Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = maximum weight independent set (MWIS)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 626 KiB  
Article
A Novel Design for Joint Collaborative NOMA Transmission with a Two–Hop Multi–Path UE Aggregation Mechanism
by Xinqi Zhao, Hua-Min Chen, Shaofu Lin, Hui Li and Tao Chen
Symmetry 2024, 16(8), 1052; https://doi.org/10.3390/sym16081052 - 15 Aug 2024
Viewed by 1283
Abstract
With the exponential growth of devices, particularly Internet of things (IoT) devices, connecting to wireless networks, existing networks face significant challenges. Spectral efficiency is crucial for uplink, which is the dominant form of asymmetrical network in today’s communication landscape, in large-scale connectivity scenarios. [...] Read more.
With the exponential growth of devices, particularly Internet of things (IoT) devices, connecting to wireless networks, existing networks face significant challenges. Spectral efficiency is crucial for uplink, which is the dominant form of asymmetrical network in today’s communication landscape, in large-scale connectivity scenarios. In this paper, an uplink transmission scenario is considered and user equipment (UE) aggregation is employed, wherein some users act as cooperative nodes (CNs), and help to forward received data from other users requiring coverage extension, reliability improvement, and data–rate enhancement. Non–orthogonal multiple access (NOMA) technology is introduced to improve spectral efficiency. To reduce the interference impact to guarantee the data rate, one UE can be assisted by multiple CNs, and these CNs and corresponding assisted UEs are clustered into joint transmission pairs (JTPs). Interference-free transmission can be achieved within each JTP by utilizing different successive interference cancellation (SIC) decoding orders. To explore SIC gains and maximize data rates in NOMA–based UE aggregation, we propose a primary user CN–based channel–sorting algorithm for JTP construction and apply a whale optimization algorithm for JTP power allocation. Additionally, a conflict graph is established among feasible JTPs, and a greedy strategy is employed to find the maximum weighted independent set (MWIS) of the conflict graph for subchannel allocation. Simulation results demonstrate that our joint collaborative NOMA (JC–NOMA) design with two–hop multi–path UE aggregation significantly improves spectral efficiency and capacity under limited spectral resources. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

16 pages, 460 KiB  
Article
Solving Robust Weighted Independent Set Problems on Trees and under Interval Uncertainty
by Ana Klobučar and Robert Manger
Symmetry 2021, 13(12), 2259; https://doi.org/10.3390/sym13122259 - 27 Nov 2021
Cited by 2 | Viewed by 1897
Abstract
The maximum weighted independent set (MWIS) problem is important since it occurs in various applications, such as facility location, selection of non-overlapping time slots, labeling of digital maps, etc. However, in real-life situations, input parameters within those models are often loosely defined or [...] Read more.
The maximum weighted independent set (MWIS) problem is important since it occurs in various applications, such as facility location, selection of non-overlapping time slots, labeling of digital maps, etc. However, in real-life situations, input parameters within those models are often loosely defined or subject to change. For such reasons, this paper studies robust variants of the MWIS problem. The study is restricted to cases where the involved graph is a tree. Uncertainty of vertex weights is represented by intervals. First, it is observed that the max–min variant of the problem can be solved in linear time. Next, as the most important original contribution, it is proved that the min–max regret variant is NP-hard. Finally, two mutually related approximation algorithms for the min–max regret variant are proposed. The first of them is already known, but adjusted to the considered situation, while the second one is completely new. Both algorithms are analyzed and evaluated experimentally. Full article
(This article belongs to the Special Issue Graph Algorithms and Graph Theory)
Show Figures

Figure 1

17 pages, 1497 KiB  
Article
Energy-Efficient Cluster Head Selection via Quantum Approximate Optimization
by Jaeho Choi, Seunghyeok Oh and Joongheon Kim
Electronics 2020, 9(10), 1669; https://doi.org/10.3390/electronics9101669 - 13 Oct 2020
Cited by 19 | Viewed by 3132
Abstract
This paper proposes an energy-efficient cluster head selection method in the wireless ad hoc network by using a hybrid quantum-classical approach. The wireless ad hoc network is divided into several clusters via cluster head selection, and the performance of the network topology depends [...] Read more.
This paper proposes an energy-efficient cluster head selection method in the wireless ad hoc network by using a hybrid quantum-classical approach. The wireless ad hoc network is divided into several clusters via cluster head selection, and the performance of the network topology depends on the distribution of these clusters. For an energy-efficient network topology, none of the selected cluster heads should be neighbors. In addition, all the selected cluster heads should have high energy-consumption efficiency. Accordingly, an energy-efficient cluster head selection policy can be defined as a maximum weight independent set (MWIS) formulation. The cluster head selection policy formulated with MWIS is solved by using the quantum approximate optimization algorithm (QAOA), which is a hybrid quantum-classical algorithm. The accuracy of the proposed energy-efficient cluster head selection via QAOA is verified via simulations. Full article
(This article belongs to the Special Issue Energy-Aware and Efficient Computing and Communications)
Show Figures

Figure 1

11 pages, 453 KiB  
Article
Quantum Approximation for Wireless Scheduling
by Jaeho Choi, Seunghyeok Oh and Joongheon Kim
Appl. Sci. 2020, 10(20), 7116; https://doi.org/10.3390/app10207116 - 13 Oct 2020
Cited by 25 | Viewed by 3383
Abstract
This paper proposes an application algorithm based on a quantum approximate optimization algorithm (QAOA) for wireless scheduling problems. QAOA is one of the promising hybrid quantum-classical algorithms to solve combinatorial optimization problems and it provides great approximate solutions to non-deterministic polynomial-time (NP) hard [...] Read more.
This paper proposes an application algorithm based on a quantum approximate optimization algorithm (QAOA) for wireless scheduling problems. QAOA is one of the promising hybrid quantum-classical algorithms to solve combinatorial optimization problems and it provides great approximate solutions to non-deterministic polynomial-time (NP) hard problems. QAOA maps the given problem into Hilbert space, and then it generates the Hamiltonian for the given objective and constraint. Then, QAOA finds proper parameters from the classical optimization loop in order to optimize the expectation value of the generated Hamiltonian. Based on the parameters, the optimal solution to the given problem can be obtained from the optimum of the expectation value of the Hamiltonian. Inspired by QAOA, a quantum approximate optimization for scheduling (QAOS) algorithm is proposed. The proposed QAOS designs the Hamiltonian of the wireless scheduling problem which is formulated by the maximum weight independent set (MWIS). The designed Hamiltonian is converted into a unitary operator and implemented as a quantum gate operation. After that, the iterative QAOS sequence solves the wireless scheduling problem. The novelty of QAOS is verified with simulation results implemented via Cirq and TensorFlow-Quantum. Full article
(This article belongs to the Section Quantum Science and Technology)
Show Figures

Figure 1

16 pages, 291 KiB  
Article
Solving Robust Variants of the Maximum Weighted Independent Set Problem on Trees
by Ana Klobučar and Robert Manger
Mathematics 2020, 8(2), 285; https://doi.org/10.3390/math8020285 - 20 Feb 2020
Cited by 4 | Viewed by 4453
Abstract
This paper deals with the maximum weighted independent set (MWIS) problem. We consider several robust variants of the MWIS problem on trees and prove that most of them are NP-hard. We propose a heuristic for solving the considered robust MWIS variants, which is [...] Read more.
This paper deals with the maximum weighted independent set (MWIS) problem. We consider several robust variants of the MWIS problem on trees and prove that most of them are NP-hard. We propose a heuristic for solving the considered robust MWIS variants, which is customized for trees. We demonstrate by experiments that our algorithm produces high-quality solutions and runs much faster than a general-purpose optimization software. Full article
(This article belongs to the Section E1: Mathematics and Computer Science)
Show Figures

Figure 1

Back to TopTop