stearic acid. J. Therm. Anal. Calorim. 2022, 147, 14097–14106. [Google Scholar] [CrossRef]
- Liu, M.; Wang, R.Y. Phase change nanocomposites with tunable melting temperature and thermal energy storage density. Nanoscale 2013, 5, 7234–7237. [Google Scholar] [CrossRef]
Sample | T (°C) | Initial Bi (%wt.) | % Zn (at.) | m.p. (°C) * | ΔH (Jg−1) * | f.p. (°C) | Sc (°C) | %Bi (wt.) | Crystallite Size (nm) ** |
---|---|---|---|---|---|---|---|---|---|
Bi/0.5ZnO (25 °C) | 25 | 72 | 1.0 | 270.2 ± 0.03 | 48.3 ± 0.50 | 226.5 | 43.7 | 90.0 | 40.4 ± 3.6 |
Bi/0.5ZnO (70 °C) | 70 | 72 | 1.6 | 270.4 ± 0.00 | 47.5 ± 0.13 | 228.2 | 42.2 | 88.0 | 38.6 ± 3.4 |
Bi/0.5ZnO (85 °C) | 85 | 72 | 2.9 | 269.6 ± 0.04 | 31.4 ± 0.11 | 223.1 | 46.5 | 58.2 | 38.9 ± 2.7 |
Bi/0.5ZnO (100 °C) | 100 | 72 | 1.6 | 269.4 ± 0.01 | 47.1 ± 0.02 | 236.3 | 33.1 | 87.1 | 41.9 ± 1.8 |
Bi/0.2ZnO (85 °C) | 85 | 91 | 1.5 | 269.9 ± 0.01 | 37.6 ± 0.18 | 229.2 | 40.8 | 69.7 | 37.9 ± 6.4 |
Bi(25 °C) | 25 | 100 | - | 271.4 ± 0.01 | 50.9 ± 0.01 | 227.4 | 44.0 | 94.1 | 37.4 ± 2.6 |
Sample | Bi (% wt.) | Bi2O3 (% wt.) | ZnO (% wt.) | d (μm) | t (nm) |
---|---|---|---|---|---|
Bi/0.5ZnO (25 °C) | 90.0 | 9.6 | 0.4 | 1.27 | 25 |
Bi/0.5ZnO (70 °C) | 88.0 | 11.4 | 0.6 | 1.50 | 37 |
Bi/0.5ZnO (85 °C) | 58.2 | 40.7 | 1.1 | 0.87 | 94 |
Bi/0.5ZnO (100 °C) | 87.1 | 12.3 | 0.6 | 0.79 | 21 |
Bi/0.2ZnO (85 °C) | 69.7 | 29.8 | 0.5 | 1.10 | 77 |
Bi(25 °C) | 94.1 | 5.9 | 0.0 | 16.5 | 186 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vladut, C.M.; Lincu, D.; Berger, D.; Matei, C.; Mitran, R.-A. Molten Bismuth–Bismuth/Zinc Oxide Composites for High-Temperature Thermal Energy Storage. Inorganics 2024, 12, 126. https://doi.org/10.3390/inorganics12050126
Vladut CM, Lincu D, Berger D, Matei C, Mitran R-A. Molten Bismuth–Bismuth/Zinc Oxide Composites for High-Temperature Thermal Energy Storage. Inorganics. 2024; 12(5):126. https://doi.org/10.3390/inorganics12050126
Chicago/Turabian StyleVladut, Cristina Maria, Daniel Lincu, Daniela Berger, Cristian Matei, and Raul-Augustin Mitran. 2024. "Molten Bismuth–Bismuth/Zinc Oxide Composites for High-Temperature Thermal Energy Storage" Inorganics 12, no. 5: 126. https://doi.org/10.3390/inorganics12050126
APA StyleVladut, C. M., Lincu, D., Berger, D., Matei, C., & Mitran, R. -A. (2024). Molten Bismuth–Bismuth/Zinc Oxide Composites for High-Temperature Thermal Energy Storage. Inorganics, 12(5), 126. https://doi.org/10.3390/inorganics12050126