Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (172)

Search Parameters:
Keywords = mechanosensitive channel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 8098 KB  
Article
Triamcinolone Modulates Chondrocyte Biomechanics and Calcium-Dependent Mechanosensitivity
by Chen Liang, Sina Jud, Sandra Frantz, Rosa Riester, Marina Danalache and Felix Umrath
Int. J. Mol. Sci. 2026, 27(2), 1055; https://doi.org/10.3390/ijms27021055 - 21 Jan 2026
Abstract
Glucocorticoids are widely applied intra-articularly to alleviate inflammation and pain in osteoarthritis (OA). However, repeated administration and high local concentrations can lead to crystal deposition on the cartilage surface, contributing to chondrocyte damage and extracellular matrix (ECM) degradation, potentially accelerating OA progression. Calcium-dependent [...] Read more.
Glucocorticoids are widely applied intra-articularly to alleviate inflammation and pain in osteoarthritis (OA). However, repeated administration and high local concentrations can lead to crystal deposition on the cartilage surface, contributing to chondrocyte damage and extracellular matrix (ECM) degradation, potentially accelerating OA progression. Calcium-dependent mechanosensors play a critical role in mediating catabolic responses in chondrocytes, but it remains unclear whether glucocorticoids affect chondrocyte mechanosensitivity or biomechanical properties. This in vitro study examined the dose-dependent effects of triamcinolone acetonide (TA) on chondrocyte biomechanics and mechanosensitivity. Primary human chondrocytes (N = 23) were cultured for one week with TA (2 µM–2 mM) or control medium. Cytoskeletal organization was visualized by F-actin staining (N = 6), and cellular elasticity (N = 5) was quantified via atomic force microscopy (AFM). Mechanotransduction was analyzed by Ca2+ imaging (Fluo-4 AM) upon AFM-based indentation (500 nN). Expression of matrix-related and mechanosensitive genes (N = 9) was assessed by qPCR. TA exposure induced a concentration-dependent reorganization of the F-actin cytoskeleton, pronounced at 0.2 mM, accompanied by a significant increase in the elastic modulus (p < 0.001). TA further augmented Ca2+ fluorescence intensity under basal conditions and during mechanical stimulation. Blocking cationic mechanosensitive channels with GsMtx4 (N = 3) markedly reduced the TA-evoked Ca2+ influx (p < 0.0001). Significant reduction in MMP1 was observed on the transcriptional level (N = 9) after TA-treatment (p < 0.05). In summary, TA enhances chondrocyte stiffness through cytoskeletal condensation and amplifies Ca2+-dependent mechanotransduction but reduces MMP1 expression, indicating a dual biomechanical response of chondrocytes to OA under exposure of potent corticosteroid. Full article
(This article belongs to the Special Issue New Insights into Intercellular Communication and Signal Transduction)
Show Figures

Figure 1

15 pages, 1263 KB  
Review
Hereditary Spherocytosis: Linking Ion Transport Defects to Osmotic Gradient Ektacytometry Profiles—A Review
by Joan Lluís Vives-Corrons and Elena Krishnevskaya
Int. J. Mol. Sci. 2026, 27(2), 721; https://doi.org/10.3390/ijms27020721 - 10 Jan 2026
Viewed by 199
Abstract
Hereditary spherocytosis (HS) is the most common inherited red blood cell (RBC) membrane disorder and has traditionally been attributed to defects in cytoskeletal proteins such as spectrin, ankyrin, band 3, and protein 4.2. Growing evidence, however, shows that disturbances in ion transport also [...] Read more.
Hereditary spherocytosis (HS) is the most common inherited red blood cell (RBC) membrane disorder and has traditionally been attributed to defects in cytoskeletal proteins such as spectrin, ankyrin, band 3, and protein 4.2. Growing evidence, however, shows that disturbances in ion transport also contribute to HS pathophysiology. This review summarizes current understanding of HS by integrating membrane structural defects with abnormalities in ion homeostasis and highlights the diagnostic value of osmotic gradient ektacytometry (OGE). Beyond membrane instability, HS erythrocytes exhibit increased cation permeability with abnormal Na+ influx and K+ loss, leading to cellular dehydration, elevated mean corpuscular hemoglobin concentration (MCHC), and reduced deformability. Dysregulation of mechanosensitive and Ca2+-activated K+ channels (PIEZO1, KCNN4) may modulate disease expression. OGE—now the reference functional test for RBC deformability—identifies reproducible phenotypes reflecting hydration status, including dehydrated (HS1) and partially hydrated (HS2) HS profiles. When combined with next-generation sequencing (NGS), OGE improves differentiation between HS and overlapping membranopathies such as hereditary xerocytosis or stomatocytosis. In conclusion, HS is a multifactorial disorder resulting from the interplay between cytoskeletal fragility, oxidative stress, and dysregulated ion transport. Integrated diagnostic strategies that combine hematologic indices, OGE, and targeted NGS enhance diagnostic accuracy, support genotype–phenotype interpretation, and guide individualized clinical management. Future efforts should focus on ion-channel modulation and wider adoption of functional assays in precision hematology. Full article
Show Figures

Figure 1

18 pages, 1109 KB  
Review
Exercise-Based Mechanotherapy: From Biomechanical Principles and Mechanotransduction to Precision Regenerative Rehabilitation
by Guang-Zhen Jin
Int. J. Mol. Sci. 2026, 27(2), 694; https://doi.org/10.3390/ijms27020694 - 9 Jan 2026
Viewed by 205
Abstract
Mechanical loading generated during physical activity and exercise is a fundamental determinant of musculoskeletal development, adaptation, and regeneration. Exercise-based mechanotherapy, encompassing structured movement, resistance training, stretching, and device-assisted loading, has evolved from empirical rehabilitation toward mechanism-driven and precision-oriented therapeutic strategies. At the macroscopic [...] Read more.
Mechanical loading generated during physical activity and exercise is a fundamental determinant of musculoskeletal development, adaptation, and regeneration. Exercise-based mechanotherapy, encompassing structured movement, resistance training, stretching, and device-assisted loading, has evolved from empirical rehabilitation toward mechanism-driven and precision-oriented therapeutic strategies. At the macroscopic level, biomechanical principles governing load distribution, stress–strain relationships, and tissue-specific adaptation provide the physiological basis for exercise-induced tissue remodeling. At the molecular level, mechanical cues are transduced into biochemical signals through conserved mechanotransduction pathways, including integrin–FAK–RhoA/ROCK signaling, mechanosensitive ion channels such as Piezo, YAP/TAZ-mediated transcriptional regulation, and cytoskeleton–nucleoskeleton coupling. These mechanisms orchestrate extracellular matrix (ECM) remodeling, cellular metabolism, and regenerative responses across bone, cartilage, muscle, and tendon. Recent advances in mechanotherapy leverage these biological insights to promote musculoskeletal tissue repair and regeneration, while emerging engineering innovations, including mechanoresponsive biomaterials, 4D-printed dynamic scaffolds, and artificial intelligence-enabled wearable systems, enable mechanical loading to be quantified, programmable, and increasingly standardized for individualized application. Together, these developments position exercise-informed precision mechanotherapy as a central strategy for prescription-based regenerative rehabilitation and long-term musculoskeletal health. Full article
Show Figures

Graphical abstract

30 pages, 1561 KB  
Review
Molecular Mechanisms of Chondrocyte Hypertrophy Mediated by Physical Cues and Therapeutic Strategies in Osteoarthritis
by Guang-Zhen Jin
Int. J. Mol. Sci. 2026, 27(2), 624; https://doi.org/10.3390/ijms27020624 - 8 Jan 2026
Viewed by 405
Abstract
Osteoarthritis (OA) is a multifactorial degenerative joint disease in which aberrant mechanical cues act in concert with metabolic dysregulation and chronic low-grade inflammation, with chondrocyte hypertrophy representing a key pathological event driving cartilage degeneration. Alterations in extracellular matrix (ECM) properties—including mechanical loading, stiffness [...] Read more.
Osteoarthritis (OA) is a multifactorial degenerative joint disease in which aberrant mechanical cues act in concert with metabolic dysregulation and chronic low-grade inflammation, with chondrocyte hypertrophy representing a key pathological event driving cartilage degeneration. Alterations in extracellular matrix (ECM) properties—including mechanical loading, stiffness and viscoelasticity, topological organization, and surface chemistry—regulate hypertrophic differentiation and matrix degradation in a zone-, stage-, and scale-dependent manner. Microscale measurements often reveal localized stiffening in superficial zones during early OA, whereas bulk tissue testing can show softening or heterogeneous changes in deeper zones or advanced stages, highlighting the context-dependent nature of ECM mechanics. These biophysical signals are sensed by integrin-based adhesion complexes, primary cilia, mechanosensitive ion channels (TRP/Piezo), and the actin cytoskeleton–nucleus continuum, and are transduced into intracellular pathways with zone- and stage-specific effects, governing chondrocyte fate under physiological and osteoarthritic conditions. Mechanism-based anti-hypertrophic strategies include biomimetic scaffold design for focal defects, dynamic mechanical stimulation targeting early OA, and multimodal approaches integrating mechanical cues with biochemical factors, gene modulation, drug delivery, or cell-based therapies. Collectively, this review provides an integrated mechanobiological framework for understanding cartilage degeneration and highlights emerging opportunities for disease-modifying interventions targeting chondrocyte hypertrophy. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Therapeutic Approaches to Osteoarthritis)
Show Figures

Figure 1

25 pages, 1727 KB  
Review
Macrophage Plasticity and Regulatory Networks During the Transition from Inflammation to Fibrosis in the Kidney
by Yehun Moon, Jintaek Hong, Jinwoo Chung and Jea-Hyun Baek
Life 2026, 16(1), 52; https://doi.org/10.3390/life16010052 - 29 Dec 2025
Viewed by 473
Abstract
Kidney fibrosis represents the final common pathway of nearly all progressive renal diseases, linking acute kidney injury (AKI) and chronic kidney disease (CKD) through a maladaptive repair process. Regardless of etiology, persistent inflammation and excessive extracellular matrix (ECM) deposition drive irreversible structural distortion [...] Read more.
Kidney fibrosis represents the final common pathway of nearly all progressive renal diseases, linking acute kidney injury (AKI) and chronic kidney disease (CKD) through a maladaptive repair process. Regardless of etiology, persistent inflammation and excessive extracellular matrix (ECM) deposition drive irreversible structural distortion and functional decline in the kidney. Among cellular mediators, macrophages occupy a central role across the continuum from acute injury to fibrosis, orchestrating both tissue injury and repair through dynamic transitions between pro-inflammatory (M1) and pro-fibrotic (M2) states in response to local cues. Here, we synthesize macrophage-driven mechanisms of renal fibrosis, emphasizing recruitment, infiltration, and local proliferation mediated by chemokine–receptor networks and mechanosensitive ion channels. In addition, in this review paper, we provide an overview on the dual roles of macrophages in acute inflammation and chronic remodeling through key cytokine signaling pathways (TLR4/NF-κB, IL-4/STAT6, TGF-β/Smad, IL-10/STAT3), highlighting how metabolic reprogramming, mechanochemical feedback via Yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) signaling, and epigenetic modulators collectively stabilize the fibrotic macrophage phenotype. Also, emerging insights into mitochondrial dysfunction, succinate–succinate receptor 1 (SUCNR1) signaling, and autophagy dysregulation reveal the metabolic basis of macrophage persistence in fibrotic kidneys. Understanding these multilayered regulatory circuits offers a framework for therapeutic strategies that selectively target macrophage-dependent fibrogenesis to halt the transition from acute injury to chronic renal failure. Full article
(This article belongs to the Special Issue New Insights into Cellular Inflammation and Regeneration)
Show Figures

Figure 1

54 pages, 6191 KB  
Review
Integration of cAMP and TRPV4 Signaling to Optimize Collagen Remodeling for Management of Fibrosis
by Connie Di Raimo and Christopher McCulloch
Cells 2026, 15(1), 56; https://doi.org/10.3390/cells15010056 - 28 Dec 2025
Viewed by 506
Abstract
Fibrosis manifests as an excessive accumulation of fibrillar collagen in tissues where secreted collagen exceeds degradation. Myofibroblasts are important contributors to the excessive collagen seen in fibrotic lesions. Accordingly, targeting signaling pathways that enhance collagen degradation and subdue myofibroblast differentiation has the potential [...] Read more.
Fibrosis manifests as an excessive accumulation of fibrillar collagen in tissues where secreted collagen exceeds degradation. Myofibroblasts are important contributors to the excessive collagen seen in fibrotic lesions. Accordingly, targeting signaling pathways that enhance collagen degradation and subdue myofibroblast differentiation has the potential to optimize collagen remodeling and improve organ fibrosis. One of the most promising molecular targets for therapeutic development is the G protein-coupled receptor (GPCR) family, which is diverse, cell-type-specific, multi-pass transmembrane receptors that participate in the regulation of extracellular matrix remodeling. GPCRs are categorized into multiple subclasses, some of which activate signaling cascades that can augment or reduce pro-fibrotic processes, depending on which Gα class is activated. Specifically, activation of Gαs GPCR stimulates production of the second messenger, cyclic adenosine monophosphate (cAMP), which generally inhibits pro-fibrotic mediators. A related, second approach for control of fibrosis is the blockade of a specific mechanosensitive, Ca2+-permeable channel that is implicated in fibrosis and contributes to myofibroblast differentiation, the transient receptor potential vanilloid type 4 (TRPV4). In health, TRPV4 activation regulates collagen remodeling, but when dysregulated, it promotes pro-fibrotic gene expression through mechanosensitive transcription factors. In this review, we focus on the functions of the Gαs GPCR pathway and TRPV4 activation through the interplay of the second messengers cAMP and Ca2+ ions. Ca2+ influx modulates cAMP levels by regulating phosphodiesterases and adenylyl cyclases. We consider evidence that Gαs GPCR and TRPV4 signaling pathways interact antagonistically to either promote collagen degradation or to increase the formation of myofibroblasts through signaling that involves cAMP and Ca2+ conductance. Coordinated activation of the Gαs GPCR pathway and inhibition of TRPV4 could provide a novel, bimodal approach to control tissue fibrosis. Full article
(This article belongs to the Special Issue Transient Receptor Potential (TRP) Channels and Health and Disease)
Show Figures

Figure 1

39 pages, 2194 KB  
Review
Tooth Pulp Afferents and Transient Receptor Potential (TRP) Ion Channels as Key Regulators of Pulp Homeostasis, Inflammation, and Pain
by Man-Kyo Chung, Swarnalakshmi Raman and Arpad Szallasi
Int. J. Mol. Sci. 2026, 27(1), 182; https://doi.org/10.3390/ijms27010182 - 23 Dec 2025
Viewed by 506
Abstract
Dental pain often arises from the compromised integrity of the tooth pulp due to dental injury or caries. The dentin–pulp complex has long been considered to be central to the unique biology of dental pain. Most trigeminal ganglion afferents projecting into tooth pulp [...] Read more.
Dental pain often arises from the compromised integrity of the tooth pulp due to dental injury or caries. The dentin–pulp complex has long been considered to be central to the unique biology of dental pain. Most trigeminal ganglion afferents projecting into tooth pulp are myelinated neurons, which lose their myelination at the site of peripheral dentin innervation. The pulpal afferents likely combine multiple internal and external stimuli to mediate nociception and maintain pulp homeostasis. Transient receptor potential (TRP) ion channels in neurons and odontoblasts, along with mechanosensitive ion channels such as Piezo, form a key molecular hub for pulpal nociception by sensing thermal, chemical, and hydrodynamic stimuli. Among these, TRP vanilloid 1 (TRPV1) mediates nociception and the release of calcitonin-gene-related peptides (CGRPs), while TRP canonical 5 (TRPC5) mediates cold pain. TRP melastatin 8 (TRPM8) mediates the transduction of hyperosmotic stimuli. Pulpitis elevates endogenous TRPV1 and TRPA1 agonists, while inflammatory mediators sensitize TRP channels, amplifying pain. CGRP recruits immune cells and promotes bacterial clearance and reparative dentinogenesis, yet the roles of TRP channels in these processes remain unclear. Future studies should use advanced multi-omics and in vivo or organotypic models in animal and human teeth to define TRP channel contributions to pain, immune responses, and regeneration. Understanding neuronal and non-neuronal TRP channel interactions and their integration with other ion channels may enable novel analgesic and regenerative strategies in dentistry. Full article
(This article belongs to the Special Issue TRP Channels for Pain, Itch and Inflammation Relief: 2nd Edition)
Show Figures

Figure 1

35 pages, 3850 KB  
Review
Glial Ion Channels in Myelin Pathophysiology: Insights from Leukodystrophies
by Marcello Belfiore, Sergio Visentin and Elena Ambrosini
Life 2025, 15(12), 1922; https://doi.org/10.3390/life15121922 - 15 Dec 2025
Viewed by 753
Abstract
Leukodystrophies (LDs) constitute a heterogeneous group of genetic diseases in which mutations in glial cell genes lead to alterations in myelin formation and/or maintenance, ultimately causing white matter dysfunction. Increasing evidence on the genetic basis of LDs has revealed that proteins expressed not [...] Read more.
Leukodystrophies (LDs) constitute a heterogeneous group of genetic diseases in which mutations in glial cell genes lead to alterations in myelin formation and/or maintenance, ultimately causing white matter dysfunction. Increasing evidence on the genetic basis of LDs has revealed that proteins expressed not only by myelin-forming oligodendrocytes, but also by other glial cell types, play essential roles in myelination. By elucidating disease mechanisms, these studies have uncovered novel cellular and molecular contributors to myelin biogenesis and function, including ion channels. This is exemplified by the recent identification of mutations in the TMEM63A gene, which encodes the homonymous mechanosensitive channel, as the causative factor of the rare hypomyelinating LD HLD19 and by mutations in the chloride channel ClC-2 as responsible for the development of the vacuolating ClC2 LD. Together, this evidence has opened new perspectives on the crucial role of mechanosensitivity and ionic homeostasis for proper myelin development and structural integrity. In this review, we summarize recent advances on the role of glial ion channels in healthy white matter development and preservation, as well as their direct and indirect contributions to LD pathomechanisms. Finally, we discuss emerging therapeutic implications of these studies for LDs and other demyelinating conditions and emphasize the considerable potential of a cross-pathological, integrative approach to uncover shared and disease-specific mechanisms of demyelination. Full article
(This article belongs to the Special Issue Ion Channels and Neurological Disease: 2nd Edition)
Show Figures

Figure 1

13 pages, 11563 KB  
Article
The Mutation of piezo1 Weakens the Intermuscular Bones in Zebrafish and Crucian Carp
by Xinyu Zhang, Jinyuan Che, Zhuang Li, Baolong Bao and Chunxin Fan
Int. J. Mol. Sci. 2025, 26(22), 10851; https://doi.org/10.3390/ijms262210851 - 8 Nov 2025
Viewed by 656
Abstract
Intermuscular bones (IBs), unique skeletal features found only in teleost fishes, pose significant challenges to food processing and consumption. While recent studies have identified several key genetic regulators of IB development, the role of mechanosensory mechanisms remains largely unexplored. This study investigated the [...] Read more.
Intermuscular bones (IBs), unique skeletal features found only in teleost fishes, pose significant challenges to food processing and consumption. While recent studies have identified several key genetic regulators of IB development, the role of mechanosensory mechanisms remains largely unexplored. This study investigated the role of Piezo1, a critical mechanosensitive ion channel, in IB formation using zebrafish and crucian carp models. Our findings demonstrated that piezo1 was expressed in the myoseptum of zebrafish, and CRISPR/Cas9-mediated knockout of this gene resulted in shorter and smaller IBs. Similar knockout experiments in crucian carp confirmed the conserved role of Piezo1 across cyprinid species. These results established Piezo1 as a key regulator of IB development, providing new insights into the molecular mechanisms underlying this process and suggesting potential strategies for breeding IB-free fish strains through modulation of mechanosensory pathways. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

28 pages, 11120 KB  
Article
Pharmacological Intervention of PIEZO1 for Butterfly Eyespot Color Patterns in Junonia orithya
by Momo Ozaki and Joji M. Otaki
Receptors 2025, 4(4), 20; https://doi.org/10.3390/receptors4040020 - 21 Oct 2025
Viewed by 890
Abstract
Background: PIEZO channels are mechanoreceptors expressed in various cells. Their contributions to animal development are not entirely clear. According to the physical distortion hypothesis, developmental organizers for butterfly wing eyespots receive and release mechanical signals in pupal wing tissues during development, initiating [...] Read more.
Background: PIEZO channels are mechanoreceptors expressed in various cells. Their contributions to animal development are not entirely clear. According to the physical distortion hypothesis, developmental organizers for butterfly wing eyespots receive and release mechanical signals in pupal wing tissues during development, initiating a calcium signaling cascade and gene expression changes. Objectives: We tested the possible involvement of PIEZO1 in butterfly wing color pattern formation, according to the physical distortion hypothesis. Methods: We performed a pharmacological intervention of PIEZO1, focusing on the eyespots of Junonia orithya. Chemical modulators of PIEZO1 and the actin cytoskeleton were injected into pupae immediately after pupation during the critical period of color pattern determination, and the eyespot color patterns of the emerging adult wings were analyzed. We also tested dimethyl sulfoxide (DMSO) because it was used as a solvent. Results: DMSO significantly enlarged most eyespots examined. In contrast, the specific PIEZO1 activator Jedi2 induced significant reduction in the dorsal hindwing eyespots. Another specific PIEZO1 activator, Yoda1, also induced similar changes, although less clearly. The mechanosensitive channel blocker GsMTx4 produced compromised eyespots in an individual, although statistical support for modification was weak. The actin polymerization activator phalloidin induced blue foci in the ventral forewing eyespots. PIEZO expression in the pupal wings was demonstrated by RT-PCR. Conclusions: These results suggest that eyespot organizers in butterfly wings may employ a PIEZO-mediated mechanotransduction pathway to regulate eyespot color patterns, supporting the physical distortion hypothesis. These results highlight the importance of PIEZO in developmental organizers in animals. Full article
Show Figures

Figure 1

24 pages, 2956 KB  
Article
Hypergravity Enhances Stretch Sensitivity in Rat Cardiomyocytes via Increased Expression and Activity of Stretch-Activated Channels
by Andre G. Kamkin, Valentin I. Zolotarev, Olga Kamkina, Vadim M. Mitrokhin, Viktor E. Kazansky, Andrey Bilichenko, Anastasia S. Rodina, Alexandra D. Zolotareva and Mitko Mladenov
Int. J. Mol. Sci. 2025, 26(19), 9284; https://doi.org/10.3390/ijms26199284 - 23 Sep 2025
Viewed by 986
Abstract
Although hypergravity may influence cardiac mechanosensitivity, the effects on specific ion channels remain inadequately understood. This research examined the effects of long-term hypergravity on the functional activity and transcriptional expression of mechanosensitive channels (MSCs) in rat ventricular cardiomyocytes. After 14 days of exposure [...] Read more.
Although hypergravity may influence cardiac mechanosensitivity, the effects on specific ion channels remain inadequately understood. This research examined the effects of long-term hypergravity on the functional activity and transcriptional expression of mechanosensitive channels (MSCs) in rat ventricular cardiomyocytes. After 14 days of exposure to 4g, rats were subjected to molecular and electrophysiological analyses. Significant remodeling of MSC-encoding genes was revealed by RNA-seq. Trpm7 (+41.23%, p = 0.0073) and Trpc1 (+68.23%, p = 0.0026) were significantly upregulated among non-selective cation channels, while Trpv2 (−62.19%, p = 0.0044) and Piezo2 (−57.58%, p = 0.0079) were significantly downregulated. Kcnmb1 (−47.84%, p = 0.0203) was suppressed, whereas Traak/K2P4.1 showed a strong increase (+239.48%, p = 0.0092), among K+-selective MSCs. Furthermore, Kir6.1 was significantly downregulated (−75.8%, p = 0.0085), whereas Kir6.2 was significantly upregulated (+38.58%, p = 0.0317). These results suggest targeted transcriptional reprogramming that suppresses pathways associated with maladaptive Ca2+ influx while enhancing Ca2+-permeable mechanosensitive channels alongside stabilized K+ conductance. At the structural level, cardiomyocytes from hypergravity exposure showed a 44% increase in membrane capacitance, consistent with hypertrophic remodeling, and sarcomere elongation (p < 0.001). Functionally, stretch-activated current (ISAC) was markedly hypersensitive in patch-clamp analysis: currents were induced at very small displacements (1–2 µm) and were significantly larger under 4–10 µm stretch (222–107% of control values). These findings indicate that chronic hypergravity induces coordinated molecular, structural, and functional remodeling of cardiomyocytes, characterized by increased membrane excitability, compensatory stabilizing mechanisms, and enhanced Ca2+ signaling. This demonstrates the flexibility of cardiac mechanotransduction under prolonged gravitational stress, with potential implications for understanding cardiovascular risks, arrhythmias, and hypertrophy associated with altered gravity environments. Full article
(This article belongs to the Special Issue New Insights into Cardiac Ion Channel Regulation 3.0)
Show Figures

Figure 1

15 pages, 5936 KB  
Article
Piezo1 and Piezo2 Ion Channels in Neuronal and Astrocytic Responses to MEA Implants in the Rat Somatosensory Cortex
by Pegah Haghighi, Thomas J. Smith, Ghazaal Tahmasebi, Sophia Vargas, Madison S. Jiang, Ajaree C. Massaquoi, Johnathan Huff, Jeffrey R. Capadona and Joseph J. Pancrazio
Int. J. Mol. Sci. 2025, 26(18), 9001; https://doi.org/10.3390/ijms26189001 - 16 Sep 2025
Viewed by 2034
Abstract
Intracortical microelectrode arrays (MEAs) are tools for recording and stimulating neural activity, with potential applications in prosthetic control and treatment of neurological disorders. However, when chronically implanted, the long-term functionality of MEAs is hindered by the foreign body response (FBR), characterized by gliosis, [...] Read more.
Intracortical microelectrode arrays (MEAs) are tools for recording and stimulating neural activity, with potential applications in prosthetic control and treatment of neurological disorders. However, when chronically implanted, the long-term functionality of MEAs is hindered by the foreign body response (FBR), characterized by gliosis, neuronal loss, and the formation of a glial scar encapsulating layer. This response begins immediately after implantation and is exacerbated by factors such as brain micromotion and the mechanical mismatch between stiff electrodes and soft brain tissue, leading to signal degradation. Despite progress in mitigating these issues, the underlying mechanisms of the brain’s response to MEA implantation remain unclear, particularly regarding how cells sense and respond to the associated mechanical forces. Mechanosensitive ion channels, such as the Piezo family, are key mediators of cellular responses to mechanical stimuli. In this study, silicon-based NeuroNexus MEAs consisting of four shanks were implanted in the rat somatosensory cortex for sixteen weeks. Weekly neural recordings were conducted to assess signal quality over time, revealing a decline in active electrode yield and signal amplitude. Immunohistochemical analysis showed an increase in GFAP intensity and decreased neuronal density near the implant site. Furthermore, Piezo1—but not Piezo2—was strongly expressed in GFAP-positive astrocytes within 25 µm of the implant. Piezo2 expression appeared relatively uniform within each brain slice, both in and around the MEA implantation site across cortical layers. Our study builds on previous work by demonstrating a potential role of Piezo1 in the chronic FBR induced by MEA implantation over a 16-week period. Our findings highlight Piezo1 as the primary mechanosensitive channel driving chronic FBR, suggesting it may be a target for improving MEA design and long-term functionality. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

27 pages, 3474 KB  
Article
A ‘Spicy’ Mechanotransduction Switch: Capsaicin-Activated TRPV1 Receptor Modulates Osteosarcoma Cell Behavior and Drug Sensitivity
by Arianna Buglione, David Becerril Rodriguez, Simone Dogali, Giulia Alloisio, Chiara Ciaccio, Marco Luce, Stefano Marini, Luisa Campagnolo, Antonio Cricenti and Magda Gioia
Int. J. Mol. Sci. 2025, 26(18), 8816; https://doi.org/10.3390/ijms26188816 - 10 Sep 2025
Cited by 1 | Viewed by 1436
Abstract
Osteosarcoma (OS), the most common primary malignant bone tumor, arises in highly mechanosensitive tissue and exhibits marked heterogeneity and resistance to conventional therapies. While molecular drivers have been extensively characterized, the role of mechanical stimuli in OS progression remains underexplored. Here, we identify [...] Read more.
Osteosarcoma (OS), the most common primary malignant bone tumor, arises in highly mechanosensitive tissue and exhibits marked heterogeneity and resistance to conventional therapies. While molecular drivers have been extensively characterized, the role of mechanical stimuli in OS progression remains underexplored. Here, we identify the transient receptor potential vanilloid 1 (TRPV1) channel as a key regulator of mechanotransduction and drug responsiveness in OS cells. Using uniaxial cyclic stretch, we show that aggressive U-2 OS cells undergo TRPV1-dependent perpendicular reorientation, unlike the inert SAOS-2 cells. Confocal microscopy, immunohistochemistry, and atomic force microscopy reveal that nanomolar concentrations of capsaicin—a well-characterized TRPV1 agonist—chemically mimic this mechanical phenotype, altering metastatic traits including adhesion, edge architecture, migration, nuclear-to-cytoplasmic ratio, and sensitivity to doxorubicin and cisplatin. TRPV1 activation, whether mechanical or chemical, induces subtype-specific effects absent in healthy hFOB osteoblasts. Notably, it differentially regulates nuclear localization of the proto-oncogene Src in U-2 OS versus SAOS-2 cells. Corresponding changes in Src and acetylated histone H3 (acH3) levels support a role for TRPV1 in modulating the Src–acH3 mechanosignaling axis. These effects are tumor-specific, positioning TRPV1 as a mechanosensitive signaling hub that integrates mechanical and chemical cues to drive epigenetic remodeling and phenotypic plasticity in OS, with potential as a therapeutic target in aggressive, drug-resistant subtypes Full article
Show Figures

Figure 1

13 pages, 1509 KB  
Review
PIEZO Channels in Mechano-Inflammation: Gatekeepers of Neuroimmune Crosstalk
by Carmelo Pirri
Diseases 2025, 13(8), 263; https://doi.org/10.3390/diseases13080263 - 15 Aug 2025
Cited by 1 | Viewed by 3740
Abstract
Mechanical forces shape immune responses in both health and disease. PIEZO1 and PIEZO2, two mechanosensitive ion channels, have emerged as critical transducers of these forces, influencing inflammation, pain, fibrosis, and neuroimmune regulation. This review aims to synthesize the current evidence on the role [...] Read more.
Mechanical forces shape immune responses in both health and disease. PIEZO1 and PIEZO2, two mechanosensitive ion channels, have emerged as critical transducers of these forces, influencing inflammation, pain, fibrosis, and neuroimmune regulation. This review aims to synthesize the current evidence on the role of PIEZO channels in mechano-inflammation, with a specific focus on their regulatory function in neuroimmune crosstalk. A comprehensive narrative synthesis was performed using the literature from PubMed, Scopus, and Web of Science up to June 2025. Experimental, translational, and mechanistic studies involving PIEZO channels in inflammatory, fibrotic, and neuroimmune processes were included. PIEZO1 is broadly expressed in immune cells, fibroblasts, and endothelial cells, where it regulates calcium-dependent activation of pro-inflammatory pathways, such as NF-kB and STAT1. PIEZO2, enriched in sensory neurons, contributes to mechanosensory amplification of inflammatory pain. Both channels are mechanistically involved in neuroinflammation, glial activation, blood–brain barrier dysfunction, connective tissue fibrosis, and visceral hypersensitivity. PIEZO channels act as integrators of biomechanical and immunological signaling. Their roles as context-dependent gatekeepers of neuroimmune crosstalk make them attractive targets for novel therapies. Full article
Show Figures

Figure 1

23 pages, 4305 KB  
Article
Mechanotransduction-Driven Modulation of L-Type Calcium Channels: Roles of Nitric Oxide, S-Nitrosylation, and cGMP in Rat Ventricular Cardiomyocytes
by Olga V. Kamkina, Anastasia S. Rodina, Andre Kamkin, Andrei S. Bilichenko, Viktor E. Kazansky, Alexandra D. Zolotareva, Valentin I. Zolotarev, Stanislav A. Shileiko, Vadim M. Mitrokhin and Mitko I. Mladenov
Int. J. Mol. Sci. 2025, 26(15), 7539; https://doi.org/10.3390/ijms26157539 - 4 Aug 2025
Cited by 1 | Viewed by 1128
Abstract
L-type Ca2+ channels, particularly CaV1.2, play a crucial role in cardiac excitation-contraction coupling and are known to exhibit mechanosensitivity. However, the mechanisms regulating their response to mechanical stress remain poorly understood. To investigate the mechanosensitivity and nitric oxide (NO)-dependent [...] Read more.
L-type Ca2+ channels, particularly CaV1.2, play a crucial role in cardiac excitation-contraction coupling and are known to exhibit mechanosensitivity. However, the mechanisms regulating their response to mechanical stress remain poorly understood. To investigate the mechanosensitivity and nitric oxide (NO)-dependent regulation of L-type Ca2+ channels in rat ventricular cardiomyocytes, we used RNA sequencing to assess isoform expression and whole-cell patch-clamp recordings to measure L-type Ca2+ current (ICa,L) under controlled mechanical and pharmacological conditions. RNA sequencing revealed predominant expression of CaV1.2 (TPM: 0.1170 ± 0.0075) compared to CaV1.3 (0.0021 ± 0.0002) and CaV1.1 (0.0002 ± 0.0002). Local axial stretch (6–10 μm) consistently reduced ICa,L in proportion to stretch magnitude. The NO donor SNAP (200 μM) had variable effects on basal ICa,L in unstretched cells (stimulatory, inhibitory, or biphasic) but consistently restored stretch-reduced ICa,L to control levels. Ascorbic acid (10 μM), which reduces S-nitrosylation, increased basal ICa,L and partially restored the reduction caused by stretch, implicating S-nitrosylation in channel regulation. The sGC inhibitor ODQ (5 μM) decreased ICa,L in both stretched and unstretched cells, indicating involvement of the NO–cGMP pathway. Mechanical stress modulates L-type Ca2+ channels through a complex interplay between S-nitrosylation and NO–cGMP signaling, with S-nitrosylation playing a predominant role in stretch-induced effects. This mechanism may represent a key component of cardiac mechanotransduction and could be relevant for therapeutic targeting in cardiac pathologies involving mechanically induced dysfunction. Full article
(This article belongs to the Special Issue New Insights into Cardiac Ion Channel Regulation 3.0)
Show Figures

Figure 1

Back to TopTop