Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = medium carbon microalloyed steels

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 3771 KiB  
Article
Effects of Tempering Temperature on the Microstructure and Mechanical Properties of Vanadium-Microalloyed Medium-Carbon Bainitic Steel
by Litang Geng, Zhiwen Tian, Dongyun Sun, Xiaoyong Feng and Fucheng Zhang
Coatings 2025, 15(5), 503; https://doi.org/10.3390/coatings15050503 - 23 Apr 2025
Cited by 1 | Viewed by 500
Abstract
This study examined the impact of tempering temperature on the microstructure and properties of vanadium (V)-microalloyed medium-carbon bainitic steel. A series of heat treatments were performed on the steel, and the microstructural evolution and mechanical properties were systematically investigated through X-ray diffraction (XRD), [...] Read more.
This study examined the impact of tempering temperature on the microstructure and properties of vanadium (V)-microalloyed medium-carbon bainitic steel. A series of heat treatments were performed on the steel, and the microstructural evolution and mechanical properties were systematically investigated through X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and mechanical testing systems (MTS). The findings revealed that tempering temperature has a significant influence on microstructural changes. Specifically, at 350–450 °C, retained austenite begins to decompose and carbides start to precipitate. At 550–600 °C, bainitic ferrite laths undergo coarsening. Regarding mechanical properties, both tensile strength and yield strength initially increase with tempering temperature before decreasing as the temperature continues to rise. The diffusion and redistribution of carbon atoms during tempering enhance the elongation of all tempered samples compared to their untempered counterparts. Optimal comprehensive mechanical properties are achieved at 450 °C, where precipitation strengthening from vanadium, enhanced stability of retained austenite, and synergistic strengthening effects of decomposition products are most pronounced. This research provides a theoretical foundation for optimizing the heat treatment process of such steels and offers insights into the synergistic effects of V-microalloying and tempering. Full article
Show Figures

Figure 1

13 pages, 29741 KiB  
Article
Effect of Initial Intergranular Ferrite Size on Induction Hardening Microstructure of Microalloyed Steel 38MnVS6
by Dequn Kong, Jian Zhou, Weiwei Dong, Li Cai and Chunyu Qu
Crystals 2024, 14(9), 827; https://doi.org/10.3390/cryst14090827 - 22 Sep 2024
Cited by 1 | Viewed by 1769
Abstract
In this study, we investigated the effect of grain size of an initial microstructure (pearlite + ferrite) on a resulting microstructure of induction-hardened microalloyed steel 38MnVS6, which is one topical medium carbon vanadium microalloyed non-quenched and tempered steel used in manufacturing crankshafts for [...] Read more.
In this study, we investigated the effect of grain size of an initial microstructure (pearlite + ferrite) on a resulting microstructure of induction-hardened microalloyed steel 38MnVS6, which is one topical medium carbon vanadium microalloyed non-quenched and tempered steel used in manufacturing crankshafts for high-power engines. The results show that a coarse initial microstructure could contribute to the incomplete transformation of pearlite + ferrite into austenite in reaustenitization transformation by rapid heating, and the undissolved ferrite remains and locates between the neighboring prior austenite grains after the induction-hardening process. As the coarseness level of the initial microstructure increases from 102 μm to 156 μm, the morphology of undissolved ferrite varies as granule, film, semi-network, and network, in sequence. The undissolved ferrite structures have a thickness of 250–500 nm and appear dark under an optical metallographic view field. To achieve better engineering applications, it is not recommended to eliminate the undissolved ferrite by increasing much heating time for samples with coarser initial microstructures. It is better to achieve a fine original microstructure before the induction-hardening process. For example, microalloying addition of vanadium and titanium plays a role of metallurgical grain refinement via intragranular ferrite nucleation on more sites, and the heating temperature and time of the forging process should be strictly controlled to ensure the existence of fine prior austenite grains before subsequent isothermal phase transformation to pearlite + ferrite. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

19 pages, 5641 KiB  
Article
Development of Neural Networks to Study Flow Behavior of Medium Carbon Microalloyed Steel during Hot Forming
by Anas Al Omar, Pau Català, Jose Ignacio Alcelay and Esteban Peña
Metals 2024, 14(5), 554; https://doi.org/10.3390/met14050554 - 8 May 2024
Cited by 2 | Viewed by 1458
Abstract
In the present article, the application of an artificial neural network (ANN) model whose function is the development of plastic instability maps of a medium carbon microalloyed steel during the hot forming process is studied. Secondly, we proceed to create another ANN capable [...] Read more.
In the present article, the application of an artificial neural network (ANN) model whose function is the development of plastic instability maps of a medium carbon microalloyed steel during the hot forming process is studied. Secondly, we proceed to create another ANN capable of providing the recrystallized grain size in the steady state resulting from forming deformation. We start from the experimental data of a medium carbon microalloyed steel obtained by hot compression tests with strain rates that vary between 10−4 s−1 and 3 s−1 and in a range of temperatures between 900 °C and 1150 °C. These experimental data are used to train the proposed ANN and obtain flow curves. Finally, the processing maps are developed by applying the dynamic materials model (DMM), according to which the safe hot forming domains and the plastic instability domains of the studied material are delineated. The comparison between the ANN and the experimental maps is carried out. It is ascertained that the optimal regions of forging in the ANN maps coincide with those obtained in the experimental maps. In addition, a study of the influence of the microstructure on the behavior of the studied steel during hot forming is carried out. Full article
(This article belongs to the Section Metal Casting, Forming and Heat Treatment)
Show Figures

Figure 1

17 pages, 14909 KiB  
Article
Determining the Role of Acicular Ferrite Carbides in Cleavage Fracture Crack Initiation for Two Medium Carbon Microalloyed Steels
by Gvozden Jovanović, Dragomir Glišić, Stefan Dikić, Bojan Međo, Branislav Marković, Nikola Vuković and Nenad Radović
Materials 2023, 16(22), 7192; https://doi.org/10.3390/ma16227192 - 16 Nov 2023
Cited by 1 | Viewed by 1340
Abstract
Two medium-carbon microalloyed steels with a predominant acicular ferrite microstructure were investigated in this study in order to determine the initial micro-crack formation mechanism and the role of acicular ferrite structure in cleavage fracture. In order to ensure cleavage fracture, samples were investigated [...] Read more.
Two medium-carbon microalloyed steels with a predominant acicular ferrite microstructure were investigated in this study in order to determine the initial micro-crack formation mechanism and the role of acicular ferrite structure in cleavage fracture. In order to ensure cleavage fracture, samples were investigated at −196 °C for uniaxial tension and four point bending fracture. Previous investigations have shown that cleavage fracture for steels with a predominant acicular ferrite microstructure has not been initiated by the fracture of coarse TiN particles as in ferrite-pearlite, bainite, or martensitic microalloyed steels. The average maximal thickness of cementite plates measured in this work is 0.798 µm and 0.966 µm, for V and TiV steel, respectively. The corresponding stress values required for their fracture according to Griffith’s equation are 1970 MPa and 1791 MPa, respectively. Estimated values of the effective surface energy for the V steel with an average cementite volume fraction of 3.8% range from 40 Jm−2 to 86 Jm−2, and for the TiV steel with an average cementite volume fraction of 18.3% range from 55 Jm−2 to 82 Jm−2. The fracture of coarse cementite plates was found to not to be responsible for the cleavage fracture initiation in case of both steels. Full article
Show Figures

Graphical abstract

16 pages, 6517 KiB  
Article
Investigation of the Thermodynamic Transformation and Rare Earth Microalloying of a Medium Carbon-Medium Alloy Steel for Large Ball Mill Liners
by Xi Yang, Xinghe Wang, Jingpei Xie, Yuhe Li and Dixin Yang
Materials 2022, 15(13), 4448; https://doi.org/10.3390/ma15134448 - 24 Jun 2022
Cited by 1 | Viewed by 2047
Abstract
The medium carbon-medium alloy steel was developed for the manufacture of large ball mill liners and sports equipment. In this study, the continuous cooling transformation curve of a novel type of medium carbon-medium alloy steel was measured with a thermal simulation machine; based [...] Read more.
The medium carbon-medium alloy steel was developed for the manufacture of large ball mill liners and sports equipment. In this study, the continuous cooling transformation curve of a novel type of medium carbon-medium alloy steel was measured with a thermal simulation machine; based on this curve, the hardening and tempering processes were optimized. The steel was then complex modified with alkaline earth and rare earth alloys. The mechanical properties of the treated steel were tested. The microstructure of the steel was analyzed by metallographic microscopy, X-ray diffraction, scanning electron microscopy and transmission electron microscopy, and the wear surface of the steel was analyzed by a three-dimensional morphometer. After high-temperature tempering, the microstructure transformed into tempered sorbite, which possesses good mechanical properties and can adapt to working conditions that require high strength and toughness. Rare earth or alkaline earth modification of the medium carbon-medium alloy steel promoted microstructural uniformity and grain refinement and improved the mechanical and anti-wear properties. Full article
Show Figures

Figure 1

13 pages, 4178 KiB  
Article
Bending and Straightening of a Medium Carbon Steel Continuous Casting Slab with Low Temperature End Plastic Groove
by Jingbo Yang, Fujun Zhang, Jingshe Li, Wei Liu, Tiantian Wang, Hang Yuan and Daqiang Cang
Materials 2022, 15(7), 2609; https://doi.org/10.3390/ma15072609 - 1 Apr 2022
Cited by 1 | Viewed by 2386
Abstract
The high temperature brittleness range of medium carbon microalloyed steel under an actual continuous casting process was determined by the high temperature tensile test. The test results revealed that only a third of the brittle temperature range from 650–825 °C was due to [...] Read more.
The high temperature brittleness range of medium carbon microalloyed steel under an actual continuous casting process was determined by the high temperature tensile test. The test results revealed that only a third of the brittle temperature range from 650–825 °C was due to intergranular ferrite in the experimental steel. In addition, it was found that the plastic recovery was fast and stable when the temperature was lower than 725 °C (the lowest plastic temperature). Bending/straightening operation in this temperature range was conducive to controlling the generation of corner cracks. In order to keep the corner temperature at the low temperature end of the plastic curve when the slab was bent/straightened, the cooling water scheme of the secondary cooling zone of the continuous caster was formulated by numerical calculation. By appropriately increasing the cooling water flow in the foot roll and the secondary cooling zones 1–5, the corner temperature of slab during bending operation was 600–700 °C, avoiding the brittle temperature range. The industrial test was then carried out. The results showed that after using the optimized water volume, the corner grains of the slab were uniform and the microstructure was mainly pearlite + ferrite. In addition, the abnormally large grain size was reduced, and a large amount of ferrite was generated inside the grain, which avoided stress concentration at the corner of the slab during bending/straightening operation, and basically eliminated the corner crack of the slab. Full article
Show Figures

Figure 1

15 pages, 4924 KiB  
Article
Cleavage Fracture of the Air Cooled Medium Carbon Microalloyed Forging Steels with Heterogeneous Microstructures
by Gvozden Jovanović, Dragomir Glišić, Stefan Dikić, Nenad Radović and Aleksandra Patarić
Materials 2022, 15(5), 1760; https://doi.org/10.3390/ma15051760 - 25 Feb 2022
Cited by 7 | Viewed by 2420
Abstract
Cleavage fracture of the V and Ti-V microalloyed forging steels was investigated by the four-point bending testing of the notched specimens of Griffith-Owen’s type at −196 °C, in conjunction with the finite element analysis and the fractographic examination by scanning electron microscopy. To [...] Read more.
Cleavage fracture of the V and Ti-V microalloyed forging steels was investigated by the four-point bending testing of the notched specimens of Griffith-Owen’s type at −196 °C, in conjunction with the finite element analysis and the fractographic examination by scanning electron microscopy. To assess the mixed microstructure consisting mostly of the acicular ferrite, alongside proeutectoid ferrite grains and pearlite, the samples were held at 1250 °C for 30 min and subsequently cooled instill air. Cleavage fracture was initiated in the matrix under the high plastic strains near the notch root of the four-point bending specimens without the participation of the second phase particles in the process. Estimated values of the effective surface energy for the V and the Ti-V microalloyed steel of 37 Jm−2 and 74 Jm−2, respectively, and the related increase of local critical fracture stress were attributed to the increased content of the acicular ferrite. It was concluded that the observed increase of the local stress for cleavage crack propagation through the matrix was due to the increased number of the high angle boundaries, but also that the acicular ferrite affects the cleavage fracture mechanism by its characteristic stress–strain response with relatively low yield strength and considerable ductility at −196 °C. Full article
Show Figures

Figure 1

12 pages, 4545 KiB  
Article
The Kinetics of Phase Transition of Austenite to Ferrite in Medium-Carbon Microalloy Steel
by Liushun Wu, Kunlong Liu and Yun Zhou
Metals 2021, 11(12), 1986; https://doi.org/10.3390/met11121986 - 9 Dec 2021
Cited by 5 | Viewed by 3528
Abstract
To reduce energy and resource consumption, high-strength hot-rolled rebars with yield strengths of ≥400 MPa (HRB500) and ≥500 MPa (HRB600) have been designed and produced in recent years. Optimizing the microstructure in the steel to improve strength necessitates determining the kinetics of the [...] Read more.
To reduce energy and resource consumption, high-strength hot-rolled rebars with yield strengths of ≥400 MPa (HRB500) and ≥500 MPa (HRB600) have been designed and produced in recent years. Optimizing the microstructure in the steel to improve strength necessitates determining the kinetics of the phase transition of austenite to polygonal ferrite. Therefore, in the study, the effect of temperature and holding time on the volume fraction of ferrite is investigated in HRB500 and HRB600 steels. Experimental results show that the ferrite percentage initially increases with an increase in temperature and then decreases as the temperature increases from 600 to 730 °C. The optimum temperature range is 680–700 °C for HRB500 steel and 650–680 °C for HRB600 steel. Based on the Johnson–Mehl–Avrami equation, phase transition kinetic models are established. Model predictions are consistent with the validation data. Thus, this study establishes a reference for studying ferrite formation during cooling. Full article
(This article belongs to the Special Issue Numerical and Physical Modeling in Steel Refining and Casting)
Show Figures

Figure 1

12 pages, 4702 KiB  
Article
Structure and Strength of Isothermally Heat-Treated Medium Carbon Ti-V Microalloyed Steel
by Stefan Dikić, Dragomir Glišić, Abdunnaser Fadel, Gvozden Jovanović and Nenad Radović
Metals 2021, 11(7), 1011; https://doi.org/10.3390/met11071011 - 24 Jun 2021
Cited by 6 | Viewed by 2595
Abstract
Isothermal transformation characteristics of a medium carbon Ti-V microalloyed steel were investigated using light microscopy, scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS), and by uniaxial compressive testing. Samples austenitized on 1100 °C were isothermally treated in the range from 350 [...] Read more.
Isothermal transformation characteristics of a medium carbon Ti-V microalloyed steel were investigated using light microscopy, scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS), and by uniaxial compressive testing. Samples austenitized on 1100 °C were isothermally treated in the range from 350 to 600 °C and subsequently water quenched. The final microstructure of the samples held at 350 °C consisted of bainitic sheaves and had compressive yield strength, approximately from 1000 MPa, which is attributed to high dislocation density of low bainite. At 400 and 450 °C, acicular ferrite became prevalent in the microstructure. It was also formed by a displacive mechanism, but the dislocation density was lower, leading to a decrease of compressive yield strength to approximately 700 MPa. The microstructure after the heat treatment at 500 °C consisted of coarse non-polygonal ferrite grains separated by pearlite colonies, principally dislocation free grains, so that the compressive YS reached a minimum value of about 700 MPa. The microstructure of the samples heat-treated at 550 and 600 °C consisted of pearlite and both grain boundary and intragranular ferrite, alongside with some martensite. After 600 s, austenite became stable and transformed to martensite after water quenching. Therefore, the presence of martensite increased the compressive YS to approx. 800 MPa. Full article
(This article belongs to the Special Issue Microstructure and Mechanical Properties of Multiphase Steels)
Show Figures

Figure 1

19 pages, 6447 KiB  
Article
Flow Stress Behaviour and Static Recrystallization Characteristics of Hot Deformed Austenite in Microalloyed Medium-Carbon Bainitic Steels
by Pentti M. Kaikkonen, Mahesh C. Somani, Leo Pentti Karjalainen and Jukka I. Kömi
Metals 2021, 11(1), 138; https://doi.org/10.3390/met11010138 - 12 Jan 2021
Cited by 10 | Viewed by 2675
Abstract
In the past decade, efforts have been focused on developing very fine, medium-carbon bainitic steels via the low-temperature (typically 300–400 °C) ausforming process, which not only enables shorter isothermal holding times for bainitic transformation at low temperatures, but also offers significantly improved strength. [...] Read more.
In the past decade, efforts have been focused on developing very fine, medium-carbon bainitic steels via the low-temperature (typically 300–400 °C) ausforming process, which not only enables shorter isothermal holding times for bainitic transformation at low temperatures, but also offers significantly improved strength. This paper describes static recrystallization (SRX) characteristics of austenite in four medium-carbon 2%Mn-1.3%Si-0.7%Cr steels with and without microalloying intended for the development of these steels. The stress-relaxation method on a Gleeble simulator resulted in recrystallization times over a wide range of temperatures, strains and strain rates. Also, the occurrence of precipitation was revealed. Powers of strain (−1.7 to −2.7) and strain rate (−0.21 to −0.28) as well as the apparent activation energies (225–269 kJ/mol) were in the ranges reported in the literature for C-Mn and microalloyed steels with lower Mn and Si contents. The new regression equations established for estimating times for 50% SRX revealed the retardation effects of microalloying and Mo addition showing reasonable fits with the experimental data, whereas the previous model suggested for ordinary microalloyed steels tended to predict clearly shorter times on average than the experimental values for the present coarse-grained steels. The Boratto equation to estimate the non-recrystallization temperature was successfully modified to include the effect of Mo alloying and high silicon concentrations. Full article
Show Figures

Figure 1

20 pages, 11677 KiB  
Article
Toughness Property Control by Nb and Mo Additions in High-Strength Quenched and Tempered Boron Steels
by Irati Zurutuza, Nerea Isasti, Eric Detemple, Volker Schwinn, Hardy Mohrbacher and Pello Uranga
Metals 2021, 11(1), 95; https://doi.org/10.3390/met11010095 - 5 Jan 2021
Cited by 21 | Viewed by 3839
Abstract
The synergetic effect on hardenability by combining boron with other microalloying elements (such as Nb, Mo and Nb + Mo) is widely known for high-strength medium carbon steels produced by direct quenching and subsequent tempering treatment. The improvement of mechanical properties could be [...] Read more.
The synergetic effect on hardenability by combining boron with other microalloying elements (such as Nb, Mo and Nb + Mo) is widely known for high-strength medium carbon steels produced by direct quenching and subsequent tempering treatment. The improvement of mechanical properties could be reached through optimization of different mechanisms, such as solid solution hardening, unit size refinement, strain hardening, fine precipitation hardening and the effect of carbon in solid solution. The current study proposes a procedure for evaluating the contribution of different microstructural aspects on Charpy impact toughness. First, the effect that austenite conditioning has on low-temperature transformation unit sizes and microstructural homogeneity was analysed for the different microalloying element combinations. A detailed crystallographic characterization of the tempered martensite was carried out using electron backscattered diffraction (EBSD) in order to quantify the effect of unit size refinement and dislocation density. The impact of heterogeneity and presence of carbides was also evaluated. The existing equations for impact transition temperature (ITT50%) predictions were extended from ferrite-pearlite and bainitic microstructures to tempered martensite microstructures. The results show that microstructural refinement is most beneficial to strength and toughness while unit size heterogeneity has a particularly negative effect on ductile-to-brittle transition behaviour. By properly balancing alloy concept and processing, steel having a yield strength above 900 MPa and low impact transition temperature could be obtained by direct quenching and tempering. Full article
Show Figures

Figure 1

21 pages, 14679 KiB  
Article
Effect of Nb and Mo Additions in the Microstructure/Tensile Property Relationship in High Strength Quenched and Quenched and Tempered Boron Steels
by Irati Zurutuza, Nerea Isasti, Eric Detemple, Volker Schwinn, Hardy Mohrbacher and Pello Uranga
Metals 2021, 11(1), 29; https://doi.org/10.3390/met11010029 - 25 Dec 2020
Cited by 15 | Viewed by 4410
Abstract
Recently, advanced thermomechanical hot rolling schedules followed by direct quenching are being developed in order to avoid reheating and quenching treatment after hot rolling to eliminate an energy and cost consuming step. The use of boron as an alloying element is a widely [...] Read more.
Recently, advanced thermomechanical hot rolling schedules followed by direct quenching are being developed in order to avoid reheating and quenching treatment after hot rolling to eliminate an energy and cost consuming step. The use of boron as an alloying element is a widely known practice in high strength medium carbon steels to increase the strength due its potential for delaying phase transformation and improving hardenability. In addition, a significant synergetic effect on hardenability could be reached combining B with microalloying elements (adding Nb, Mo or Nb-Mo). With the purpose of exploring the effect of microalloying elements and thermomechanical rolling schedule, laboratory thermomechanical simulations reproducing plate mill conditions were performed using ultra high strength steels micro-alloyed with Nb, Mo, and Nb-Mo. To that end, plane compression tests were performed, consisting of an initial preconditioning step, followed by several roughing and finishing deformation passes and a final quenching step. After fast cooling to room temperature, a tempering treatment was applied. In the present paper, the complex interaction between the martensitic microstructure, the tempering treatment, the addition of microalloying elements, and the resulting tensile properties was evaluated. For that purpose, an exhaustive EBSD quantification was carried out in both quenched as well as quenched and tempered states for all the steel grades and the contribution of different strengthening mechanisms on yield strength was analyzed. Highest tensile properties are achieved combining Nb and Mo, for both quenched (Q) and quenched and tempered states (Q&T), reaching yield strength values of 1107 MPa and 977 MPa, respectively. Higher tempering resistance was measured for the Mo-bearing steels, making the CMnNbMoB steel the one with the lowest softening after tempering. For CMnB grade, the yield strength reduction after tempering of about 413 MPa was measured, while for NbMo micro-alloyed steel, yield strength softening is considerably reduced to 130 MPa. Full article
Show Figures

Figure 1

10 pages, 4158 KiB  
Article
Effect of Titanium and Boron Microalloying on Sulfide Stress Cracking in C110 Casing Steel
by Ming Luo, Zhong-Hua Zhang, Yao-Heng Liu and Mou-Cheng Li
Materials 2020, 13(24), 5713; https://doi.org/10.3390/ma13245713 - 15 Dec 2020
Cited by 1 | Viewed by 1988
Abstract
The effect of Ti and B microalloying on the hardenability, prior austenite grain size (PAGS), mechanical properties, and sulfide stress cracking (SSC) of C110 grade steel was studied by Jominy testing, static tensile testing, an optical microscope (OM), scanning electron microscopy (SEM) and [...] Read more.
The effect of Ti and B microalloying on the hardenability, prior austenite grain size (PAGS), mechanical properties, and sulfide stress cracking (SSC) of C110 grade steel was studied by Jominy testing, static tensile testing, an optical microscope (OM), scanning electron microscopy (SEM) and double cantilever beam (DCB) testing. The results show that the addition of 0.015% Ti and 0.002% B into a medium-carbon Fe-Cr-Mo-Nb-V steel increased the hardenability and refined the PAGS and quenched martensite packets, and the size of carbides was reduced. It is believed that these behaviors are responsible for the improvement in the threshold stress intensity factor KISSC. Full article
Show Figures

Figure 1

22 pages, 26796 KiB  
Review
Property Optimization in As-Quenched Martensitic Steel by Molybdenum and Niobium Alloying
by Hardy Mohrbacher
Metals 2018, 8(4), 234; https://doi.org/10.3390/met8040234 - 3 Apr 2018
Cited by 49 | Viewed by 11056
Abstract
Niobium microalloying is the backbone of modern low-carbon high strength low alloy (HSLA) steel metallurgy, providing a favorable combination of strength and toughness by pronounced microstructural refinement. Molybdenum alloying is established in medium-carbon quenching and tempering of steel by delivering high hardenability and [...] Read more.
Niobium microalloying is the backbone of modern low-carbon high strength low alloy (HSLA) steel metallurgy, providing a favorable combination of strength and toughness by pronounced microstructural refinement. Molybdenum alloying is established in medium-carbon quenching and tempering of steel by delivering high hardenability and good tempering resistance. Recent developments of ultra-high strength steel grades, such as fully martensitic steel, can be optimized by using beneficial metallurgical effects of niobium and molybdenum. The paper details the metallurgical principles of both elements in such steel and the achievable improvement of properties. Particularly, the underlying mechanisms of improving toughness and reducing the sensitivity towards hydrogen embrittlement by a suitable combination of molybdenum and niobium alloying will be discussed. Full article
(This article belongs to the Special Issue Advances in Microalloyed Steels)
Show Figures

Figure 1

Back to TopTop