Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (696)

Search Parameters:
Keywords = meat contamination

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 1046 KB  
Review
Nanoformulated Curcumin for Food Preservation: A Natural Antimicrobial in Active and Smart Packaging Systems
by Edith Dube
Appl. Biosci. 2025, 4(4), 46; https://doi.org/10.3390/applbiosci4040046 (registering DOI) - 13 Oct 2025
Abstract
Food spoilage and contamination remain pressing global challenges, undermining food security and safety while driving economic losses. Conventional preservation strategies, including thermal treatments, refrigeration, and synthetic additives, often compromise nutritional quality and raise sustainability concerns, thereby necessitating natural, effective alternatives. Curcumin, a polyphenolic [...] Read more.
Food spoilage and contamination remain pressing global challenges, undermining food security and safety while driving economic losses. Conventional preservation strategies, including thermal treatments, refrigeration, and synthetic additives, often compromise nutritional quality and raise sustainability concerns, thereby necessitating natural, effective alternatives. Curcumin, a polyphenolic compound derived from Curcuma longa, has demonstrated broad-spectrum antimicrobial, antioxidant, and anti-inflammatory activities, making it a promising candidate for food preservation. However, its poor solubility, instability, and low bioavailability limit direct applications in food systems. Advances in nanotechnology have enabled the development of nanoformulated curcumin, enhancing solubility, stability, controlled release, and functional efficacy. This review examines the antimicrobial mechanisms of curcumin and its nanoformulations, including membrane disruption, oxidative stress via reactive oxygen species, quorum sensing inhibition, and biofilm suppression. Applications in active and smart packaging are highlighted, where curcumin nanoformulation not only extends shelf life but also enables freshness monitoring through pH-responsive color changes. Evidence across meats, seafood, fruits, dairy, and beverages shows improved microbial safety, oxidative stability, and sensory quality. Multifunctional systems, such as hybrid composites and stimuli-responsive carriers, represent next-generation tools for sustainable packaging. However, challenges remain with scale-up, migration safety, cytotoxicity, and potential promotion of antimicrobial resistance gene (ARG) transfer. Future research should focus on safety validation, advanced nanocarriers, ARG-aware strategies, and regulatory frameworks. Overall, nanoformulated curcumin offers a natural, versatile, and eco-friendly approach to food preservation that aligns with clean-label consumer demand. Full article
21 pages, 394 KB  
Article
Urinary Biomonitoring of Mycotoxins in Spanish Adults: Predictors of Exposure and Health Risk Evaluation
by Borja Peris-Camarasa, Clara Coscollà, Pablo Dualde and Olga Pardo
Toxics 2025, 13(10), 856; https://doi.org/10.3390/toxics13100856 - 10 Oct 2025
Viewed by 188
Abstract
Mycotoxins are toxic secondary metabolites produced by fungi, frequently present in food and representing significant health hazards. Exposure occurs through the consumption of contaminated foods or animal-derived products from livestock fed with contaminated feed. This study evaluated internal exposure to twelve mycotoxins in [...] Read more.
Mycotoxins are toxic secondary metabolites produced by fungi, frequently present in food and representing significant health hazards. Exposure occurs through the consumption of contaminated foods or animal-derived products from livestock fed with contaminated feed. This study evaluated internal exposure to twelve mycotoxins in 492 first-morning urine samples from adults, aged 18–65 years, in the Valencian Community, Spain. Samples were analysed using a “dilute-and-shoot” approach followed by UHPLC-MS/MS. Aflatoxins (AFs) were the most frequently detected, with a geometric mean (GM) of 1.17 ng/mL and a 95th percentile (P95) of 6.04 ng/mL. Alternariol (AOH), present in 63% of samples, showed high concentrations (GM: 0.98 ng/mL; P95: 4.74 ng/mL). Emerging mycotoxins such as alternariol monomethyl ether (AME), citrinin (CIT), and sterigmatocystin (STER) were also considered due to their potential health impacts. Exposure levels correlated with variables including sex, age, annual income, smoking status, and recent consumption of meat and cereals. Probable daily intakes (PDIs) were estimated from urinary concentrations to support risk assessment. Hazard Quotients (HQs), Margins of Exposure (MOEs), the Hazard Index (HI) and the total Margin of Exposure (MOET) were calculated to evaluate the risk associated with mycotoxin exposure. Findings suggest that potential health risks cannot be excluded. Full article
(This article belongs to the Section Exposome Analysis and Risk Assessment)
Show Figures

Graphical abstract

39 pages, 1924 KB  
Review
Comprehensive Review of Silver Nanoparticles in Food Packaging Applications
by Erkan Efe Okur, Furkan Eker, Emir Akdaşçi, Mikhael Bechelany and Sercan Karav
Int. J. Mol. Sci. 2025, 26(20), 9842; https://doi.org/10.3390/ijms26209842 - 10 Oct 2025
Viewed by 138
Abstract
In recent years, the use of silver nanoparticles (AgNPs) in various fields has been investigated due to their highly potent properties. One of these areas is the adaptation of AgNPs to food packaging/preservation technologies. The primary reasons for the use of AgNPs in [...] Read more.
In recent years, the use of silver nanoparticles (AgNPs) in various fields has been investigated due to their highly potent properties. One of these areas is the adaptation of AgNPs to food packaging/preservation technologies. The primary reasons for the use of AgNPs in food preservation studies are their high levels of antibacterial, antioxidant, and antifungal activities. In particular, the slow and controlled release of silver provides a sustained protective effect throughout the contact period of AgNP-integrated packaging with food and reduces microbial load by preventing biofilm formation. Furthermore, high thermal stability of AgNPs provides high protection to foods under various conditions. Their high surface-area-to-volume ratio, making them effective even at low concentrations, further supports AgNPs as a promising alternative in food preservation technologies. Moreover, their ease of surface modification facilitates the integration of these nanoparticles (NPs) into polymer matrices, biodegradable films, and coatings. Additionally, some AgNP-based films are also used in smart packaging applications, providing a color change indicator of degradation. Their broad pH tolerance enhances their applicability to a variety of food types, from dairy to meat products. For all these reasons, AgNPs are considered as one of the essential components of innovative food packaging to slow down food spoilage, prevent microbial contamination, and provide safer, longer-lasting products to the consumer, and studies on them are ongoing. Full article
(This article belongs to the Special Issue Innovative Nanomaterials from Functional Molecules)
Show Figures

Figure 1

14 pages, 725 KB  
Article
Occurrence and Characteristics of Salmonella spp., L. monocytogenes, Y. enterocolitica, and Campylobacter spp. in Raw Meat-Based Diets for Pets
by Désirée Tahnee Schmid, Karen Barmettler, Marc J. A. Stevens and Roger Stephan
Pets 2025, 2(4), 35; https://doi.org/10.3390/pets2040035 - 7 Oct 2025
Viewed by 233
Abstract
Raw meat-based diets (RMBDs) have gained popularity over the past few years. However, there is growing concern about their safety. The study objective was to evaluate the prevalence and characteristics of the pathogens Salmonella spp., Listeria monocytogenes, Yersinia enterocolitica, and Campylobacter [...] Read more.
Raw meat-based diets (RMBDs) have gained popularity over the past few years. However, there is growing concern about their safety. The study objective was to evaluate the prevalence and characteristics of the pathogens Salmonella spp., Listeria monocytogenes, Yersinia enterocolitica, and Campylobacter spp. in frozen commercially sold RMBDs. One hundred raw meat-based diet products (meat originating from Switzerland, Germany, Austria, Spain, Scandinavia, South Africa, and Australia) were purchased online or in local stores and identified using culture-based methods. Isolates were further characterized by phenotypic and whole genome sequencing-based methods. In total, 11% (n = 11) of the samples tested positive for Salmonella spp., 41% (n = 41) for L. monocytogenes, 58% (n = 58) for Y. enterocolitica, and 3% (n = 3) for Campylobacter spp. Other than for Salmonella, there are no legal regulations concerning contamination of RMBDs with these zoonotic pathogens. The results of our study show that it is indicated to reconsider the requirements for the microbiological quality of RMBDs and to further raise awareness regarding the risks of handling and feeding RMBDs. Full article
Show Figures

Figure 1

25 pages, 5550 KB  
Article
Enhancing Chicken Meat Quality with User-Friendly Decontamination Wipes
by Suman Talukder, Arup Ratan Sen, Immanuel Prince Devadason, Ashim Kumar Biswas, Murthy Suman Kumar, Himani Dhanze, Kiran Narayan Bhilegaonkar, Hung Nguyen, Delia Grace and Ram Pratim Deka
Foods 2025, 14(19), 3391; https://doi.org/10.3390/foods14193391 - 30 Sep 2025
Viewed by 341
Abstract
The unhygienic practices in retail poultry meat shops adversely affect chicken meat quality and shelf life. To address this issue, a meat-surface-decontaminating wipe was developed. Deionized water, jamun leaf (Syzygium cumini) extracts, and other generally recognized as safe ingredients were used [...] Read more.
The unhygienic practices in retail poultry meat shops adversely affect chicken meat quality and shelf life. To address this issue, a meat-surface-decontaminating wipe was developed. Deionized water, jamun leaf (Syzygium cumini) extracts, and other generally recognized as safe ingredients were used to prepare a decontamination solution. A sterile non-woven cloth soaked in the solution was applied over the meat surface as a decontamination wipe. Treated and untreated meat samples were stored at 4 ± 1 °C under aerobic packaging conditions, and various meat quality parameters were evaluated at every 1-day interval until the onset of spoilage. It was observed that the wipe could significantly reduce 2.31 log microbial loads (p = 0.00005, CI-95%, 1.85, 2.77) over the meat surface. With the increasing storage intervals, the meat quality parameters changed significantly (p < 0.05), and the treated chicken samples spoiled on day 6, whereas the control spoiled on day 5. The meat spoilage was confirmed by the evaluation of quality changes in the stored meat. Additionally, the wipe could cause 1.14 (p = 0.00000, CI-95%, 1.01, 1.25) and 1.03 (p = 0.00005, CI-95%, 0.90, 1.16) log reductions of E. coli and S. aureus, respectively. Based on the results, it was concluded that the decontamination wipe could improve the meat quality and shelf life of retail chicken meat without affecting the sensory quality attributes. Full article
(This article belongs to the Section Meat)
Show Figures

Figure 1

16 pages, 2201 KB  
Article
Electrochemical Immunodetection of Bacillus anthracis Spores
by Karolina Morawska, Tomasz Sikora, Aleksandra Nakonieczna, Renata Tyśkiewicz, Monika Wiśnik-Sawka, Łukasz Osuchowski, Paulina Osuchowska, Michał Grabka and Zygfryd Witkiewicz
Sensors 2025, 25(19), 5948; https://doi.org/10.3390/s25195948 - 24 Sep 2025
Viewed by 470
Abstract
The Centers for Disease Control and Prevention (CDC) classifies Bacillus anthracis as one of the most dangerous pathogens that may affect public health and national security. Due to its importance as a potential biological weapon, this bacteria has been classified in the highest [...] Read more.
The Centers for Disease Control and Prevention (CDC) classifies Bacillus anthracis as one of the most dangerous pathogens that may affect public health and national security. Due to its importance as a potential biological weapon, this bacteria has been classified in the highest category A, together with such pathogens as variola virus or botulinum neurotoxin. Characteristic features of this pathogen that increase its military importance are the ease of its cultivation, transport, and storage and its ability to create survival forms that are extremely resistant to environmental conditions. However, beyond bioterrorism, B. anthracis is also a naturally occurring pathogen. Anthrax outbreaks occur in livestock and wildlife, particularly in spore-contaminated regions of Africa, Asia, and North America. Spores persist for decades, leading to recurrent infections and zoonotic transmission through direct contact, inhalation, or consumption of contaminated meat. This work presents a new electrochemical method for detecting and quantifying B. anthracis in spore form using a selective immune reaction. The developed method is based on the thiol-modified electrodes that constitute the sensing element of the electrochemical system. Tests with the B. anthracis spore suspension showed that the detection limit for this pathogen is as low as 103 CFU/mL. Furthermore, it was possible to quantify the analyte with a sensitivity of 11 mV/log (CFU/mL). Due to several features, such as low unit cost, portability, and minimal apparatus demands, this method can be easily implemented in field analyzers for this pathogen and provides an alternative to currently used techniques and devices. Full article
Show Figures

Figure 1

13 pages, 2502 KB  
Article
Real-Time and Selective Detection of Pseudomonas aeruginosa in Beef Samples Using a g-C3N4-Doped Multimetallic Perovskite-Based Electrochemical Aptasensor
by Sarah S. Albalawi, Naeem Akhtar and Waleed A. El-Said
Biosensors 2025, 15(10), 634; https://doi.org/10.3390/bios15100634 - 23 Sep 2025
Viewed by 288
Abstract
The alarming rise in foodborne illnesses, particularly those associated with microbial contamination in meat products, presents a serious challenge to global food safety. Among these microbial threats, Pseudomonas aeruginosa (P. aeruginosa) poses a critical threat due to its biofilm-forming capability and [...] Read more.
The alarming rise in foodborne illnesses, particularly those associated with microbial contamination in meat products, presents a serious challenge to global food safety. Among these microbial threats, Pseudomonas aeruginosa (P. aeruginosa) poses a critical threat due to its biofilm-forming capability and prevalence in contaminated beef, highlighting its effective real-time detection. Herein, we report the fabrication of a novel electrochemical aptasensor based on multimetal perovskite (FeCoCuNiO) doped with urea-derived graphitic carbon nitride (g-C3N4), synthesized via a sol–gel combustion method. The FeCoCuNiO-g-C3N4 nanocomposite was then coated onto a graphitic pencil electrode and functionalized with a DNA-based aptamer specific towards P. aeruginosa. The resulting aptasensor exhibited a low detection limit of 3.03 CFU mL−1 with high selectivity and sensitivity, and was successfully applied to real-time detection of P. aeruginosa in food samples. To the best of our knowledge, this work presents the first FeCoCuNiO-g-C3N4-based aptasensor for bacterial detection, offering a promising platform for food safety assurance and public health protection. Full article
Show Figures

Figure 1

10 pages, 214 KB  
Article
Serovars and Antimicrobial Resistance of Salmonella in Food Workers and Livestock Products: Insights into Foodborne Transmission Pathways in Eastern Japan
by Yoshimasa Sasaki, Kenji Ohya, Yoshika Momose, Masashi Uema, Tetsuya Ikeda, Mizuki Sasaki and Tetsuo Asai
Pathogens 2025, 14(10), 958; https://doi.org/10.3390/pathogens14100958 - 23 Sep 2025
Viewed by 354
Abstract
Salmonella is a major cause of infectious enteritis worldwide. In Japan, S. Schwarzengrund, S. Infantis, and S. Thompson are common in broilers and laying hens and are frequently detected in patients with salmonellosis and food workers. Monophasic S. Typhimurium, [...] Read more.
Salmonella is a major cause of infectious enteritis worldwide. In Japan, S. Schwarzengrund, S. Infantis, and S. Thompson are common in broilers and laying hens and are frequently detected in patients with salmonellosis and food workers. Monophasic S. Typhimurium, also found in these populations, often exhibits multidrug resistance. However, multidrug-resistant monophasic S. Typhimurium has not been reported from domestic poultry, suggesting that other livestock products may be potential sources. Therefore, we examined Salmonella prevalence in retail pork, beef, and quail eggs, and characterized isolates from these products and from food workers using serotyping, antimicrobial susceptibility testing, and multilocus sequence typing. Salmonella was highly prevalent in pork liver (43.3%, 13/30) and imported chicken (20.7%, 18/87). Eleven pork liver isolates and two imported chicken isolates (Brazil and Thailand) were multidrug-resistant monophasic S. Typhimurium sequence type (ST) 34. Among 232 isolates from food workers, monophasic S. Typhimurium was the third most frequent serovar, with 63.2% (12/19) being multidrug-resistant ST34. Salmonella was not detected in beef. Hence, food workers may acquire multidrug-resistant monophasic S. Typhimurium ST34 through contaminated pork liver and imported chicken. Thorough cooking of chicken and pork meat, including liver, is essential to reduce the risk of Salmonella transmission. Full article
(This article belongs to the Special Issue Salmonella: A Global Health Threat and Food Safety Challenge)
15 pages, 957 KB  
Article
Campylobacter Colonisation of Poultry Slaughtered at Nigerian Slaughterhouses: Prevalence, Antimicrobial Resistance, and Risk of Zoonotic Transmission
by Emmanuel O. Njoga, Philip P. Mshelbwala, Akwoba J. Ogugua, Excel C. Enemuo-Edo, Onyinye S. Onwumere-Idolor, Temitope M. Ogunniran, Sunday N. Bernard, Joel C. Ugwunwarua, Ebube C. Anidobe, Chinwe E. Okoli, Enid Godwin, Simon I. Enem and James W. Oguttu
Trop. Med. Infect. Dis. 2025, 10(9), 265; https://doi.org/10.3390/tropicalmed10090265 - 17 Sep 2025
Viewed by 898
Abstract
Zoonotic Campylobacter species (ZCS), particularly C. jejuni and C. coli, cause major foodborne gastroenteritis and poultry is the principal reservoirs. However, there is limited data on Campylobacter transmission risk practices and antimicrobial resistance (AMR) in Nigeria. Therefore, this study determined the prevalence, [...] Read more.
Zoonotic Campylobacter species (ZCS), particularly C. jejuni and C. coli, cause major foodborne gastroenteritis and poultry is the principal reservoirs. However, there is limited data on Campylobacter transmission risk practices and antimicrobial resistance (AMR) in Nigeria. Therefore, this study determined the prevalence, AMR, and risk practices aiding Campylobacter transmission in two major slaughterhouses processing poultry carcasses in Enugu State, Nigeria. Four hundred poultry faecal samples were analysed for zoonotic Campylobacter organisms using standard protocols. Antimicrobial resistance was profiled via Kirby–Bauer disk diffusion technique, against eight antimicrobial agents. Risk practices were assessed through slaughterhouse observations and interviews with 56 workers. The overall prevalence of Campylobacter infections was 14.5% (58/400), while the species-specific prevalence were 13% (52/400) and 1.5% (6/400) for C. coli and C. jejuni, respectively. Campylobacter colonisation was significantly higher (p < 0.05) in broilers, and during the wet season. The AMR profile of the isolates against the eight antibiotics tested was: Amoxicillin/clauvlanic acid (100%), vancomycin (100%), tetracycline (96.6%), ciprofloxacin (55.2%), chloramphenicol (44.8%), ceftazidime (10.3%), azithromycin (3.4%) and streptomycin (3.4%). All the 58 Campylobacter isolates were multidrug-resistant. The multiple antibiotic resistance indices ranged from 0.4 to 0.9, with a mean of 0.7. Major risk practice associated with ZCS transmission include non-use of personal protective equipment (100%), slaughtering on unsanitary surfaces (100%), using visibly unclean water for meat processing (100%), improper manual evisceration (75%), eating or drinking during processing (64.4%), slaughtering sick animals (37.5%), inadequate cleaning of surfaces and equipment after use (21.4%) and consuming raw meat during carcass processing (19.6%). The findings reflect critical gaps in food safety, occupational health, prudent antimicrobial use in poultry farming and zoonotic disease control, emphasizing the need for antibiotic regulation, training on hygienic meat processing, public education, infrastructural development of slaughterhouse facilities, and inter-sectorial collaboration to curb Campylobacter contamination and spread of antimicrobial resistance. Full article
Show Figures

Figure 1

62 pages, 3542 KB  
Review
The Presence of Micro- and Nanoplastics in Food and the Estimation of the Amount Consumed Depending on Dietary Patterns
by Aleksandra Duda and Katarzyna Petka
Molecules 2025, 30(18), 3666; https://doi.org/10.3390/molecules30183666 - 9 Sep 2025
Cited by 1 | Viewed by 2123
Abstract
Micro- and nanoplastics (MNPs) are becoming an increasingly common environmental pollutant. They have been detected in fruit, vegetables, drinking water, seafood, meat, dairy products, and cereals, with particularly high levels often being found in processed foods. The presence of MNPs varies significantly depending [...] Read more.
Micro- and nanoplastics (MNPs) are becoming an increasingly common environmental pollutant. They have been detected in fruit, vegetables, drinking water, seafood, meat, dairy products, and cereals, with particularly high levels often being found in processed foods. The presence of MNPs varies significantly depending on the type of food, geographical region, method of food preparation, and packaging materials used. Of the three main routes of human exposure to MNPs, ingestion is the most important. This article provides a comprehensive review of food contamination by MNPs, including an assessment of the impact of various factors on the MNP abundance. For the first time, it also evaluates the differences in MNP intake among individuals following three typical European dietary patterns: the Mediterranean, Western, and lacto-ovo-vegetarian. The lacto-ovo-vegetarian diet was found to result in the highest MNP intake (69.1 × 106 particles/day), almost doubling that of the other tested patterns. This is mainly due to the very high proportion of fruit, vegetables, legumes, and nuts in daily meals. Taking into account both health concerns and MNP quantity consumed with meals (37.5 × 106 particles/day), the Mediterranean diet is the healthiest. The review also highlights the need to raise awareness of food-related sources of MNPs. Full article
(This article belongs to the Special Issue Featured Review Papers in Food Chemistry—2nd Edition)
Show Figures

Graphical abstract

19 pages, 2627 KB  
Article
Monitoring Sublethal Injury in Listeria monocytogenes During Heat Treatment of Pork Frankfurter-Type Sausages: A Single-Cell vs. Population Level Approach
by Marianna Arvaniti, Eleni Vlachou, Maria Kourteli, Anastasia E. Kapetanakou and Panagiotis N. Skandamis
Foods 2025, 14(17), 3144; https://doi.org/10.3390/foods14173144 - 8 Sep 2025
Viewed by 1610
Abstract
Listeria monocytogenes is a foodborne pathogen capable of contaminating ready-to-eat meat products, e.g., frankfurters. Post-packaging mild heat treatment via water immersion is commonly employed; however, this may be sublethal to cells located in protected niches or beneath the product surface. The objectives of [...] Read more.
Listeria monocytogenes is a foodborne pathogen capable of contaminating ready-to-eat meat products, e.g., frankfurters. Post-packaging mild heat treatment via water immersion is commonly employed; however, this may be sublethal to cells located in protected niches or beneath the product surface. The objectives of this study were to evaluate thermal injury of L. monocytogenes on frankfurters at single-cell versus population level and to comparatively estimate pathogens’ physiological status. Pork frankfurter-type sausages were inoculated (ca. 7.0–7.5 log CFU/cm2) with L. monocytogenes strain EGDE-e. Heat treatment was performed at 61 °C (max. 60 min) and 64 °C (max. 12 min). To determine the injured subpopulation from the total, tryptic soy agar with 0.6% yeast extract (TSAYE), supplemented or not with 5% NaCl, was used. Plating-based quantification of injured cells was compared to CFDA/PIstained cells analysed by fluorescence microscopy and quantified with Fiji software. Injury was recorded mainly after 2 and 4 min at 64 °C, whereas no injury was detected at 61 °C, at population level. Following exposure to 61 °C for 60 min, culturable cells dropped below the enumeration limit (0.3 log CFU/cm2), while a considerable number of CFDA+/PI and CFDA+/PI+ cells indicated viable-but-non-culturable induction and sublethal injury, respectively. These findings suggest that non-culturability may limit the accuracy of solely culture-based enumeration methods. Full article
Show Figures

Figure 1

21 pages, 1879 KB  
Article
Environmental Monitoring of PAHs, PCBs, PCDDs, PCDFs, and PFASs in Wild Boar and Domestic Pig Tissues from Northern Italy
by Susanna Draghi, Carolina Fontanarosa, Michele Spinelli, Angela Amoresano, Stefano Materazzi, Roberta Risoluti, Dalia Curci, Giulio Curone, Petra Cagnardi, Francesco Arioli and Federica Di Cesare
Animals 2025, 15(17), 2600; https://doi.org/10.3390/ani15172600 - 4 Sep 2025
Viewed by 738
Abstract
This study investigated the bioaccumulation patterns of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and per- and polyfluoroalkyl substances (PFASs) in the liver and muscle tissues of wild boars (n = 39) and domestic pigs (n = 38) from Northern Italy. [...] Read more.
This study investigated the bioaccumulation patterns of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and per- and polyfluoroalkyl substances (PFASs) in the liver and muscle tissues of wild boars (n = 39) and domestic pigs (n = 38) from Northern Italy. This research addressed a critical gap in our understanding of how different ecologies and diets influence the uptake of persistent organic contaminants in two closely related species, one domestic and one wild. Significant differences in contaminant profiles were observed, largely attributable to distinct exposure routes and feeding behaviors. Wild boars displayed different quantities and families of environmental contaminants, with higher PCB levels in muscle and PFASs in liver. Conversely, domestic pigs exhibited markedly higher PAH concentrations, primarily linked to contaminated feed in controlled agricultural settings. The liver consistently demonstrated a central role in toxicant retention across both species. Notably, concentrations of several regulated PFAS compounds in both wild and farmed animals exceeded EU maximum levels (sum of PFOS, PFOA, PFNA, and PFHxS: 1.3 µg/kg), raising significant food safety concerns. These findings underscore the critical need for continuous environmental biomonitoring, stricter control of contaminant sources in agriculture, and updated risk assessments for both wild and domestic meat products to protect animal welfare and human health. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

15 pages, 1477 KB  
Article
Comparative Analysis of Virulence Genes and Antimicrobial Resistance in Escherichia coli from Poultry Meat and Poultry Farm Environments in Pakistan
by Arjmand Fatima, Sultan Ali and Rabin Raut
DNA 2025, 5(3), 42; https://doi.org/10.3390/dna5030042 - 3 Sep 2025
Viewed by 587
Abstract
Background/Objectives: Escherichia coli (E. coli) strains harboring virulence genes and antimicrobial resistance (AMR) pose a significant risk to poultry production and public health in Pakistan. This study aimed to isolate E. coli from poultry meat and poultry farm environments and compare [...] Read more.
Background/Objectives: Escherichia coli (E. coli) strains harboring virulence genes and antimicrobial resistance (AMR) pose a significant risk to poultry production and public health in Pakistan. This study aimed to isolate E. coli from poultry meat and poultry farm environments and compare their virulence gene profiles and AMR patterns. Methods: A total of 100 samples were collected, including 50 poultry meat samples from retail shops and 50 environmental samples from poultry farms. E. coli was isolated on MacConkey agar following overnight enrichment in lactose broth. Isolates were confirmed by biochemical testing and 16S rRNA gene PCR. Virulence genes (stx1, stx2, eae) were detected using multiplex PCR, and AMR profiles were assessed via the Kirby–Bauer disk diffusion method. Results: E. coli was isolated from 26 poultry meat samples (52%) and 23 poultry farm environment samples (46%). All isolates harbored at least one virulence gene, with stx2 being the most prevalent (34.62% meat; 39.13% environment), followed by stx1 (19.23% meat; 17.40% environment) and eae (11.54% meat; 13.04% environment). Combined gene patterns (stx1/eae, stx2/eae, stx1/stx2/eae) were also detected across both sources. AMR analysis revealed high resistance to cefoxitin (100% both sources), trimethoprim (57.09% meat; 60.87% environment), and ampicillin–sulbactam (42.3% meat; 52.17% environment). In contrast, isolates were completely susceptible to norfloxacin (100% meat; 95.65% environment) and exhibited high susceptibility to tetracycline (84.62% meat; 82.61% environment). Statistical comparisons using Fisher’s exact test and the Kruskal–Wallis test showed no significant differences (p > 0.05) in virulence gene prevalence or AMR patterns between poultry meat and environmental isolates. Conclusions: These findings highlight poultry farm environments as potential reservoirs for pathogenic, antimicrobial-resistant E. coli, emphasizing the risk of zoonotic transmission through contaminated poultry meat and the need for improved biosecurity measures. Full article
Show Figures

Graphical abstract

15 pages, 1166 KB  
Article
Anti-Listerial Effects of Satureja hortensis Essential Oils in Ready-to-Eat Poultry Meat Stored at Different Temperatures
by Yüsra Toplu and Harun Önlü
Microbiol. Res. 2025, 16(9), 195; https://doi.org/10.3390/microbiolres16090195 - 1 Sep 2025
Viewed by 501
Abstract
Listeria monocytogenes presents a considerable threat in cooked chicken products, especially those that are ready-to-eat, like deli meats. The aim of this study was to evaluate the antimicrobial efficacy of oregano essential oil (Satureja hortensis: SHEO) against L. monocytogenes contamination of [...] Read more.
Listeria monocytogenes presents a considerable threat in cooked chicken products, especially those that are ready-to-eat, like deli meats. The aim of this study was to evaluate the antimicrobial efficacy of oregano essential oil (Satureja hortensis: SHEO) against L. monocytogenes contamination of ready-to-eat cooked chicken meat during storage. The chemical content of SHEO was identified using GC-MS, with its antimicrobial properties confirmed through Kirby–Bauer disk diffusion tests. GC analyses of the SHEO used in the study showed that it contained 14.69% carvacrol and 10.61% thymol. L. monocytogenes strain NCTC 5348 was inoculated into chicken meat through a dipping technique at concentration levels of 2 × 107 CFU/mL before and after application of SHEO solution (2 μL/mL). Inoculated and SHEO-treated meat samples were stored −20 °C, +4 °C, and +10 °C under both traditional and vacuum packaging conditions for 28 days. Results indicated that SHEO significantly suppressed the growth of L. monocytogenes (approximately 1 log CFU/g), especially during the first 5–7 days at +4 °C in both packaging types. Vacuum packaging prolonged the antimicrobial effect of SHEO compared to conventional packaging at +4 °C and +10 °C, approximately 1.1–1.3 log CFU/g for 14 days. The antimicrobial activity of SHEO was limited to a range of approximately 0.1–0.5 log CFU/g at −20 °C compared to the control. These results suggest that combining essential oils with modern packaging methods can provide an effective approach to controlling cold-tolerant pathogens such as L. monocytogenes, thereby improving the shelf life and safety of ready-to-eat meat products. Full article
Show Figures

Figure 1

20 pages, 1214 KB  
Article
Characterization of Listeria monocytogenes Isolates from Pork Production in Southern Sonora, Mexico: Serotyping, Antimicrobial Resistance, Chitosan Susceptibility, and Pathogenicity in a Chicken Embryo Model
by Alejandro Miguel Figueroa-López, Michel Teresa Gutiérrez-Osuna, Norma Gabriela Rodríguez-Mora, Carlos Eduardo Aragón-López, Roberto Rodríguez-Ramírez, Alma Guadalupe Villa-Lerma and Ernesto Uriel Cantú-Soto
Foods 2025, 14(17), 3057; https://doi.org/10.3390/foods14173057 - 29 Aug 2025
Viewed by 1528
Abstract
Listeria monocytogenes is often found in pork intestines and can contaminate pork production, posing a risk to consumers. This study aimed to characterize 16 L. monocytogenes isolates from fresh and packaged pork loin, identify their serotypes, and assess antibiotic resistance. To evaluate chitosan [...] Read more.
Listeria monocytogenes is often found in pork intestines and can contaminate pork production, posing a risk to consumers. This study aimed to characterize 16 L. monocytogenes isolates from fresh and packaged pork loin, identify their serotypes, and assess antibiotic resistance. To evaluate chitosan susceptibility as a potential strategy to control L. monocytogenes in the pork industry and to determine its effectiveness in a eukaryotic model to demonstrate pathogenicity. Among the 16 isolates examined, 2 were identified as 1/2a, 12 as 1/2b, 2 as 4b, and 2 could not be assigned a serotype. Variations were observed in their pathogenicity factors. Some isolates were lacking in some virulence factors. In the antibiotic assays, all isolates demonstrated resistance to at least three antibiotics, and one of them exhibited resistance to as many as ten antimicrobial agents. To propose an alternative in the food industry as a decontamination agent, a low-molecular-weight chitosan was evaluated. It was shown that chitosan inhibits the growth of L. monocytogenes in a concentration of 0.25% in 45 min, resulting in a viable alternative against this pathogen, but in this work, one isolate exhibited resistance to chitosan (isolate Lm 1.2). Regarding infection in eukaryotic models, all isolates had the capacity to infect chicken embryos, except for isolate 1.2, which exhibited attenuated pathogenicity. These findings highlight the potential public health risk L. monocytogenes poses in pork and the need for continued research to develop effective control strategies. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Graphical abstract

Back to TopTop