Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (99)

Search Parameters:
Keywords = meander line

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4392 KiB  
Article
Effects of Dielectric Properties of Human Body on Communication Link Margins and Specific Absorption Rate of Implanted Antenna System
by Soham Ghosh, Sunday C. Ekpo, Fanuel Elias, Stephen Alabi and Bhaskar Gupta
Sensors 2025, 25(11), 3498; https://doi.org/10.3390/s25113498 - 31 May 2025
Viewed by 667
Abstract
This study examines how the effective dielectric characteristics of the human torso affect the carrier-link-margin (CLM) and data-link-margin (DLM) of a biocompatible gelatin-encapsulated implantable medical device (IMD) that consists of a small implantable antenna, battery, printed circuit board (PCB), camera, and sensor operating [...] Read more.
This study examines how the effective dielectric characteristics of the human torso affect the carrier-link-margin (CLM) and data-link-margin (DLM) of a biocompatible gelatin-encapsulated implantable medical device (IMD) that consists of a small implantable antenna, battery, printed circuit board (PCB), camera, and sensor operating at 2.5 GHz. The specific absorption rate (SAR) and the radio frequency (RF) link performances of the IMD are tested for ±20% changes in reference to the mean values of the effective relative permittivity, ɛeff, and the effective conductivity, σeff, of the human body model. An artificial neural network (ANN) with two inputs (ɛeff, σeff) and five outputs (SAR_1 g, SAR_10 g, fractional bandwidth, CLM, and DLM) is trained by 80% of the total scenarios and tested by 20% of them in order to provide reliable dependent analyses. The highest changes in 1 g SAR value, 10 g SAR value, fractional bandwidth, CLM, and DLM at a 4 m distance for 100 Kbps are 63%, 41.6%, 17.97%, 26.79%, and 5.89%, respectively, when compared to the reference effective electrical properties of the homogeneous human body model. This work is the first to accurately depend on the electrical analyses of the human body for the link margins of an implantable antenna system. Furthermore, the work’s uniqueness is distinguished by the application of the CLM and DLM principles in the sphere of IMD communication. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

36 pages, 55356 KiB  
Article
High-Gain Miniaturized Multi-Band MIMO SSPP LWA for Vehicular Communications
by Tale Saeidi, Sahar Saleh, Nick Timmons, Christopher McDaid, Ahmed Jamal Abdullah Al-Gburi, Faroq Razzaz and Saeid Karamzadeh
Technologies 2025, 13(2), 66; https://doi.org/10.3390/technologies13020066 - 4 Feb 2025
Cited by 1 | Viewed by 1655
Abstract
This paper introduces a novel miniaturized, four-mode, semi-flexible leaky wave Multiple-Input Multiple-Output (MIMO) antenna specifically designed to advance vehicular communication systems. The proposed antenna addresses key challenges in 5G low- and high-frequency bands, including millimeter-wave communication, by integrating innovative features such as a [...] Read more.
This paper introduces a novel miniaturized, four-mode, semi-flexible leaky wave Multiple-Input Multiple-Output (MIMO) antenna specifically designed to advance vehicular communication systems. The proposed antenna addresses key challenges in 5G low- and high-frequency bands, including millimeter-wave communication, by integrating innovative features such as a periodic Spoof Surface Plasmon Polariton Transmission Line (SSPP-TL) and logarithmic-spiral-like semi-circular strip patches parasitically fed via orthogonal ports. These design elements facilitate stable impedance matching and wide impedance bandwidths across operating bands, which is essential for vehicular networks. The hybrid combination of leaky wave and SSPP structures, along with a defected wide-slot ground structure and backside meander lines, enhances radiation characteristics by reducing back and bidirectional radiation. Additionally, a naturalization network incorporating chamfered-edge meander lines minimizes mutual coupling and introduces a fourth radiation mode at 80 GHz. Compact in size (14 × 12 × 0.25 mm3), the antenna achieves high-performance metrics, including S11 < −18.34 dB, dual-polarization, peak directive gains of 11.6 dBi (free space) and 14.6 dBi (on vehicles), isolation > 27 dB, Channel Capacity Loss (CCL) < 3, Envelope Correlation Coefficient (ECC) < 0.001, axial ratio < 2.25, and diversity gain (DG) > 9.85 dB. Extensive testing across various vehicular scenarios confirms the antenna’s robustness for Vehicle-to-Vehicle (V2V), Vehicle-to-Pedestrian (V2P), and Vehicle-to-Infrastructure (V2I) communication. Its exceptional performance ensures seamless connectivity with mobile networks and enhances safety through Specific Absorption Rate (SAR) compliance. This compact, high-performance antenna is a transformative solution for connected and autonomous vehicles, addressing critical challenges in modern automotive communication networks and paving the way for reliable and efficient vehicular communication systems. Full article
(This article belongs to the Collection Electrical Technologies)
Show Figures

Figure 1

17 pages, 3953 KiB  
Article
Human Pluripotent Stem Cell Colony Migration Is Related to Culture Environment and Morphological Phenotype
by Vitaly V. Gursky, Alina S. Chabina, Olga A. Krasnova, Anastasiia A. Kovaleva, Daria V. Kriger, Michail S. Zadorsky, Konstantin N. Kozlov and Irina E. Neganova
Life 2024, 14(11), 1402; https://doi.org/10.3390/life14111402 - 31 Oct 2024
Cited by 1 | Viewed by 1222
Abstract
Human pluripotent stem cells (hPSCs) are an important tool in the field of regenerative medicine due to their ability to differentiate towards all tissues of the adult organism. An important task in the study of hPSCs is to understand the factors that influence [...] Read more.
Human pluripotent stem cells (hPSCs) are an important tool in the field of regenerative medicine due to their ability to differentiate towards all tissues of the adult organism. An important task in the study of hPSCs is to understand the factors that influence the maintenance of pluripotent and clonal characteristics of colonies represented by their morphological phenotype. Such factors include the ability of colonies to migrate during growth. In this work, we measured and analyzed the migration trajectories of hPSC colonies obtained from bright-field images of three cell lines, including induced hPSC lines AD3 and HPCASRi002-A (CaSR) and human embryonic stem cell line H9. To represent the pluripotent status, the colonies were visually phenotyped into two classes having a “good” or “bad” morphological phenotype. As for the migration characteristics, we calculated the colony speed and distance traveled (mobility measures), meandering index (motion persistence measures), outreach ratio (trajectory tortuosity characteristic), as well as the velocity autocorrelation function. The analysis revealed that the discrimination of phenotypes by the migration characteristics depended on both the cell line and growth environment. In particular, when the mTESR1/Matrigel culture environment was used, “good” AD3 colonies demonstrated a higher average migration speed than the “bad” ones. The reverse relationship between average speeds of “good” and “bad” colonies was found for the H9 line. The CaSR cell line did not show significant differences in the migration speed between the “good” and “bad” phenotypes. We investigated the type of motion exhibited by the colonies by applying two diffusion models to the mean squared displacement dynamics, one model corresponding to normal and the other to anomalous diffusion. The type of diffusion and diffusion parameter values resulting from the model fitting to data demonstrated a similar cell line, environment, and phenotype dependency. Colonies mainly showed a superdiffusive behavior for the mTESR1/Matrigel culture conditions, characterized by longer migration steps compared to the normal random walk. The specific properties of migration features and the patterns of their variation demonstrated in our work can be useful for the development and/or improvement of automated solutions for quality control of hPSCs. Full article
(This article belongs to the Section Cell Biology and Tissue Engineering)
Show Figures

Figure 1

29 pages, 7444 KiB  
Article
Effect of Atmospheric Stability on Meandering and Wake Characteristics in Wind Turbine Fluid Dynamics
by Bendik Peter Løvøy Alvestad, Leon Fevang-Gunn, Balram Panjwani and Tania Kalogiannidis Bracchi
Appl. Sci. 2024, 14(17), 8025; https://doi.org/10.3390/app14178025 - 8 Sep 2024
Viewed by 1516
Abstract
This study investigates the impact of atmospheric stability on wind turbine flow dynamics, focusing on wake deflection and meandering. Using the high-fidelity large-eddy simulation coupled with the Actuator Line model, we explore three stability conditions for the Vestas V80 turbine, both with and [...] Read more.
This study investigates the impact of atmospheric stability on wind turbine flow dynamics, focusing on wake deflection and meandering. Using the high-fidelity large-eddy simulation coupled with the Actuator Line model, we explore three stability conditions for the Vestas V80 turbine, both with and without yaw. The results indicate that wake meandering occurs predominantly along the deflected wake axis. Despite varying wake deficits and meandering behaviors, neutral and stable conditions exhibit similar wake deflection trajectories during yawed turbine operations. Spectral analysis of meandering reveals comparable cutoff and peak frequencies between neutral and stable cases, with a consistent Strouhal number (St=0.16). The unstable condition shows significant deviations, albeit with associated uncertainties. Overall, increased stability decreases both oscillation amplitude and frequency, highlighting the complex interplay between atmospheric stability and wind turbine wake dynamics. Full article
(This article belongs to the Special Issue Recent Scientific Advances on Renewable Energy Applications)
Show Figures

Figure 1

32 pages, 11571 KiB  
Review
Polymeric Products in Erosion Control Applications: A Review
by Anna Markiewicz, Eugeniusz Koda, Marta Kiraga, Grzegorz Wrzesiński, Klementyna Kozanka, Maurycy Naliwajko and Magdalena Daria Vaverková
Polymers 2024, 16(17), 2490; https://doi.org/10.3390/polym16172490 - 31 Aug 2024
Cited by 4 | Viewed by 3118
Abstract
Among the various types of polymeric materials, geosynthetics deserve special attention. A geosynthetic is a product made from synthetic polymers that is embedded in soils for various purposes. There are some basic functions of geosynthetics, namely, erosion control, filtration, drainage, separation, reinforcement, containment, [...] Read more.
Among the various types of polymeric materials, geosynthetics deserve special attention. A geosynthetic is a product made from synthetic polymers that is embedded in soils for various purposes. There are some basic functions of geosynthetics, namely, erosion control, filtration, drainage, separation, reinforcement, containment, barrier, and protection. Geosynthetics for erosion control are very effective in preventing or limiting soil loss by water erosion on slopes or river/channel banks. Where the current line runs through the undercut area of the slope, the curvature of the arch is increased. If this phenomenon is undesirable, the meander arch should be protected from erosion processes. The combination of geosynthetics provides the best resistance to erosion. In addition to external erosion, internal erosion of soils is also a negative phenomenon. Internal erosion refers to any process by which soil particles are eroded from within or beneath a water-retaining structure. Geosynthetics, particularly geotextiles, are used to prevent internal erosion of soils in contact with the filters. Therefore, the main objective of this review paper is to address the many ways in which geosynthetics are used for erosion control (internal and external). Many examples of hydrotechnical and civil engineering applications of geosynthetics will be presented. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

11 pages, 2762 KiB  
Article
Two CMOS Wilkinson Power Dividers Using High Slow-Wave and Low-Loss Transmission Lines
by Chatrpol Pakasiri, Wei-Sen Teng and Sen Wang
Micromachines 2024, 15(8), 1009; https://doi.org/10.3390/mi15081009 - 5 Aug 2024
Viewed by 1288
Abstract
This work presents two Wilkinson power dividers (WPDs) using multi-layer pseudo coplanar waveguide (PCPW) structures. The PCPW-based WPDs were designed, implemented, and verified in a standard 180 nm CMOS process. The proposed PCPW features high slow-wave and low-loss performances compared to other common [...] Read more.
This work presents two Wilkinson power dividers (WPDs) using multi-layer pseudo coplanar waveguide (PCPW) structures. The PCPW-based WPDs were designed, implemented, and verified in a standard 180 nm CMOS process. The proposed PCPW features high slow-wave and low-loss performances compared to other common transmission lines. The two WPDs are based on the same PCPW structure parameters in terms of line width, spacing, and used metal layers. One WPD was realized in a straight PCPW-based layout, and the other WPD was realized in a meandered PCPW-based layout. Both the two WPDs worked up to V-band frequencies, as expected, which also demonstrates that the PCPW guiding structure is less susceptible to the effects of meanderings on the propagation constant and characteristic impedance. The meandered design shows that the measured insertion losses were about 5.1 dB, and its return losses were better than 17.5 dB at 60 GHz. In addition, its isolation, amplitude imbalance, and phase imbalance were 18.5 dB, 0.03 dB, and 0.4°, respectively. The core area was merely 0.2 mm × 0.23 mm, or 1.8 × 10−3λo2. Full article
(This article belongs to the Special Issue Microwave Passive Components, 2nd Edition)
Show Figures

Figure 1

22 pages, 47345 KiB  
Article
Compact, Ultra-Wideband Butler Matrix Beamformers for the Advanced 5G Band FR3—Part I
by Tzichat Empliouk, Panagiotis Kapetanidis, Dimitrios Arnaoutoglou, Christos Kolitsidas, Dimitrios Lialios, Anastasios Koutinos, Theodoros N. F. Kaifas, Stavros V. Georgakopoulos, Constantinos L. Zekios and George A. Kyriacou
Electronics 2024, 13(14), 2763; https://doi.org/10.3390/electronics13142763 - 13 Jul 2024
Cited by 4 | Viewed by 2526
Abstract
Butler Matrix networks are well established as beamforming networks for phased antenna arrays. The challenge we address in this work is to cover the entire (advanced 5G or 6G) FR3 band (7–24 GHz) with a single network, while retaining low losses and minimal [...] Read more.
Butler Matrix networks are well established as beamforming networks for phased antenna arrays. The challenge we address in this work is to cover the entire (advanced 5G or 6G) FR3 band (7–24 GHz) with a single network, while retaining low losses and minimal size. The employed multilayer topology is also well established; however, the matching between the utilized hybrid couplers and the phase shifters constitutes a major challenge for such a wideband operation. This is achieved herein by employing meander lines with appropriate curvature and introducing two distinct design methods for the Butler Matrix. The first method focuses on designing individual components separately, followed by their integration into the overall Butler Matrix structure. This approach is demonstrated through the design, prototyping, measurements, and validation of an 8 × 8 Butler Matrix beamformer, which operates across the 6–16 GHz band (FR3 Low). The second method introduces a wideband-matching technique which simplifies the implementation process by designing the Butler Matrix as a single, unified structure. This technique is applied to both 4 × 4 and 8 × 8 Butler Matrices, which are implemented and simulated for the low FR3 band. Both design methods result in wideband operation and compact size and meet the desired performance criteria. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

14 pages, 9065 KiB  
Article
A Modified High-Selective Frequency Selective Surface Designed by Multilevel Green’s Function Interpolation Method
by Ze Huang, Rongrong Sun, Peng Zhao, Kanglong Zhang, Yanyang Wang, Zhimin Guan and Gaofeng Wang
Electronics 2024, 13(13), 2453; https://doi.org/10.3390/electronics13132453 - 22 Jun 2024
Cited by 2 | Viewed by 1345
Abstract
A compact high-selective band-pass frequency selective surface (FSS) with the unit cell less than λ/7 is presented. For the simulation of the structure, the multilevel Green’s function interpolation method (MLGFIM) using Floquet theory is adopted to accelerate the calculation of the complex [...] Read more.
A compact high-selective band-pass frequency selective surface (FSS) with the unit cell less than λ/7 is presented. For the simulation of the structure, the multilevel Green’s function interpolation method (MLGFIM) using Floquet theory is adopted to accelerate the calculation of the complex unit cell. The radial basis function (RBF)-QR method is used in the interpolation, which makes the shape parameter in the RBF function not required to be retested for different periodicity. In this design, with an aperture coupling structure between the top and bottom layers patterned by triangular patches and meander lines, the FSS has two transmission zeros (TZs) on both sides of the pass-band and achieves a steep roll-off rate of 192 dB/GHz. Consequently, the FSS has high selectivity and out-of-band suppression, besides profiting from the low profile and symmetric geometry, this FSS exhibits good angular and polarization stabilities. The prototype of the proposed FSS is fabricated and good performance is obtained. Full article
(This article belongs to the Special Issue RF/Microwave Device and Circuit Integration Technology)
Show Figures

Figure 1

14 pages, 2072 KiB  
Article
Development and Calibration of a Microfluidic, Chip-Based Sensor System for Monitoring the Physical Properties of Water Samples in Aquacultures
by Fereshteh Aliazizi, Dua Özsoylu, Soroush Bakhshi Sichani, Mehran Khorshid, Christ Glorieux, Johan Robbens, Michael J. Schöning and Patrick Wagner
Micromachines 2024, 15(6), 755; https://doi.org/10.3390/mi15060755 - 4 Jun 2024
Viewed by 2300
Abstract
In this work, we present a compact, bifunctional chip-based sensor setup that measures the temperature and electrical conductivity of water samples, including specimens from rivers and channels, aquaculture, and the Atlantic Ocean. For conductivity measurements, we utilize the impedance amplitude recorded via interdigitated [...] Read more.
In this work, we present a compact, bifunctional chip-based sensor setup that measures the temperature and electrical conductivity of water samples, including specimens from rivers and channels, aquaculture, and the Atlantic Ocean. For conductivity measurements, we utilize the impedance amplitude recorded via interdigitated electrode structures at a single triggering frequency. The results are well in line with data obtained using a calibrated reference instrument. The new setup holds for conductivity values spanning almost two orders of magnitude (river versus ocean water) without the need for equivalent circuit modelling. Temperature measurements were performed in four-point geometry with an on-chip platinum RTD (resistance temperature detector) in the temperature range between 2 °C and 40 °C, showing no hysteresis effects between warming and cooling cycles. Although the meander was not shielded against the liquid, the temperature calibration provided equivalent results to low conductive Milli-Q and highly conductive ocean water. The sensor is therefore suitable for inline and online monitoring purposes in recirculating aquaculture systems. Full article
(This article belongs to the Special Issue Multisensor Arrays)
Show Figures

Figure 1

18 pages, 4551 KiB  
Article
Miniaturized Microstrip Dual-Channel Diplexer Based on Modified Meander Line Resonators for Wireless and Computer Communication Technologies
by Yaqeen Sabah Mezaal, Shahad K. Khaleel, Ban M. Alameri, Kadhum Al-Majdi and Aqeel A. Al-Hilali
Technologies 2024, 12(5), 57; https://doi.org/10.3390/technologies12050057 - 24 Apr 2024
Cited by 9 | Viewed by 2721
Abstract
There has been a lot of interest in microstrip diplexers lately due to their potential use in numerous wireless and computer communication technologies, including radio broadcasts, mobile phones, broadband wireless, and satellite-based communication systems. It can do this because it has a communication [...] Read more.
There has been a lot of interest in microstrip diplexers lately due to their potential use in numerous wireless and computer communication technologies, including radio broadcasts, mobile phones, broadband wireless, and satellite-based communication systems. It can do this because it has a communication channel that can combine two distinct filters into one. This article presents a narrow-band microstrip diplexer that uses a stepped impedance resonator, a uniform impedance resonator, tiny square patches, and a meander line resonator. The projected diplexer might be made smaller than its initial dimensions by utilizing the winding construction. To model the microstrip diplexer topology for WiMAX and WIFI/WLAN at 1.66 GHz and 2.52 GHz, the Advanced Wave Research (AWR) solver was employed. It exhibited an insertion loss of 3.2 dB and a return loss of 16 dB for the first channel, while the insertion loss and return loss were 2.88 dB and 21 dB, respectively, for the second channel. When both filters were simulated, the band isolation was 31 dB. The projected microstrip diplexer has been fabricated using an FR4 epoxy laminate with dimensions of 32 × 26 mm2. The simulated S-parameters phase and group delay closely matched the measurements. Full article
Show Figures

Figure 1

14 pages, 1586 KiB  
Article
Microheater Topology for Advanced Gas Sensor Applications with Carbyne-Enriched Nanomaterials
by Mariya Aleksandrova, Belgina Ustova, Tsvetozar Tsanev, Ioannis Raptis, Angeliki Tserepi, Evangelos Gogolides and Georgi Kolev
Appl. Sci. 2024, 14(5), 1728; https://doi.org/10.3390/app14051728 - 21 Feb 2024
Cited by 6 | Viewed by 1895
Abstract
The response characteristics of carbyne-enriched surface-acoustic-wave (SAW)-based gas sensors utilizing meander and rectangular microheater topologies were investigated to assess their desorption and recovery properties. Comparative analysis of contact resistance and interface capacitance before and after heating revealed minimal deviation in contact resistance, signifying [...] Read more.
The response characteristics of carbyne-enriched surface-acoustic-wave (SAW)-based gas sensors utilizing meander and rectangular microheater topologies were investigated to assess their desorption and recovery properties. Comparative analysis of contact resistance and interface capacitance before and after heating revealed minimal deviation in contact resistance, signifying strong thermal stability in the carbyne-enriched layer. However, the interface capacitance varied with the microheater size. Our analysis reveals that a small meander microheater configuration (line width: 300 µm) facilitates efficient sensor recovery at ethanol concentration measurements in the range of 180–680 ppm, maintaining a low deviation in time delay across different concentrations (~2.3%), resulting in a narrow hysteresis and linear sensor response. Conversely, the large meander microheater (line width: 450 µm) and rectangular dense microheater induce irreversible changes in the sensing structure, leading to a widened hysteresis at higher concentrations and increased power consumption. Recovery patterns display substantial deviations from initial values at different concentration levels. Higher concentrations exhibit broader hysteresis, while lower concentrations show narrower hysteresis loops, compared to the small meander microheater. The study offers insights into desorption rates, power consumption variations, and recovery behaviors related to different microheater configurations. It demonstrates the importance of microheater topology selection in tailoring recovery properties and response characteristics, contributing to the advancement of carbyne-based sensor technology. Full article
(This article belongs to the Special Issue Design, Synthesis, and Electrochemical Application of Nanomaterial)
Show Figures

Figure 1

20 pages, 3382 KiB  
Article
Fluid-Dynamic Mechanisms Underlying Wind Turbine Wake Control with Strouhal-Timed Actuation
by Lawrence C. Cheung, Kenneth A. Brown, Daniel R. Houck and Nathaniel B. deVelder
Energies 2024, 17(4), 865; https://doi.org/10.3390/en17040865 - 12 Feb 2024
Cited by 7 | Viewed by 2144
Abstract
A reduction in wake effects in large wind farms through wake-aware control has considerable potential to improve farm efficiency. This work examines the success of several emerging, empirically derived control methods that modify wind turbine wakes (i.e., the pulse method, helix method, and [...] Read more.
A reduction in wake effects in large wind farms through wake-aware control has considerable potential to improve farm efficiency. This work examines the success of several emerging, empirically derived control methods that modify wind turbine wakes (i.e., the pulse method, helix method, and related methods) based on Strouhal numbers on the O(0.3). Drawing on previous work in the literature for jet and bluff-body flows, the analyses leverage the normal-mode representation of wake instabilities to characterize the large-scale wake meandering observed in actuated wakes. Idealized large-eddy simulations (LES) using an actuator-line representation of the turbine blades indicate that the n=0 and ±1 modes, which correspond to the pulse and helix forcing strategies, respectively, have faster initial growth rates than higher-order modes, suggesting these lower-order modes are more appropriate for wake control. Exciting these lower-order modes with periodic pitching of the blades produces increased modal growth, higher entrainment into the wake, and faster wake recovery. Modal energy gain and the entrainment rate both increase with streamwise distance from the rotor until the intermediate wake. This suggests that the wake meandering dynamics, which share close ties with the relatively well-characterized meandering dynamics in jet and bluff-body flows, are an essential component of the success of wind turbine wake control methods. A spatial linear stability analysis is also performed on the wake flows and yields insights on the modal evolution. In the context of the normal-mode representation of wake instabilities, these findings represent the first literature examining the characteristics of the wake meandering stemming from intentional Strouhal-timed wake actuation, and they help guide the ongoing work to understand the fluid-dynamic origins of the success of the pulse, helix, and related methods. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

14 pages, 5398 KiB  
Article
Meander Line Super-Wideband Radiator for Fifth-Generation (5G) Vehicles
by Narayana Rao Palepu, Jayendra Kumar and Samineni Peddakrishna
Vehicles 2024, 6(1), 242-255; https://doi.org/10.3390/vehicles6010010 - 23 Jan 2024
Cited by 3 | Viewed by 2121
Abstract
Designing antennas for vehicular communication systems presents several unique challenges due to the dynamic nature of vehicular environments, mobility, and the need for reliable connectivity. A wider bandwidth is a critical requirement of vehicular antennas. In this paper, a super-wideband FR4 epoxy-based low-cost [...] Read more.
Designing antennas for vehicular communication systems presents several unique challenges due to the dynamic nature of vehicular environments, mobility, and the need for reliable connectivity. A wider bandwidth is a critical requirement of vehicular antennas. In this paper, a super-wideband FR4 epoxy-based low-cost meander line patch antenna is designed for fifth-generation (5G) vehicular mobile frequency applications. The proposed antenna is excited through a microstrip feedline on top of the substrate with a continuous ground plane. The meander line is implemented through a theoretical formula to cover upper-5G frequency range 1 (FR1) and frequency range 2 (FR2). The proposed antenna has 7.5 dBi peak gain when operated at 28 GHz. The simulated bandwidth ratio (BWR) is 9.09:1 for a −10 dB reflection coefficient covering a 53.4 GHz (6.6 GHz to 60 GHz) frequency range. The proposed antenna has a linear meander line planar structure, occupies a small area of 34 mm × 20 mm × 1.6 mm, and satisfies the bandwidth requirements of 5G millimeter-wave and sub-bands of the sixth generation for vehicular applications. Full article
Show Figures

Figure 1

17 pages, 4852 KiB  
Article
A Novel Compact Broadband Quasi-Twisted Branch Line Coupler Based on a Double-Layered Microstrip Line
by Fayyadh H. Ahmed, Rola Saad and Salam K. Khamas
Micromachines 2024, 15(1), 142; https://doi.org/10.3390/mi15010142 - 17 Jan 2024
Cited by 6 | Viewed by 1951
Abstract
A novel quasi-twisted miniaturized wideband branch line coupler (BLC) is proposed. The design is based on bisecting the conventional microstrip line BLC transversely and folding bisected sections on double-layered substrates with a common ground plane in between. The input and output terminals, each [...] Read more.
A novel quasi-twisted miniaturized wideband branch line coupler (BLC) is proposed. The design is based on bisecting the conventional microstrip line BLC transversely and folding bisected sections on double-layered substrates with a common ground plane in between. The input and output terminals, each with a length of λg/4, and the pair of quarter-wavelength horizontal parallel arms are converted into a Z-shaped meandered microstrip line in the designed structure. Conversely, the pair of quarter-wavelength vertical arms are halved into two lines and transformed into a periodically loaded slow-wave structure. The bisected parts of the BLC are placed on the opposite side of the doubled-layer substrate and connected through four vias passing through the common ground plane. This technique enabled a compact BLC size of 6.4 × 18 mm2, which corresponds to a surface area miniaturization by ~50% as compared to the classical BLC size of 10 × 23 mm2 at 6 GHz. Moreover, the attained relative bandwidth is 73.9% (4.6–10 GHz) for S11, S33, S21, and the phase difference between outputs (∠S21 − ∠S41). However, if a coupling parameter (S41) of up to −7.5 dB is considered, then the relative bandwidth reduces to 53.9% (4.6–10 GHz) for port 1 as the input. Similarly, for port 3 as the input, the obtained bandwidth is 75.8% (4.5–10 GHz) for S33, S11, S43, and the phase difference between outputs (∠S43 − ∠S23). Likewise, this bandwidth reduces to 56% (4.5–8 GHz) when a coupling parameter (S23) of up to −7.5 dB is considered. In contrast, the relative bandwidth for the ordinary BLC is 41% at the same resonant frequency. The circuit is constructed on a double-layered low-cost FR4 substrate with a relative permittivity of 4.3 and a loss tangent of 0.025. An isolation of −13 dB was realized in both S13 and S31 demonstrating an excellent performance. The transmission coefficients between input/output ports S21, S41, S23, and S43 are between −3.1 dB to −3.5 dB at a frequency of 6 GHz. Finally, the proposed BLC provides phase differences between output ports of 90.5° and 94.8° at a frequency of 6 GHz when the input ports 1 and 3 are excited, respectively. The presented design offers the potential of being utilized as a unit cell for building a Butler matrix (BM) for sub-6 GHz 5G beamforming networks. Full article
(This article belongs to the Special Issue Recent Advances in Electromagnetic Devices)
Show Figures

Figure 1

18 pages, 3061 KiB  
Article
A Compact Microwave Quadrature Hybrid Coupler Using Capacitive Composite Lines and Meandered Stubs
by Sobhan Roshani, Salah I. Yahya, Maher Assaad, Muhammad Akmal Chaudhary, Fawwaz Hazzazi, Yazeed Yasin Ghadi, Sarmad M. Ali and Saeed Roshani
Symmetry 2023, 15(12), 2149; https://doi.org/10.3390/sym15122149 - 3 Dec 2023
Viewed by 2695
Abstract
In this paper, a new structure of the quadrature hybrid coupler (QHC) with compact size is proposed using capacitive composite lines and meandered open stubs. The proposed coupler works at 1.6 GHz with a 0.4 GHz bandwidth, which shows 25% fractional bandwidth (FBW). [...] Read more.
In this paper, a new structure of the quadrature hybrid coupler (QHC) with compact size is proposed using capacitive composite lines and meandered open stubs. The proposed coupler works at 1.6 GHz with a 0.4 GHz bandwidth, which shows 25% fractional bandwidth (FBW). The proposed QHC occupies only 15 mm × 15 mm (0.12 λ × 0.12 λ), while the typical QHC size is 32 mm × 32 mm (0.25 λ × 25 λ) at the same working frequency. In the designed structure, two symmetric meandered stubs and two symmetric π-shaped composite networks including capacitors and microstrip lines are applied together. The designed QHC has a small size and occupies only 22% of the area of the conventional QHC, resulting in a 78% size reduction. The designed prototype has been analyzed, fabricated and tested, and the experimental results verify the simulated and analysis results. The results show a better than 27 dB return loss, more than 28 dB isolation between the output ports and less than 0.4 dB insertion loss at the working frequency of 1600 MHz. With the achieved desirable specifications, the fabricated QHC is a suitable choice for wireless microwave applications. Full article
(This article belongs to the Special Issue Symmetry/Asymmetry in Wireless Communication and Sensor Networks II)
Show Figures

Figure 1

Back to TopTop