Real-Time and Selective Detection of Pseudomonas aeruginosa in Beef Samples Using a g-C3N4-Doped Multimetallic Perovskite-Based Electrochemical Aptasensor
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of g-C3N4
2.3. Synthesis of Quaternary Metallic (FeCoCuNiO) Perovskite
2.4. Synthesis of g-C3N4-Doped FeCoCuNiO Nanocomposite
2.5. Fabrication of g-C3N4-Doped FeCoCuNiO Electrode
2.6. Fabrication of Aptasensor
2.7. Bacterial Strains and Cultivation
2.8. Morphological, Compositional, and Electrochemical Characterizations
3. Results and Discussion
3.1. Composition and Structural Insights of Synthesized Materials
3.2. Electrochemical Behavior of Designed Electrode
3.3. Optimization of Biorecognition Layer
3.4. Sensing and Selective Performance of the Aptasensor
3.5. Stability Test of the Designed Aptasensor
3.6. Real Sample Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Akinsemolu, A.A.; Onyeaka, H.N. Microorganisms associated with food spoilage and foodborne diseases. In Food Safety and Quality in the Global South; Springer: Berlin/Heidelberg, Germany, 2024; pp. 489–531. [Google Scholar]
- Li, X.; Zhu, M.; Wang, S.; Li, W.; Ren, B.; Qu, L.; Zhang, X. Loop-Mediated Isothermal Amplification for Detecting Four Major Foodborne Pathogens in Meat and Meat Products. Foods 2025, 14, 2321. [Google Scholar] [CrossRef]
- Bolohan, I.; Lazăr, R.; Mădescu, B.M.; Davidescu, M.A.; Boișteanu, P.C. Microbiological Risks in the Poultry Meat Production and Processing Chain: A Systematic Review of the Literature. Sci. Pap. Anim. Sci. Biotechnol. 2025, 58, 272–284. [Google Scholar]
- Severino, N.; Reyes, C.; Fernandez, Y.; Azevedo, V.; Francisco, L.E.; Ramos, R.T.; Maroto-Martín, L.O.; Franco, E.F. Bacterial Foodborne Diseases in Central America and the Caribbean: A Systematic Review. Microbiol. Res. 2025, 16, 78. [Google Scholar] [CrossRef]
- El-Saadony, M.T.; Saad, A.M.; Mohammed, D.M.; Korma, S.A.; Alshahrani, M.Y.; Ahmed, A.E.; Ibrahim, E.H.; Salem, H.M.; Alkafaas, S.S.; Saif, A.M.; et al. Medicinal plants: Bioactive compounds, biological activities, combating multidrug-resistant microorganisms, and human health benefits—A comprehensive review. Front. Immunol. 2025, 16, 1491777. [Google Scholar] [CrossRef]
- Almatroudi, A. Biofilm Resilience: Molecular Mechanisms Driving Antibiotic Resistance in Clinical Contexts. Biology 2025, 14, 165. [Google Scholar] [CrossRef] [PubMed]
- Koujalagi, T.; Ruhal, R. Mitigating Health Risks Through Environmental Tracking of Pseudomonas aeruginosa. Curr. Microbiol. 2024, 82, 57. [Google Scholar] [CrossRef] [PubMed]
- Jia, F.; Xu, L.; Yan, W.; Wu, W.; Yu, Q.; Tian, X.; Dai, R.; Li, X. A magnetic relaxation switch aptasensor for the rapid detection of Pseudomonas aeruginosa using superparamagnetic nanoparticles. Microchim. Acta 2017, 184, 1539–1545. [Google Scholar] [CrossRef]
- Bodelon, G.; Montes-García, V.; Perez-Juste, J.; Pastoriza-Santos, I. Surface-enhanced Raman scattering spectroscopy for label-free analysis of P. aeruginosa quorum sensing. Front. Cell. Infect. Microbiol. 2018, 8, 143. [Google Scholar] [CrossRef]
- Alhogail, S.; Suaifan, G.A.; Bikker, F.J.; Kaman, W.E.; Weber, K.; Cialla-May, D.; Popp, J.; Zourob, M.M. Rapid colorimetric detection of Pseudomonas aeruginosa in clinical isolates using a magnetic nanoparticle biosensor. ACS Omega 2019, 4, 21684–21688. [Google Scholar] [CrossRef] [PubMed]
- Tunney, M.M.; Ramage, G.; Field, T.R.; Moriarty, T.F.; Storey, D.G. Rapid colorimetric assay for antimicrobial susceptibility testing of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2004, 48, 1879–1881. [Google Scholar] [CrossRef]
- Anuj, S.N.; Whiley, D.M.; Kidd, T.J.; Bell, S.C.; Wainwright, C.E.; Nissen, M.D.; Sloots, T.P. Identification of Pseudomonas aeruginosa by a duplex real-time polymerase chain reaction assay targeting the ecfX and the gyrB genes. Diagn. Microbiol. Infect. Dis. 2009, 63, 127–131. [Google Scholar] [CrossRef] [PubMed]
- Vasala, A.; Hytönen, V.P.; Laitinen, O.H. Modern tools for rapid diagnostics of antimicrobial resistance. Front. Cell. Infect. Microbiol. 2020, 10, 308. [Google Scholar] [CrossRef]
- Kim, T.-H.; El-Said, W.A.; Choi, J.-W. Highly sensitive electrochemical detection of potential cytotoxicity of CdSe/ZnS quantum dots using neural cell chip. Biosens. Bioelectron. 2012, 32, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Khalifa, M.M.; Elkhawaga, A.A.; Hassan, M.A.; Zahran, A.M.; Fathalla, A.M.; El-Said, W.A.; El-Badawy, O. Highly specific Electrochemical Sensing of Pseudomonas aeruginosa in patients suffering from corneal ulcers: A comparative study. Sci. Rep. 2019, 9, 18320. [Google Scholar] [CrossRef]
- Simoska, O.; Stevenson, K.J. Electrochemical sensors for rapid diagnosis of pathogens in real time. Analyst 2019, 144, 6461–6478. [Google Scholar] [CrossRef] [PubMed]
- Sett, A.; Das, S.; Sharma, P.; Bora, U. Aptasensors in health, environment and food safety monitoring. Open J. Appl. Biosens. 2012, 1, 9–19. [Google Scholar] [CrossRef]
- Choi, H.K.; Lee, M.-J.; Lee, S.N.; Kim, T.-H.; Oh, B.-K. Noble metal nanomaterial-based biosensors for electrochemical and optical detection of viruses causing respiratory illnesses. Front. Chem. 2021, 9, 672739. [Google Scholar] [CrossRef]
- Yang, S.-Z.; Liu, Q.-A.; Liu, Y.-L.; Weng, G.-J.; Zhu, J.; Li, J.-J. Recent progress in the optical detection of pathogenic bacteria based on noble metal nanoparticles. Microchim. Acta 2021, 188, 258. [Google Scholar] [CrossRef]
- Choi, J.H.; El-Said, W.A.; Choi, J.-W. Highly sensitive surface-enhanced Raman spectroscopy (SERS) platform using core/double shell (Ag/polymer/Ag) nanohorn for proteolytic biosensor. Appl. Surf. Sci. 2020, 506, 144669. [Google Scholar] [CrossRef]
- Elkhawaga, A.A.; Khalifa, M.M.; El-Badawy, O.; Hassan, M.A.; El-Said, W.A. Rapid and highly sensitive detection of pyocyanin biomarker in different Pseudomonas aeruginosa infections using gold nanoparticles modified sensor. PLoS ONE 2019, 14, e0216438. [Google Scholar] [CrossRef]
- Du, R.; Jin, X.; Hübner, R.; Fan, X.; Hu, Y.; Eychmüller, A. Engineering self-supported noble metal foams toward electrocatalysis and beyond. Adv. Energy Mater. 2020, 10, 1901945. [Google Scholar] [CrossRef]
- Viswanath, B.; Kristine, Y.M.; Kim, S. Recent trends in the development of complementary metal oxide semiconductor image sensors to detect foodborne bacterial pathogens. TrAC Trends Anal. Chem. 2018, 98, 47–57. [Google Scholar] [CrossRef]
- Tian, J.; Cheng, N.; Liu, Q.; Xing, W.; Sun, X. Cobalt phosphide nanowires: Efficient nanostructures for fluorescence sensing of biomolecules and photocatalytic evolution of dihydrogen from water under visible light. Angew. Chem. 2015, 127, 5583–5587. [Google Scholar] [CrossRef]
- Qiu, G.; Thakur, A.; Xu, C.; Ng, S.P.; Lee, Y.; Wu, C.M.L. Detection of Glioma-Derived Exosomes with the Biotinylated Antibody-Functionalized Titanium Nitride Plasmonic Biosensor. Adv. Funct. Mater. 2019, 29, 1806761. [Google Scholar] [CrossRef]
- Ahuja, R.; Sidhu, A.; Bala, A. Synthesis and evaluation of iron (ii) sulfide aqua nanoparticles (FeS-NPs) against Fusarium verticillioides causing sheath rot and seed discoloration of rice. Eur. J. Plant Pathol. 2019, 155, 163–171. [Google Scholar] [CrossRef]
- Sposito, A.J.; Kurdekar, A.; Zhao, J.; Hewlett, I. Application of nanotechnology in biosensors for enhancing pathogen detection. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2018, 10, e1512. [Google Scholar] [CrossRef]
- Singh, C.; Wagle, A.; Rakesh, M. Doped LaCoO3 perovskite with Fe: A catalyst with potential antibacterial activity. Vacuum 2017, 146, 468–473. [Google Scholar] [CrossRef]
- Stoumpos, C.C.; Kanatzidis, M.G. Halide Perovskites: Poor Man’s high-performance semiconductors. Adv. Mater. 2016, 28, 5778–5793. [Google Scholar] [CrossRef]
- Baker, C.O.; Huang, X.; Nelson, W.; Kaner, R.B. Polyaniline nanofibers: Broadening applications for conducting polymers. Chem. Soc. Rev. 2017, 46, 1510–1525. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Cao, B.; Taylor, I.M.; Woeppel, K.; Cui, X.T. Facile synthesis of a 3, 4-ethylene-dioxythiophene (EDOT) derivative for ease of bio-functionalization of the conducting polymer PEDOT. Front. Chem. 2019, 7, 178. [Google Scholar] [CrossRef]
- Wang, W.-H.; Liu, G.-W.; Cao, F.-Q.; Cheng, X.-Y.; Liu, B.-W.; Liu, L.-H. Inadequate root uptake may represent a major component limiting rice to use urea as sole nitrogen source for growth. Plant Soil 2013, 363, 191–200. [Google Scholar] [CrossRef]
- Awuzie, C.I. Conducting polymers. Mater. Today Proc. 2017, 4, 5721–5726. [Google Scholar] [CrossRef]
- Nabil, N.N.A.M.; Zabidi, A.R.M.; Abdullah, N.A.F.; Ang, L.S. Stability and electronic properties of urea in different arrangements: A DFT-based study. J. Intelek 2017, 12, 44–54. [Google Scholar]
- Gkini, K.; Martinaiou, I.; Falaras, P. A review on emerging efficient and stable perovskite solar cells based on g-C3N4 nanostructures. Materials 2021, 14, 1679. [Google Scholar] [CrossRef]
- Kharlamov, A.; Bondarenko, M.; Kharlamova, G.; Gubareni, N. Features of the synthesis of carbon nitride oxide (g-C3N4) O at urea pyrolysis. Diam. Relat. Mater. 2016, 66, 16–22. [Google Scholar] [CrossRef]
- Dhiman, M.; Tripathi, M.; Singhal, S. Structural, optical and photocatalytic properties of different metal ions (Cr3+, Co2+, Ni2+, Cu2+ and Zn2+) substituted quaternary perovskites. Mater. Chem. Phys. 2017, 202, 40–49. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Gao, L. Construction of binary BiVO4/g-C3N4 photocatalyst and their photocatalytic performance for reactive blue 19 reduction from aqueous solution coupling with H2O2. J. Mater. Sci. Mater. Electron. 2019, 30, 16015–16029. [Google Scholar] [CrossRef]
- Nagarajan, S.; Vairamuthu, R.; Angamuthu, R.; Venkatachalam, G. Electrochemical fabrication of reusable pencil graphite electrodes for highly sensitive, selective and simultaneous determination of hydroquinone and catechol. J. Electroanal. Chem. 2019, 846, 113156. [Google Scholar] [CrossRef]
- GuzmÃ, L.; Ramirez, B.S.; Maribel, C.F.; Pescador, M.G.N.; Cruz, F.J.M. Low accuracy of the McFarland method for estimation of bacterial populations. Afr. J. Microbiol. Res. 2018, 12, 736–740. [Google Scholar] [CrossRef]
- Yu, X.-J.; Xian, Y.-M.; Wang, C.; Mao, H.-L.; Kind, M.; Abu-Husein, T.; Chen, Z.; Zhu, S.-B.; Ren, B.; Terfort, A. Liquid-phase epitaxial growth of highly oriented and multivariate surface-attached metal–organic frameworks. J. Am. Chem. Soc. 2019, 141, 18984–18993. [Google Scholar] [CrossRef]
- Ge, Y.; Liu, P.; Xu, L.; Qu, M.; Hao, W.; Liang, H.; Sheng, Y.; Zhu, Y.; Wen, Y. A portable wireless intelligent electrochemical sensor based on layer-by-layer sandwiched nanohybrid for terbutaline in meat products. Food Chem. 2022, 371, 131140. [Google Scholar] [CrossRef]
- Mohammad-Razdari, A.; Ghasemi-Varnamkhasti, M.; Izadi, Z.; Rostami, S.; Ensafi, A.A.; Siadat, M.; Losson, E. Detection of sulfadimethoxine in meat samples using a novel electrochemical biosensor as a rapid analysis method. J. Food Compos. Anal. 2019, 82, 103252. [Google Scholar] [CrossRef]
- Spagnolo, S.; Davoudian, K.; Franier, B.D.; Kocsis, R.; Hianik, T.; Thompson, M. Nanoparticle-Enhanced Acoustic Wave Biosensor Detection of Pseudomonas aeruginosa in Food. Biosensors 2025, 15, 146. [Google Scholar] [CrossRef] [PubMed]
- Yaqub, B.; Sarfraz, S.; Zulfiqar, A.; Wara, T.U.; Rasheed, S.; Ansari, S.H.; Hanif, S.; Khan, S.U.; Shah, M.; Akhtar, N. Development of polydopamine functionalized Co-EDTA complex-based electrochemical aptasensor for precise monitoring of Pseudomonas aeruginosa. New J. Chem. 2025, 49, 11107–11114. [Google Scholar] [CrossRef]
- Wei, L.; Luo, S.; Zhou, W.; Ren, B.; Li, M.; Liang, L.; Li, X.; Wei, G. Rapid detection of Pseudomonas aeruginosa by glycerol one-pot RAA/CRISPR-Cas12a method. Front. Chem. 2025, 13, 1654270. [Google Scholar] [CrossRef]
- Li, J.; Sun, A.; Lai, H.; Li, C.; Li, H.; Yang, Z.; Pan, P.; He, J.; Zhang, R.; Wang, C. Ultrasensitive electrochemical aptasensor for Pseudomonas aeruginosa detection using N-doped MWCNTs/AgNPs nanocomposite. Bioelectrochemistry 2025, 166, 109031. [Google Scholar] [CrossRef]
- Pourbahram, B.; Mansouri Majd, S.; Shamsipur, M. DPV and EIS-based ultrasensitive aptasensor for VEGF165 detection based on nanoporous gold platform modified with SH-aptamer. Sens. Bio-Sens. Res. 2025, 47, 100766. [Google Scholar] [CrossRef]
- Liu, L.; Li, J.; Wang, Z.; Yao, Z.; Cao, J. Sensitive Pseudomonas aeruginosa analysis based on aptamer-based target recognition mediated dual self-hybridization. Microchem. J. 2025, 213, 113687. [Google Scholar] [CrossRef]
- Xiao, S.; Sun, L.; Kang, M.; Dong, Z. A label-free aptasensor for clenbuterol detection based on fluorescence resonance energy transfer between graphene oxide and rhodamine B. RSC Adv. 2022, 12, 32737–32743. [Google Scholar] [CrossRef]
- Liu, R.; Cai, T.; Huang, Z.; Zhu, Q.; Wang, X. Novel ultrasensitive impedimetric biosensor for rapid detection of Pseudomonas aeruginosa via recombinant lectin-functionalized nanoporous gold biointerface. Biosens. Bioelectron. 2025, 288, 117788. [Google Scholar] [CrossRef]
- Wang, X.; Hu, J. Target recognition initiated reverse hybridization mediated cascade amplification for sensitive Pseudomonas aeruginosa analysis. Biotechnol. Lett. 2025, 47, 69. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Cheng, Y.; Yang, K.; Liu, B.; Li, C. Selection and Application of Specific Nucleic Acid Aptamers for the Detection of Pseudomonas aeruginosa. Food Sci. 2025, 46, 322–328. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albalawi, S.S.; Akhtar, N.; El-Said, W.A. Real-Time and Selective Detection of Pseudomonas aeruginosa in Beef Samples Using a g-C3N4-Doped Multimetallic Perovskite-Based Electrochemical Aptasensor. Biosensors 2025, 15, 634. https://doi.org/10.3390/bios15100634
Albalawi SS, Akhtar N, El-Said WA. Real-Time and Selective Detection of Pseudomonas aeruginosa in Beef Samples Using a g-C3N4-Doped Multimetallic Perovskite-Based Electrochemical Aptasensor. Biosensors. 2025; 15(10):634. https://doi.org/10.3390/bios15100634
Chicago/Turabian StyleAlbalawi, Sarah S., Naeem Akhtar, and Waleed A. El-Said. 2025. "Real-Time and Selective Detection of Pseudomonas aeruginosa in Beef Samples Using a g-C3N4-Doped Multimetallic Perovskite-Based Electrochemical Aptasensor" Biosensors 15, no. 10: 634. https://doi.org/10.3390/bios15100634
APA StyleAlbalawi, S. S., Akhtar, N., & El-Said, W. A. (2025). Real-Time and Selective Detection of Pseudomonas aeruginosa in Beef Samples Using a g-C3N4-Doped Multimetallic Perovskite-Based Electrochemical Aptasensor. Biosensors, 15(10), 634. https://doi.org/10.3390/bios15100634