Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = meerkat

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 476 KiB  
Article
Linking Planetary Ephemeris Reference Frames to ICRF via Millisecond Pulsars
by Li Guo, Yueqi Song, Zhen Yan, Liang Li and Guangli Wang
Universe 2025, 11(2), 54; https://doi.org/10.3390/universe11020054 - 7 Feb 2025
Viewed by 756
Abstract
The positions of millisecond pulsars (MSPs) can be determined with sub-milliarcsecond (mas) accuracy using both Very Long Baseline Interferometry (VLBI) and timing, referenced to the International Celestial Reference Frame (ICRF) and planetary ephemerides frame, respectively, representing kinematic and dynamical reference frames. The two [...] Read more.
The positions of millisecond pulsars (MSPs) can be determined with sub-milliarcsecond (mas) accuracy using both Very Long Baseline Interferometry (VLBI) and timing, referenced to the International Celestial Reference Frame (ICRF) and planetary ephemerides frame, respectively, representing kinematic and dynamical reference frames. The two frames can be connected through observations of common celestial objects, MSPs observed with VLBI and timing. However, previous attempts to establish this connection were unreliable due to the limited number of MSPs observed by both techniques. Currently, 23 MSPs have been precisely measured using both multiple timing and VLBI networks. Among them, 17 MSPs are used to link the two reference frames, marking a significant three-fold increase in the number of common MSPs used for frame linking. Nevertheless, six MSPs located near the ecliptic plane are excluded from frame linkage due to positional differences exceeding 20 mas measured by VLBI and timing. This discrepancy is primarily attributed to errors introduced in fitting positions in timing methods. With astrometric parameters obtained via both VLBI and timing for these MSPs, the precision of linking DE436 and ICRF3 has surpassed 0.4 mas. Furthermore, thanks to the improved timing precision of MeerKAT, even with data from just 13 MSPs observed by both MeerKAT and VLBI, the precision of linking DE440 and ICRF3 can also exceed 0.4 mas. The reliability of this linkage depends on the precision of pulsar astrometric parameters, their spatial distribution, and discrepancies in pulsar positions obtained by the two techniques. Notably, proper motion differences identified by the two techniques are the most critical factors influencing the reference frame linking parameters. The core shift of the calibrators in VLBI pulsar observations is one of the factors causing proper motion discrepancies, and multi-wavelength observations are expected to solve it. With the improvement in timing accuracy and the application of new observation modes like multi-view and multi-band observations in VLBI, the linkage accuracy of the dynamical and kinematic reference frames is expected to reach 0.3 mas. Full article
Show Figures

Figure 1

23 pages, 2661 KiB  
Article
Efficient Microgrid Management with Meerkat Optimization for Energy Storage, Renewables, Hydrogen Storage, Demand Response, and EV Charging
by Hossein Jokar, Taher Niknam, Moslem Dehghani, Ehsan Sheybani, Motahareh Pourbehzadi and Giti Javidi
Energies 2024, 17(1), 25; https://doi.org/10.3390/en17010025 - 20 Dec 2023
Cited by 5 | Viewed by 1994
Abstract
Within microgrids (MGs), the integration of renewable energy resources (RERs), plug-in hybrid electric vehicles (PHEVs), combined heat and power (CHP) systems, demand response (DR) initiatives, and energy storage solutions poses intricate scheduling challenges. Coordinating these diverse components is pivotal for optimizing MG performance. [...] Read more.
Within microgrids (MGs), the integration of renewable energy resources (RERs), plug-in hybrid electric vehicles (PHEVs), combined heat and power (CHP) systems, demand response (DR) initiatives, and energy storage solutions poses intricate scheduling challenges. Coordinating these diverse components is pivotal for optimizing MG performance. This study presents an innovative stochastic framework to streamline energy management in MGs, covering proton exchange membrane fuel cell–CHP (PEMFC-CHP) units, RERs, PHEVs, and various storage methods. To tackle uncertainties in PHEV and RER models, we employ the robust Monte Carlo Simulation (MCS) technique. Challenges related to hydrogen storage strategies in PEMFC-CHP units are addressed through a customized mixed-integer nonlinear programming (MINLP) approach. The integration of intelligent charging protocols governing PHEV charging dynamics is emphasized. Our primary goal centers on maximizing market profits, serving as the foundation for our optimization endeavors. At the heart of our approach is the Meerkat Optimization Algorithm (MOA), unraveling optimal MG operation amidst the intermittent nature of uncertain parameters. To amplify its exploratory capabilities and expedite global optima discovery, we enhance the MOA algorithm. The revised summary commences by outlining the overall goal and core algorithm, followed by a detailed explanation of optimization points for each MG component. Rigorous validation is executed using a conventional test system across diverse planning horizons. A comprehensive comparative analysis spanning varied scenarios establishes our proposed method as a benchmark against existing alternatives. Full article
(This article belongs to the Special Issue Recent Advances in Smart Grids)
Show Figures

Figure 1

23 pages, 15099 KiB  
Article
Passive Auto-Tactile Heuristic (PATH) Tiles: Novel Robot-Inclusive Tactile Paving Hazard Alert System
by Matthew S. K. Yeo, Javier J. J. Pey and Mohan Rajesh Elara
Buildings 2023, 13(10), 2504; https://doi.org/10.3390/buildings13102504 - 2 Oct 2023
Cited by 5 | Viewed by 4351
Abstract
Mobile service robots often have to work in dynamic and cluttered environments. Multiple safety hazards exist for robots in such work environments, which visual sensors may not detect in time before collisions or robotic damage. An alternative hazard alert system using tactile methods [...] Read more.
Mobile service robots often have to work in dynamic and cluttered environments. Multiple safety hazards exist for robots in such work environments, which visual sensors may not detect in time before collisions or robotic damage. An alternative hazard alert system using tactile methods is explored to pre-emptively convey surrounding spatial information to robots working in complex environments or under poor lighting conditions. The proposed method for robot-inclusive tactile paving is known as Passive Auto-Tactile Heuristic (PATH) tiles. These robot-inclusive tactile paving tiles are implemented in spatial infrastructure and are aimed to allow robots to pre-emptively recognize surrounding hazards even under poor lighting conditions and potentially provide improved hazard cues to visually impaired people. A corresponding Tactile Sensing Module (TSM) was used for the digital interpretation of the PATH tiles and was mounted onboard a mobile audit robot known as Meerkat. The experiment yielded a 71.6% improvement in pre-emptive hazard detection capabilities with the TSM using a customized Graph Neural Network (GNN) model. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

23 pages, 3035 KiB  
Article
Spun-Up Rotation-Powered Magnetized White Dwarfs in Close Binaries as Possible Gamma-ray Sources: Signatures of Pulsed Modulation from AE Aquarii and AR Scorpii in Fermi-LAT Data
by Pieter J. Meintjes, Spencer T. Madzime, Quinton Kaplan and Hendrik J. van Heerden
Galaxies 2023, 11(1), 14; https://doi.org/10.3390/galaxies11010014 - 11 Jan 2023
Cited by 8 | Viewed by 2379
Abstract
In this paper, the possibility of periodic pulsar-like gamma-ray emission from the white dwarfs in AE Aquarii and AR Scorpii is investigated. We show that the white dwarf magnetospheres in AE Aquarii and AR Scorpii can possibly induce potentials to accelerate charged particles [...] Read more.
In this paper, the possibility of periodic pulsar-like gamma-ray emission from the white dwarfs in AE Aquarii and AR Scorpii is investigated. We show that the white dwarf magnetospheres in AE Aquarii and AR Scorpii can possibly induce potentials to accelerate charged particles to energies in excess of one tera electronvolt (TeV) with associated gamma-ray emission through processes such as curvature radiation, inverse Compton, and hadronic processes such as neutral pion decay. We report here pulsed gamma-ray signatures at or close to the spin period of white dwarfs in both AE Aquarii and AR Scorpii in the Fermi-LAT dataset. This may indicate that both these white dwarfs possibly contain a particle accelerator that can produce relativistic electrons and ions and associated high energy radiation. The possibility of pair production is also investigated, which could provide a source for relativistic e± pairs in the magnetosphere. This could possibly be a driver for other forms of lepton-induced multi-wavelength pulsar-like emission from these two systems as well, for example, to explain the recently detected pulsed radio emission from AE Aquarii and R Scorpii in MeerKAT observations at the spin period of the white dwarf. The possibility of future detection of AE Aquarii and AR Scorpii with the Cherenkov Telescope Array (CTA) is also discussed. The future Vera Rubin Observatory will make a revolutionary contribution to time-domain astrophysics, which may lead to the discovery of thousands of new transient sources, possibly also many more close binaries with highly spun-up magnetized white dwarfs such as AE Aquarii and AR Scorpii for future investigation. Full article
Show Figures

Figure 1

14 pages, 3927 KiB  
Article
Wild Terrestrial Animal Re-Identification Based on an Improved Locally Aware Transformer with a Cross-Attention Mechanism
by Zhaoxiang Zheng, Yaqin Zhao, Ao Li and Qiuping Yu
Animals 2022, 12(24), 3503; https://doi.org/10.3390/ani12243503 - 12 Dec 2022
Cited by 12 | Viewed by 3339
Abstract
The wildlife re-identification recognition methods based on the camera trap were used to identify different individuals of the same species using the fur, stripes, facial features and other features of the animal body surfaces in the images, which is an important way to [...] Read more.
The wildlife re-identification recognition methods based on the camera trap were used to identify different individuals of the same species using the fur, stripes, facial features and other features of the animal body surfaces in the images, which is an important way to count the individual number of a species. Re-identification of wild animals can provide solid technical support for the in-depth study of the number of individuals and living conditions of rare wild animals, as well as provide accurate and timely data support for population ecology and conservation biology research. However, due to the difficulty of recording the shy wild animals and distinguishing the similar fur of different individuals, only a few papers have focused on the re-identification recognition of wild animals. In order to fill this gap, we improved the locally aware transformer (LA transformer) network structure for the re-identification recognition of wild terrestrial animals. First of all, at the stage of feature extraction, we replaced the self-attention module of the LA transformer with a cross-attention block (CAB) in order to calculate the inner-patch attention and cross-patch attention, so that we could efficiently capture the global information of the animal body’s surface and local feature differences of fur, colors, textures, or faces. Then, the locally aware network of the LA transformer was used to fuse the local and global features. Finally, the classification layer of the network realized wildlife individual recognition. In order to evaluate the performance of the model, we tested it on a dataset of Amur tiger torsos and the face datasets of six different species, including lions, golden monkeys, meerkats, red pandas, tigers, and chimpanzees. The experimental results showed that our wildlife re-identification model has good generalization ability and is superior to the existing methods in mAP (mean average precision), and obtained comparable results in the metrics Rank 1 and Rank 5. Full article
(This article belongs to the Section Wildlife)
Show Figures

Figure 1

30 pages, 1700 KiB  
Article
Behavioural Changes in Zoo Animals during the COVID-19 Pandemic: A Long-Term, Multi Species Comparison
by Naomi Frost, Anne Carter, Martin Vernon, Sarah Armstrong, Naomi Davies Walsh, Michael Colwill, Lorna Turner-Jepson, Samantha J. Ward and Ellen Williams
J. Zool. Bot. Gard. 2022, 3(4), 586-615; https://doi.org/10.3390/jzbg3040044 - 15 Nov 2022
Cited by 9 | Viewed by 5909
Abstract
Visitors are a prominent feature of the zoo environment and lives of zoo animals. The COVID-19 pandemic led to repeated and extended closure periods for zoos worldwide. This unique period in zoological history enabled the opportunity to investigate the consistency of behavioural responses [...] Read more.
Visitors are a prominent feature of the zoo environment and lives of zoo animals. The COVID-19 pandemic led to repeated and extended closure periods for zoos worldwide. This unique period in zoological history enabled the opportunity to investigate the consistency of behavioural responses of zoo animals to closures and subsequent reopenings. Bennett’s wallabies (Notamacropus rufogriseus), meerkats (Suricata suricatta), macaws (red and green: Ara chloropterus; blue and yellow: Ara ararauna; military: Ara militaris) and rabbits (Oryctolagus cuniculus domesticus) held at four zoological collections in the United Kingdom were studied during COVID-19 closures and subsequent reopening periods. Facilities were closed for three time periods during 2020 and 2021: March–June/July 2020; November–December 2020; January–April/May 2021. Behavioural data were captured during closures (maximum n = 3) and reopening periods (maximum n = 3) during five-min scans using instantaneous scan sampling with a one-minute inter-scan interval. General linear models (GLMs) and general linear mixed models (GLMMs) were used to investigate the relationship between observed behaviours and open/closed periods. Changes were observed in behaviour between open and closure periods in all species, and in some instances changes were also observed over time, with animals responding differently to different closure and reopening periods. However, no overt positive or negative impacts of the closures or reopening periods were identified for these species. The study species may have different relationships with zoo visitors, but no clear differences were seen across the species studied. The unique opportunity to study animals over a long period of time during repeated closure periods enabled a greater understanding of the impact of zoo visitors on animals. As with other work in this sphere, these data support the adaptability of zoo animals to zoo visitors. This work contributes to the growing field of research undertaken during the COVID-19 periods and enhances our understanding of the impact that these zoological closures had on a wider body of species in a number of facilities. Full article
Show Figures

Figure 1

16 pages, 3283 KiB  
Article
Toxoplasmosis in Zoo Animals: A Retrospective Pathology Review of 126 Cases
by Daniela Denk, Simon De Neck, Shannon Khaliq and Mark F. Stidworthy
Animals 2022, 12(5), 619; https://doi.org/10.3390/ani12050619 - 1 Mar 2022
Cited by 18 | Viewed by 6405
Abstract
Toxoplasma gondii is an extremely successful zoonotic protozoan parasite that has been demonstrated in a wide range of endo- and poikilothermic species. Although infection is widespread amongst domestic animals, overt disease other than abortion in small ruminants is sporadic. This survey evaluates toxoplasmosis [...] Read more.
Toxoplasma gondii is an extremely successful zoonotic protozoan parasite that has been demonstrated in a wide range of endo- and poikilothermic species. Although infection is widespread amongst domestic animals, overt disease other than abortion in small ruminants is sporadic. This survey evaluates toxoplasmosis in zoo animals based on a systematic review of pathology archive material (n = 33,506 submissions) over a 16-year study period. A total of 126 submissions, deriving from 32 zoos, two educational facilities and two private owners, were included in the study, based on gross lesions, cytological, histological and immunohistological diagnosis of toxoplasmosis. Clinical history, signalment, annual distribution and post-mortem findings were evaluated. A total of 31 species (mammalian 97%/avian 3%) were represented in the study material. Ring-tailed lemurs, slender tailed meerkats, Pallas’ cats, and squirrel monkeys were most affected. An unusual outbreak occurred in Asian small-clawed otters, in which toxoplasmosis has not been reported to date. Clinically, animals over 12 months of age presented with non-specific symptoms (anorexia, weight loss, lethargy, debilitation), neurological, gastrointestinal or respiratory signs and sudden death. Systemic disease predominated, with a propensity for encephalitis in meerkats and Pallas’ cats and systemic disease involving lymphoid tissues in ring-tailed lemurs. Cases in the UK occurred year-round, with species-specific peaks and increases between August and November. This study reinforces the importance of toxoplasmosis as a significant cause of sporadic and epizootic mortalities in a wide range of zoo animals. Feral cat control is crucial to reduce infection pressure. Full article
(This article belongs to the Special Issue Pathology in Zoo Animals and Conservation)
Show Figures

Figure 1

14 pages, 457 KiB  
Article
Trait-Based Vaccination of Individual Meerkats (Suricata suricatta) against Tuberculosis Provides Evidence to Support Targeted Disease Control
by Stuart J. Patterson, Tim H. Clutton-Brock, Dirk U. Pfeiffer and Julian A. Drewe
Animals 2022, 12(2), 192; https://doi.org/10.3390/ani12020192 - 13 Jan 2022
Cited by 2 | Viewed by 3037
Abstract
Individuals vary in their potential to acquire and transmit infections, but this fact is currently underexploited in disease control strategies. We trialled a trait-based vaccination strategy to reduce tuberculosis in free-living meerkats by targeting high-contact meerkats (socially dominant individuals) in one study arm, [...] Read more.
Individuals vary in their potential to acquire and transmit infections, but this fact is currently underexploited in disease control strategies. We trialled a trait-based vaccination strategy to reduce tuberculosis in free-living meerkats by targeting high-contact meerkats (socially dominant individuals) in one study arm, and high-susceptibility individuals (young subordinates) in a second arm. We monitored infection within vaccinated groups over two years comparing the results with untreated control groups. Being a member of a high-contact group had a protective effect on individuals’ survival times (Hazard Ratio = 0.5, 95% Confidence Interval, CI: 0.29–0.88, p = 0.02) compared to control groups. Over the study, odds of testing positive for tuberculosis increased more than five-fold in control groups (Odds Ratio = 5.40, 95% CI = 0.94–30.98, p = 0.058); however, no increases were observed in either of the treatment arms. Targeted disease control approaches, such as the one described in this study, allow for reduced numbers of interventions. Here, trait-based vaccination was associated with reduced infection rates and thus has the potential to offer more efficient alternatives to traditional mass-vaccination policies. Such improvements in efficiency warrant further study and could make infectious disease control more practically achievable in both animal (particularly wildlife) and human populations. Full article
(This article belongs to the Collection Wildlife Disease Ecology and Management)
Show Figures

Figure 1

29 pages, 13212 KiB  
Article
Neuroanatomical and Immunohistological Study of the Main and Accessory Olfactory Bulbs of the Meerkat (Suricata suricatta)
by Mateo V. Torres, Irene Ortiz-Leal, Andrea Ferreiro, José Luis Rois and Pablo Sanchez-Quinteiro
Animals 2022, 12(1), 91; https://doi.org/10.3390/ani12010091 - 31 Dec 2021
Cited by 9 | Viewed by 5185
Abstract
We approached the study of the main (MOB) and accessory olfactory bulbs (AOB) of the meerkat (Suricata suricatta) aiming to fill important gaps in knowledge regarding the neuroanatomical basis of olfactory and pheromonal signal processing in this iconic species. Microdissection techniques [...] Read more.
We approached the study of the main (MOB) and accessory olfactory bulbs (AOB) of the meerkat (Suricata suricatta) aiming to fill important gaps in knowledge regarding the neuroanatomical basis of olfactory and pheromonal signal processing in this iconic species. Microdissection techniques were used to extract the olfactory bulbs. The samples were subjected to hematoxylin-eosin and Nissl stains, histochemical (Ulex europaeus agglutinin, Lycopersicon esculentum agglutinin) and immunohistochemical labelling (Gαo, Gαi2, calretinin, calbindin, olfactory marker protein, glial fibrillary acidic protein, microtubule-associated protein 2, SMI-32, growth-associated protein 43). Microscopically, the meerkat AOB lamination pattern is more defined than the dog’s, approaching that described in cats, with well-defined glomeruli and a wide mitral-plexiform layer, with scattered main cells and granular cells organized in clusters. The degree of lamination and development of the meerkat MOB suggests a macrosmatic mammalian species. Calcium-binding proteins allow for the discrimination of atypical glomerular subpopulations in the olfactory limbus between the MOB and AOB. Our observations support AOB functionality in the meerkat, indicating chemosensory specialization for the detection of pheromones, as identified by the characterization of the V1R vomeronasal receptor family and the apparent deterioration of the V2R receptor family. Full article
Show Figures

Figure 1

20 pages, 518 KiB  
Review
Principles of Gravitational-Wave Detection with Pulsar Timing Arrays
by Michele Maiorano, Francesco De Paolis and Achille A. Nucita
Symmetry 2021, 13(12), 2418; https://doi.org/10.3390/sym13122418 - 14 Dec 2021
Cited by 11 | Viewed by 4745
Abstract
Pulsar timing uses the highly stable pulsar spin period to investigate many astrophysical topics. In particular, pulsar timing arrays make use of a set of extremely well-timed pulsars and their time correlations as a challenging detector of gravitational waves. It turns out that [...] Read more.
Pulsar timing uses the highly stable pulsar spin period to investigate many astrophysical topics. In particular, pulsar timing arrays make use of a set of extremely well-timed pulsars and their time correlations as a challenging detector of gravitational waves. It turns out that pulsar timing arrays are particularly sensitive to ultra-low-frequency gravitational waves, which makes them complementary to other gravitational-wave detectors. Here, we summarize the basics, focusing especially on supermassive black-hole binaries and cosmic strings, which have the potential to form a stochastic gravitational-wave background in the pulsar timing array detection band, and the scientific goals on this challenging topic. We also briefly outline the recent interesting results of the main pulsar timing array collaborations, which have found strong evidence of a common-spectrum process compatible with a stochastic gravitational-wave background and mention some new perspectives that are particularly interesting in view of the forthcoming radio observatories such as the Five hundred-meter Aperture Spherical Telescope, the MeerKAT telescope, and the Square Kilometer Array. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

17 pages, 649 KiB  
Article
Combining Analytical Approaches and Multiple Sources of Information to Improve Interpretation of Diagnostic Test Results for Tuberculosis in Wild Meerkats
by Stuart J. Patterson, Charlene Clarke, Tim H. Clutton-Brock, Michele A. Miller, Sven D. C. Parsons, Dirk U. Pfeiffer, Timothée Vergne and Julian A. Drewe
Animals 2021, 11(12), 3453; https://doi.org/10.3390/ani11123453 - 4 Dec 2021
Cited by 4 | Viewed by 3073
Abstract
Diagnostic tests are used to classify individual animals’ infection statuses. However, validating test performance in wild animals without gold standard tests is extremely challenging, and the issue is further complicated in chronic conditions where measured immune parameters vary over time. Here, we demonstrate [...] Read more.
Diagnostic tests are used to classify individual animals’ infection statuses. However, validating test performance in wild animals without gold standard tests is extremely challenging, and the issue is further complicated in chronic conditions where measured immune parameters vary over time. Here, we demonstrate the value of combining evidence from different diagnostic approaches to aid interpretation in the absence of gold standards, large sample sizes, and controlled environments. Over a two-year period, we sampled 268 free-living meerkats (Suricata suricatta) longitudinally for Mycobacterium suricattae (a causative agent of tuberculosis), using three ante-mortem diagnostic tests based on mycobacterial culture, and antigen-specific humoral and cell-mediated immune responses, interpreting results both independently and in combination. Post-mortem cultures confirmed M. suricattae infection in 22 animals, which had prior ante-mortem information, 59% (13/22) of which were test-positive on a parallel test interpretation (PTI) of the three ante-mortem diagnostic assays (95% confidence interval: 37–79%). A similar ability to detect infection, 65.7% (95% credible interval: 42.7–84.7%), was estimated using a Bayesian approach to examine PTI. Strong evidence was found for a near doubling of the hazard of death (Hazard Ratio 1.75, CI: 1.14–2.67, p = 0.01), associated with a positive PTI result, thus demonstrating that these test results are related to disease outcomes. For individual tests, small sample sizes led to wide confidence intervals, but replication of conclusions, using different methods, increased our confidence in these results. This study demonstrates that combining multiple methodologies to evaluate diagnostic tests in free-ranging wildlife populations can be a useful approach for exploiting such valuable datasets. Full article
Show Figures

Figure 1

16 pages, 1897 KiB  
Article
Discovery of Rare Dying Radio Galaxies Using MeerKAT
by Nadeem Oozeer, Lawrence Rudnick, Michael F. Bietenholz, Tiziana Venturi, Kenda Knowles, Konstantinos Kolokythas and Nceba Mhlahlo
Galaxies 2021, 9(4), 102; https://doi.org/10.3390/galaxies9040102 - 10 Nov 2021
Cited by 2 | Viewed by 3355
Abstract
Dying radio galaxies represent a stage of the evolution of active galactic nuclei (AGN), during which the accreting central black hole has switched off and/or falls to such a low level that the plasma outflow can no longer be sustained. When this happens, [...] Read more.
Dying radio galaxies represent a stage of the evolution of active galactic nuclei (AGN), during which the accreting central black hole has switched off and/or falls to such a low level that the plasma outflow can no longer be sustained. When this happens, the radio source undergoes a period of fading, the dying phase, before it disappears completely. We present the study of three potential dying radio sources using the MeerKAT radio telescope: MKT J072851.2-752743, MKT J001940.4-654722, and ACO 548B. The identification as dying radio sources came from the MeerKAT Galaxy Cluster Legacy Survey (MGCLS). We carry out a multi-wavelength analysis of the sources and derive their energetics. The ages of the sources are ∼30–70 Myr, they have magnetic fields of the order of a few μG, and they have relatively low radio power. Their potential optical counterparts are associated with massive galaxies. We show that ACO 548B, previously classified as two peripheral relic radio sources, is a dying radio galaxy. With its good sensitivity and resolution, MeerKAT is an ideal instrument to detect potential dying radio sources, and contribute to the understanding of the evolution of AGN population. Full article
Show Figures

Figure 1

15 pages, 2554 KiB  
Article
A Multiwavelength Dynamical State Analysis of ACT-CL J0019.6+0336
by Denisha S. Pillay, David J. Turner, Matt Hilton, Kenda Knowles, Kabelo C. Kesebonye, Kavilan Moodley, Tony Mroczkowski, Nadeem Oozeer, Christoph Pfrommer, Sinenhlanhla P. Sikhosana and Edward J. Wollack
Galaxies 2021, 9(4), 97; https://doi.org/10.3390/galaxies9040097 - 8 Nov 2021
Cited by 6 | Viewed by 3488
Abstract
In our study, we show a multiwavelength view of ACT-CL J0019.6+0336 (which hosts a radio halo), to investigate the cluster dynamics, morphology, and ICM. We use a combination of XMM-Newton images, Dark Energy Survey (DES) imaging and photometry, SDSS spectroscopic information, and 1.16 [...] Read more.
In our study, we show a multiwavelength view of ACT-CL J0019.6+0336 (which hosts a radio halo), to investigate the cluster dynamics, morphology, and ICM. We use a combination of XMM-Newton images, Dark Energy Survey (DES) imaging and photometry, SDSS spectroscopic information, and 1.16 GHz MeerKAT data to study the cluster properties. Various X-ray and optical morphology parameters are calculated to investigate the level of disturbance. We find disturbances in two X-ray parameters and the optical density map shows elongated and axisymmetric structures with the main cluster component southeast of the cluster centre and another component northwest of the cluster centre. We also find a BCG offset of ∼950 km/s from the mean velocity of the cluster, and a discrepancy between the SZ mass, X-ray mass, and dynamical mass (MX,500 and MSZ,500 lies >3σ away from Mdyn,500), showing that J0019 is a merging cluster and probably in a post-merging phase. Full article
Show Figures

Figure 1

11 pages, 20630 KiB  
Article
Third-Generation Calibrations for MeerKAT Observation
by Viral Parekh, Robert Kincaid, Benjamin Hugo, Athanaseus Ramaila and Nadeem Oozeer
Galaxies 2021, 9(4), 90; https://doi.org/10.3390/galaxies9040090 - 3 Nov 2021
Cited by 5 | Viewed by 2325
Abstract
Superclusters and galaxy clusters offer a wide range of astrophysical science topics with regards to studying the evolution and distribution of galaxies, intra-cluster magnetization mediums, cosmic ray accelerations and large scale diffuse radio sources all in one observation. Recent developments in new radio [...] Read more.
Superclusters and galaxy clusters offer a wide range of astrophysical science topics with regards to studying the evolution and distribution of galaxies, intra-cluster magnetization mediums, cosmic ray accelerations and large scale diffuse radio sources all in one observation. Recent developments in new radio telescopes and advanced calibration software have completely changed data quality that was never possible with old generation telescopes. Hence, radio observations of superclusters are a very promising avenue to gather rich information of a large-scale structure (LSS) and their formation mechanisms. These newer wide-band and wide field-of-view (FOV) observations require state-of-the-art data analysis procedures, including calibration and imaging, in order to provide deep and high dynamic range (DR) images with which to study the diffuse and faint radio emissions in supercluster environments. Sometimes, strong point sources hamper the radio observations and limit the achievement of a high DR. In this paper, we have shown the DR improvements around strong radio sources in the MeerKAT observation of the Saraswati supercluster by applying newer third-generation calibration (3GC) techniques using CubiCal and killMS software. We have also calculated the statistical parameters to quantify the improvements around strong radio sources. This analysis advocates for the use of new calibration techniques to maximize the scientific returns from new-generation telescopes. Full article
Show Figures

Figure 1

10 pages, 394 KiB  
Article
Searching for High-z Radio Galaxies with the MGCLS
by Kenda Knowles, Sinah Manaka, Michael F. Bietenholz, William D. Cotton, Matthew Hilton, Konstantinos Kolokythas, S. Ilani Loubser and Nadeem Oozeer
Galaxies 2021, 9(4), 89; https://doi.org/10.3390/galaxies9040089 - 2 Nov 2021
Cited by 2 | Viewed by 2542
Abstract
We present the results from a search for high-redshift radio galaxy (HzRG) candidates using 1.28 GHz data in the Abell 2751 field drawn from the MeerKAT Galaxy Cluster Legacy Survey (MGCLS). We used the HzRG criteria that a radio [...] Read more.
We present the results from a search for high-redshift radio galaxy (HzRG) candidates using 1.28 GHz data in the Abell 2751 field drawn from the MeerKAT Galaxy Cluster Legacy Survey (MGCLS). We used the HzRG criteria that a radio source is undetected in all-sky optical and infrared catalogues and that it has a very steep radio spectrum. We used the likelihood ratio method for cross-matching the radio catalogue against multi-wavelength galaxy catalogues from the Dark Energy Camera Legacy Survey (DECaLS) and the All-sky Wide Infrared Survey Explorer (AllWISE). For those radio sources with no multi-wavelength counterpart, we further implemented a radio spectral index criterium of α<1, using in-band spectral index measurements from the wide-band MeerKAT data. Using a 5σ signal-to-noise cut on the radio flux densities, we found a total of 274 HzRG candidates: 179 ultra-steep spectrum sources and 95 potential candidates, which could not be ruled out as they had no spectral information available. The spectral index assignments in this work were complete above a flux density of 0.3 mJy, which is at least an order of magnitude lower than existing studies in this frequency range or when extrapolating from lower frequency limits. Our faintest HzRG candidates with and without an in-band spectral index measurement had a 1.28 GHz flux density of 57 ± 8 μJy and 68 ± 13 μJy, respectively. Although our study is not complete down to these flux densities, our results indicate that the sensitivity and bandwidth of the MGCLS data make them a powerful radio resource to search for HzRG candidates in the Southern sky, with 20 of the MGCLS pointings having similar image quality as the Abell 2751 field and full coverage in both DECaLS and AllWISE. Data at additional radio frequencies will be needed for the faintest source populations, which could be provided in the near future by the MeerKAT UHF band (580–1015 MHz) at a similar resolution (∼8–10″). Full article
Show Figures

Figure 1

Back to TopTop