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Abstract: This paper proposes an application algorithm based on a quantum approximate optimization
algorithm (QAOA) for wireless scheduling problems. QAOA is one of the promising hybrid
quantum-classical algorithms to solve combinatorial optimization problems and it provides great
approximate solutions to non-deterministic polynomial-time (NP) hard problems. QAOA maps the
given problem into Hilbert space, and then it generates the Hamiltonian for the given objective and
constraint. Then, QAOA finds proper parameters from the classical optimization loop in order to
optimize the expectation value of the generated Hamiltonian. Based on the parameters, the optimal
solution to the given problem can be obtained from the optimum of the expectation value of the
Hamiltonian. Inspired by QAOA, a quantum approximate optimization for scheduling (QAOS)
algorithm is proposed. The proposed QAOS designs the Hamiltonian of the wireless scheduling
problem which is formulated by the maximum weight independent set (MWIS). The designed
Hamiltonian is converted into a unitary operator and implemented as a quantum gate operation.
After that, the iterative QAOS sequence solves the wireless scheduling problem. The novelty of
QAOS is verified with simulation results implemented via Cirq and TensorFlow-Quantum.

Keywords: quantum approximate optimization algorithm (QAOA); maximum weight independent set
(MWIS); NP-hard; wireless scheduling; quantum application

1. Introduction

Nowadays, quantum computing and communications have received a lot of attention
from academia and industry research communities. In particular, quantum computing-based
non-deterministic polynomial-time (NP) hard problem solving is of great interest [1–4]. Among the
available methods, the quantum approximate optimization algorithm (QAOA) is one of the
well-known quantum computing-based optimization solvers, and it has been verified that the
QAOA outperforms others in many combinatorial problems that are closely related to wireless
scheduling problems [5–9]. Therefore, it is obvious that quantum computing can be used for various
communications applications [10–13].

In this paper, a wireless scheduling problem is formulated with maximum weight independent
set (MWIS) formulation, where the weight is defined as the queue backlog to be transmitted over
wireless channels [14–17]. Due to the fact that the MWIS problem is an NP-hard problem, heuristic
algorithms are desired; thus, a QAOA application algorithm, quantum approximate optimization for
scheduling (QAOS), is designed to solve MWIS-based wireless scheduling problems.

The proposed QAOS works as follows. First of all, the objective function and constraint
functions are formulated for MWIS. Next, the corresponding objective Hamiltonian and constraint
Hamiltonian are designed, which map the objective function and the constraint function, respectively;
then, the problem Hamiltonian, which should be optimized, is formulated as the form of linear
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combinations of the objective Hamiltonian and constraint Hamiltonian. In addition, the mixing
Hamiltonian is formulated using the Pauli-X operator, which provides the number of different
cases via bit flip. Based on the definitions of the problem Hamiltonian and the mixing Hamiltonian,
two corresponding unitary operators, i.e., the problem operator and mixing operator, can be defined,
respectively; then, the parameterized state can be generated by alternately applying the two unitary
operators. The sample solutions can be obtained by the measurement of the expectation value of the
problem Hamiltonian on the parameterized state, and the parameters can be optimized in a classical
optimization loop, using—for example—stochastic gradient methods. Here, the measurement is used
to project a quantum state into one of the eigenstates (=eigenkets) of the problem operator, according to
the Copenhagen interpretation [18]. Finally, the optimal solution of the MWIS problem can be obtained
by the measurement of the expectation value of the problem Hamiltonian on the state generated by
optimal parameters. As verified in performance evaluation, the QAOS outperforms the random search
and greedy search.

QAOS is a novel attempt to carry out application research on wireless communication via QAOA.
In the noisy intermediate-scale quantum (NISQ) era, research on hybrid quantum-classical algorithms
such as QAOS is essential [6]. However, the research on QAOA-based applications such as QAOS is
still in its infancy. Therefore, it is reasonable to increase the utilization of QAOA through convergence
and transformation in various fields. From this point of view, QAOS, the novel attempt via QAOA,
is very encouraging.

The rest of this paper is organized as follows. Section 2 presents the preliminary knowledge.
Section 3 introduces MWIS-based wireless scheduling modeling. Section 4 presents the details of the
proposed QAOS algorithm, and the performance is evaluated in Section 5. Finally, Section 6 concludes
the paper.

2. Preliminaries

Prior to problem modeling, this section briefly explains bra–ket notation, basic quantum gates,
and QAOA [5].

2.1. Bra–Ket Notation

In quantum computing, the bra–ket notation is generally used to represent qubit states
(or quantum states). It is also called the Dirac notation, as well as the notation for observable
vectors in Hilbert spaces. A ket and a bra can represent the column and row vectors, respectively.
Thus, single qubit states, i.e., |0〉 and |1〉, are represented as follows:

|0〉 =
[

1
0

]
, and |1〉 =

[
0
1

]
, (1)

and also |0〉 = 〈0|† =
[
1 0

]†
, (2)

|1〉 = 〈1|† =
[
0 1

]†
. (3)

Note that † means Hermitian transpose. Accordingly, the superposition state of a single qubit can
be represented as follows:

c1 |0〉+ c2 |1〉 =
[

c1

c2

]
, (4)

where c1 and c2 are probability amplitudes that are complex numbers [19].
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2.2. Basic Quantum Gates

This section introduces several commonly used basic quantum gates (or operators) that represent
the single-qubit or 2-qubit operations [19]. The Hadamard gate H, Pauli-X gate X, Pauli-Y gate Y,
and Pauli-Z gate Z are represented as follows:

H =
1√
2

[
1 1
1 −1

]
, X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, and Z =

[
1 0
0 −1

]
. (5)

The rotation-X gate RX(θ), rotation-Y gate RY(θ), and rotation-Z gate RZ(θ) are represented
as follows:

RX(θ) =

[
cos θ

2 −i sin θ
2

−i sin θ
2 cos θ

2

]
, RY(θ) =

[
cos θ

2 − sin θ
2

sin θ
2 cos θ

2

]
, and RZ(θ) =

[
e−i θ

2 0
0 ei θ

2

]
, (6)

where θ is the angle. The controlled-NOT gate CNOT and swap gate SWAP are represented as follows:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , and SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 . (7)

In this paper, H, X, Z, RX(θ), RZ(θ), and CNOT are used.

2.3. Quantum Approximate Optimization Algorithm (QAOA)

QAOA is one of the well-known NISQ optimization algorithms to combat combinatorial
problems [5–8]. QAOA formulates HP (i.e., problem Hamiltonian) and HM (i.e., mixing Hamiltonian)
from the objective function f (y); and then generates the parameterized states |γ, β〉 by alternately
applying the HP and HM on initial state |s〉. Here, f (y), HP |y〉, HM, and |γ, β〉 are defined as follows:

f (y) , f (y1, y2, ..., yn), (8)

HP |y〉 , f (y) |y〉 , (9)

HM ,
n

∑
k=1

Xk, (10)

|γ, β〉 , e−iβp HM e−iγp HP · · · e−iβ2 HM e−iγ2 HP e−iβ1 HM e−iγ1 HP |s〉 , (11)

where n ∈ Z+, p ∈ Z+, and Xk is the Pauli-X operator applying on the kth qubit; γ and β are learnable
parameters that tune the result. Note that HP encodes f (y) in Equation (9), operating diagonally in the
n-qubit quantum computational basis states [20].

In QAOA, through iterative measurement of |γ, β〉, the expectation value of HP should be taken;
then, eventually, the samples of f (y) should be computed as follows [5]:

〈 f (y)〉γ,β = 〈γ, β|HP|γ, β〉 . (12)

The optimal values of the parameters γ and β can be obtained via classical numerical optimization
methods such as gradient descent [21,22]. Therefore, the solution can be computed from Equation (12)
via the parameters obtained. Thus, QAOA is a hybrid quantum-classical optimization algorithm in
which proper Hamiltonian design and the discovery of good parameters in a classical optimization
loop are key [20,23,24].
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3. Wireless Scheduling Modeling Using Maximum Weight Independent Set (MWIS)

Suppose a wireless network consists of a set of one-hop links under very high transmission power
using millimeter wave [14]. Due to the high data transmission rate, the queue backlog should always
be cleared; otherwise, the signal decoding always fails because of extremely high interference. For the
scheduling, a conflict graph is organized where the set of vertices is (the links) and two vertices are
connected by an edge if the corresponding links suffer from interference. The conflict graph can be
formulated by its adjacency matrix, whose E(i,j) are defined as follows:

E(i,j) =


1, if li interferes with lj where

li ∈ L, lj ∈ L, and i 6= j,
0, otherwise.

(13)

For wireless network scheduling, the objective is for finding the set of links (i.e., nodes of the
conflict graph) where two adjacent links connected via edges cannot be simultaneously selected
because the two adjacent connected links are interfering with each other. This is equivalent to the case
which maximizes the summation of weights of all possible independent sets in a given conflict graph.
Thus, it is obvious that wireless network scheduling can be formulated with MWIS as follows:

max : ∑
∀lk∈L

wkIk, (14)

s.t. Ii + Ij + E(i,j) ≤ 2, ∀li ∈ L, ∀lj ∈ L, (15)

Ii ∈ {0, 1}, ∀li ∈ L, (16)

where Ii =

{
1, if li is scheduled where li ∈ L,
0, otherwise.

(17)

Here, wk is a positive integer weight at ∀lk ∈ L. The above formulation ensures that conflicting
links are not scheduled simultaneously: if E(i,j) = 0 (no edge between li and lj), then Ii + Ij ≤ 2,
i.e., both indicator functions can be 1. In contrast, if E(i,j) = 1, Ii + Ij ≤ 1, i.e., at most, one of the two
indicators can be 1. In wireless communication research, the wk where ∀lk ∈ L is usually considered as
the transmission queue backlog which should be processed when the link is scheduled. More details
are can be found in [14].

4. Quantum Approximate Optimization for Scheduling (QAOS)

In this section, Hamiltonians of QAOA are designed based on the scheduling model in Section 3;
then, the quantum approximate optimization for scheduling (QAOS) algorithm is proposed by
applying the designed Hamiltonian to QAOA.

4.1. Design of the Problem Hamiltonian

The problem Hamiltonian HP is designed by a linear combination of the objective Hamiltonian
HO and the constraint Hamiltonian HC. The objectives and constraints of the problem are contained
by HO and HC, respectively.

4.1.1. Design of the Objective Hamiltonian

Suppose that a basic Boolean function B1(x) exists as follows:

B1(x) = x where x ∈ {0, 1}. (18)

Due to quantum Fourier expansion, Equation (18) can be mapped to Boolean Hamiltonian HB1 where
I and Z are an identity operator and the Pauli-Z operator, respectively [25]:
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HB1 =
1
2
(I − Z). (19)

According to Equations (18) and (19), the objective function Equation (14) can be mapped to the
following Hamiltonian:

HO′ = ∑
∀lk∈L

1
2

wk(I − Zk), (20)

where Zk is the Pauli-Z operator applied to Ik. Since HO′ is mapped from the objective
function Equation (14), which should be maximized, HO′ should also be maximized. Therefore,
the objective Hamiltonian HO should be minimized is as follows:

HO = ∑
∀lk∈L

1
2

wkZk. (21)

4.1.2. Design of the Constraint Hamiltonian

In the MWIS-based wireless scheduling problem, a banned event is a case where both adjacent
nodes of the conflict graph are scheduled, as shown in Case C of Figure 1. If the weights of Ni and Nj
in Case C are defined as WNi and WNj respectively; then the constraint function C′(i, j), which counts
the banned events, can be represented as follows:

C′(i, j) =
n

∑
i=1

n

∑
j=1

(WNi + WNj)
∣∣EC(Ni, Nj)

∣∣ where i > j. (22)

Here, n is the number of nodes and
∣∣EC(Ni, Nj)

∣∣ is the number of EC(Ni, Nj); i > j is a condition
to avoid the duplication of the same edge.

1 1 Case C: Both Scheduled

0 1 Case B: 1 Node Scheduled

0 0 Case A: Both Unscheduled

EC(Ni , Nj)

EB(Ni , Nj)

EA(Ni , Nj)

Figure 1. The number of possible cases when a single edge exists between two nodes in the conflict
graph. The scheduled and unscheduled nodes have states |1〉 and |0〉, respectively. Ni and Nj represent
arbitrary nodes, and EA(Ni, Nj), EB(Ni, Nj), and EC(Ni, Nj) represent edges in each case.

According to Equations (13)–(17), C′(i, j) can be redefined as C(i, j) with symbols in Section 3
as follows:

C(i, j) = ∑
∀li∈L

∑
∀lj∈L

(wi + wj)E(i,j) where i > j

= ∑
∀li∈L

∑
∀lj∈L

(wi + wj)(Ii ∧ Ij) where i > j. (23)

Here, ∧ is a Boolean AND operator and C(i, j), which counts the banned events, must be 0 or the
minimum value. Due to quantum Fourier expansion, the AND Boolean function B2(x1, x2) can be
mapped to the following Boolean Hamiltonian HB2 [25]:
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B2(x1, x2) = x1 ∧ x2 where

x1 ∈ {0, 1} and x2 ∈ {0, 1}, (24)

HB2 =
1
4
(I − Z1 − Z2 + Z1Z2), (25)

where Z1 and Z2 are the Pauli-Z operators applying on x1 and x2, respectively.
According to Equations (24) and (25), the constraint function Equation (23) can be represented as

following Hamiltonian:

HC′ = ∑
∀li∈L

∑
∀lj∈L

1
4
(wi + wj)(I − Zi − Zj + ZiZj) where i > j. (26)

Here, Zi and Zj are the Pauli-Z operators applied to Ii and Ij, respectively. Since C(i, j) must be
0 or the minimum value, HC′ , mapped from C(i, j), should be minimized. Therefore, the constraint
Hamiltonian HC, which is a simplified form of HC′ , is as follows:

HC = ∑
∀li∈L

∑
∀lj∈L

−1
4
(wi + wj)(Zi + Zj − ZiZj) where i > j. (27)

Based on the definitions of HO and HC, the problem Hamiltonian HP can be defined as follows:

HP = HO + ρHC, (28)

where ρ ≥ 1 is the penalty rate, which indicates the rate at which HC affects HP compared to HO in
the implementation.

4.2. Design of the Mixing Hamiltonian

The mixing Hamiltonian, denoted by HM, generates a variety of cases that can appear in the
problem. MWIS can be formulated by a binary bit string that represents a set of nodes (e.g., |1010101〉);
thus, various cases can be created by flipping the state of each node, represented by |0〉 or |1〉.
The bit-flip can be handled by the Pauli-X operator, thus HM is as follows:

HM = ∑
∀lk∈L

Xk. (29)

4.3. Apply to QAOA Sequence

The application of the designed Hamiltonian to the QAOA sequence starts to occur when the
design of Hamiltonians, i.e., HP and HM, are completed. First, the parameterized state |γ, β〉 can be
generated by applying HP and HM, defined in Equations (21), (27), (28) and (29), to (11). Here, the initial
state |s〉 is set to the equivalent superposition state using the Hadamard gates. The expectation value of
HP can be measured on the generated parameterized state |γ, β〉. The parameters γ and β are iteratively
updated in a classical optimization loop. When the QAOA sequence terminates, the optimal parameters
γopt and βopt are obtained. Thus, the scheduling solution can be obtained by the measurement of the
expectation value of HP on the optimal state

∣∣γopt, βopt
〉

as follows:

〈F〉 =
〈
γopt, βopt

∣∣HP
∣∣γopt, βopt

〉
, (30)

where 〈F〉 is the expectation value of the objective function Equation (14) over the returned solution samples.
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5. Performance Evaluation

The proposed QAOS algorithm is implemented using Cirq and TensorFlow-Quantum, which
were developed for the NISQ algorithm and quantum machine learning computation [26].

5.1. Software Implementation

The application of the quantum gates, the basic units of the quantum circuit, is expressed by
unitary operators. Based on the definitions of Hamiltonians in Section 4, the objective operator UO(γζ),
constraint operator UC(γζ), problem operator UP(γζ), and mixing operator UM(βζ), which are unitary
operators, can be defined as follows:

UO(γζ) = e−iγζ HO , (31)

UC(γζ) = e−iγζ ρHC , (32)

UP(γζ) = UO(γζ)UC(γζ) = e−iγζ (HO+ρHC), (33)

UM(βζ) = e−iβζ HM , (34)

where γζ and βζ are in γ ≡ γ1 · · · γp and β ≡ β1 · · · βp, respectively: ζ ∈ Z+ and 1 ≤ ζ ≤ p. Note that
the implementation of UP(γζ) and UM(βζ) is the core of QAOS implementation.

In Figure 2, cirq.rz() and cirq.CNOT() are used for the implementation of UP(γζ).
Note that, cirq.rz() and cirq.CNOT() represent the rotation-Z gate and the controlled-NOT
gate, respectively. In addition, UM(βζ) is implemented using cirq.rx(), which represents the
rotation-X gate.

The part that finds the optimal parameters using Keras (one of the well-known open-source deep
learning computation libraries) is shown in Figure 2, from line 29 to line 36. Here, the parametrized
quantum circuit (PQC) layer provides the auto-management of variables in the parameterized circuit.
In this model, Adam is used as a gradient-based optimizer [27,28].

5.2. Experiments

This experiment demonstrates the possibility of a novel quantum approach via QAOS by
focusing on simple and light methods to wireless scheduling problems. In the classical approaches,
a message-passing algorithm consisting of linear programming relaxation, maximum product method,
and maximum a posteriori estimation is mainly used to solve the MWIS-based wireless scheduling
problem [14,16,17]. However, if the network requires a more simple and lighter algorithm, the random
and greedy-based algorithms are also used for wireless scheduling [29,30]. Thus, the performance of
the proposed QAOS, based on QAOA, one of the simple and light quantum algorithms that intuitively
express the state with qubit rotation, is compared with the random search and greedy search, which
are simple and light classical algorithms [31,32]. In addition, the QAOS algorithm is executed with
different p value settings, where the p value means the number of alternations of UP(γζ) and UM(βζ)

in Equations (33) and (34), i.e., ζ ∈ Z+ and 1 ≤ ζ ≤ p.
For the performance evaluation, random conflict graphs with 10 nodes are generated; then,

random search, greedy search, and QAOS algorithms are performed for the given random conflict
graphs. The measurement of each QAOS is performed 1000 times in each simulation (i.e., in each
randomly generated conflict graph). The performance of each algorithm is quantitatively measured
with η as follows:

η , a
b

, (35)

where a and b are the summations of weights of the scheduled nodes by the used algorithms and
the summations of weights of the scheduled nodes by brute-force search (i.e., exhaustive search),
respectively, for the given randomly generated graphs. As shown in Figure 3, the cumulative
distribution functions (CDF) of η for each algorithm are computed.
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As presented in Figure 3, QAOS algorithms with p ≥ 8 present a better performance than
random search and greedy search, in any kind of randomly generated conflict graph. In these repeated
simulations, the performances of QAOS algorithms are improved as the p value increases. In particular,
the performance of the QAOS algorithm with p = 10 is much better than the QAOS algorithms with
p = 8 and p = 9. As shown in Table 1, the QAOS algorithm with p = 10 returns optimal solutions
(i.e., equivalent to the solutions obtained by brute-force search) with a ratio of 69.50%. Through these
results, we have verified that the proposed QAOS algorithm presents beautiful results in terms of the
accuracy of the solutions.

Version October 3, 2020 submitted to Appl. Sci. 7 of 10

1# - QUBO Model for MWIS
2def get_MWIS_QUBO(graph: nx.Graph, penalty_rate=1):
3weight_set = np.array(
4[graph.nodes(data=True)[i][’weight’] for i in range(graph.number_of_nodes())])
5problem_QUBO={}
6for i in range(graph.number_of_nodes()):
7problem_QUBO[(i,)]=weight_set[i]
8for _,j in graph.edges(i):
9problem_QUBO[(i,)]-=(weight_set[i]+weight_set[i])*penalty_rate/2
10if i < j:
11problem_QUBO[(i, j)]=(weight_set[i]+weight_set[i])*penalty_rate/2
12return problem_QUBO
13...
14# - Problem Operator
15def problem_operator(p_QUBO:dict, qubits, p, gamma):
16key_iter=sorted(p_QUBO.keys(), key=lambda x: (len(x), x))
17for nodes in key_iter:
18for i in range(len(nodes)-1):
19yield cirq.CNOT(qubits[nodes[i]], qubits[nodes[i+1]])
20yield cirq.rz(gamma[p]*p_QUBO[nodes])(qubits[nodes[-1]])
21for i in range(len(nodes)-1):
22yield cirq.CNOT(qubits[nodes[i]], qubits[nodes[i+1]])
23...
24# - Mixing Operator
25def mixing_operator(mwis_graph, qubits, p, beta):
26for node in mwis_graph.nodes:
27yield cirq.rx(2*beta[p])(qubits[node])
28...
29# - Optimal Parameter Search using Keras Model
30model = tf.keras.Sequential()
31model.add(tf.keras.layers.Input(shape=(), dtype=tf.dtypes.string))
32model.add(tfq.layers.PQC(model_circuit, model_readout)) # Parameterized Quantum Circuit
33model.add(tf.keras.layers.Lambda(correction))
34model.compile(loss=tf.keras.losses.mean_absolute_error,
35optimizer=tf.keras.optimizers.Adam(learning_rate=learning_rate))
36history = model.fit(input_,optimum,epochs=epochs,verbose=0)

Figure 2. Parts of Python codes using Cirq and TensorFlow-Quantum for solving the MWIS-based scheduling
problem.

5.2. Experiments120

This experiment demonstrates the possibility of a novel quantum approach via QAOS by focusing on simple121

and light methods to the wireless scheduling problems. In the classical approaches, a message-passing algorithm122

consisting of linear programming relaxation, maximum product method, and maximum a posteriori estimation123

is mainly used to solve the MWIS-based wireless scheduling problem [14,16,17]. However, if the network124

requires a more simple and lighter algorithm, the random and greedy-based algorithms are also used for wireless125

scheduling [29,30]. Thus, the performance of proposed QAOS based on QAOA, one of the simple and light126

quantum algorithms that intuitively express the state with qubit rotation, is compared with the random search and127

greedy search that are simple and light classical algorithms [31,32]. In addition, the QAOS algorithm executes128

with different p value settings where the p value means the number of alternations of UP(γζ) and UM(βζ)129

in (33) and (34), i.e., ζ ∈ Z+ and 1 ≤ ζ ≤ p.130

For the performance evaluation, random conflict graphs with 10 nodes are generated; and then random search,
greedy search, and QAOS algorithms are performed for the given random conflict graphs. The measurement of
each QAOS is performed 1, 000 times in each simulation (i.e., in each randomly generated conflict graph). The
performance of each algorithm is quantitatively measured with η as follows:

η , a
b

, (35)

where a and b are the summations of weights of the scheduled nodes by the used algorithms and the summations131

of weights of the scheduled nodes by brute-force search (i.e., exhaustive search), respectively, for the given132

Figure 2. Parts of Python codes using Cirq and TensorFlow-Quantum for solving the maximum weight
independent set (MWIS)-based scheduling problem.
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Figure 3. Performance evaluation results. G(η) is the cumulative distribution function (CDF) of η.

Table 1. Percentage of optimal solution computation.

QAOS, p = 10 QAOS, p = 9 QAOS, p = 8 Greedy Random

69.50% 49.67% 42.83% 33.83% 15.17%

6. Concluding Remarks and Future Work

Wireless scheduling was modeled with the MWIS problem, which is one of the well-known
NP-hard problems. In order to solve the MWIS problem, a QAOA-based scheduling algorithm,
so-called quantum approximate optimization for scheduling (QAOS), was proposed. The proposed
QAOS was implemented using Cirq and TensorFlow-Quantum. QAOS outperformed greedy search
and random search in the performance evaluation on the random conflict graphs. Therefore,our novel
quantum approach to the wireless scheduling problem via QAOS was meaningful.

Future research will focus on improving the performance of QAOS. In one method, introducing
an error correction code to QAOS is considered. This method is expected to improve the sampling
quality. Another method is to develop a new optimizer that can more accurately find the optimal
parameters of QAOS. A novel optimizer is needed that is more suitable for quantum models than the
mainly used optimizers such as Adam, Nelder–Mead (NM), and Broyden–Fletcher–Goldfarb–Shanno
(BFGS). From the perspective of quantum machine learning, developing a novel optimizer for the
parameterized quantum circuit like the QAOS circuit will be a meaningful challenge.

Author Contributions: J.C. was the main researcher who initiated and organized the research reported in the
paper, and all authors including S.O. and J.K. were responsible for analyzing the simulation results and writing
the paper. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the National Research Foundation of Korea (NRF-2019M3E4A1080391
and NRF-2019M3E3A1084054).

Acknowledgments: J.K. is the corresponding author of this paper.

Conflicts of Interest: The authors declare no conflict of interest.



Appl. Sci. 2020, 10, 7116 10 of 11

References

1. Arute, F.; Arya, K.; Babbush, R.; Bacon, D.; Bardin, J.C.; Barends, R.; Biswas, R.; Boixo, S.; Brandao, F.G.;
Buell, D.A.; et al. Quantum Supremacy using a Programmable Superconducting Processor. Nature 2019, 574,
505–510. [CrossRef] [PubMed]

2. Farhi, E.; Goldstone, J.; Gutmann, S.; Lapan, J.; Lundgren, A.; Preda, D. A Quantum Adiabatic Evolution
Algorithm Applied to Random Instances of an NP-Complete Problem. Science 2001, 292, 472–475. [CrossRef]
[PubMed]

3. Kandala, A.; Mezzacapo, A.; Temme, K.; Takita, M.; Brink, M.; Chow, J.M.; Gambetta, J.M. Hardware-Efficient
Variational Quantum Eigensolver for Small Molecules and Quantum Magnets. Nature 2017, 549, 242–246.
[CrossRef] [PubMed]

4. Troyer, M.; Wiese, U.J. Computational Complexity and Fundamental Limitations to Fermionic Quantum
Monte Carlo Simulations. Phys. Rev. Lett. 2005, 94, 170201. [CrossRef]

5. Farhi, E.; Goldstone, J.; Gutmann, S. A Quantum Approximate Optimization Algorithm. arXiv 2014,
arXiv:1411.4028.

6. Preskill, J. Quantum Computing in the NISQ Era and Beyond. Quantum 2018, 2, 79. [CrossRef]
7. Choi, J.; Oh, S.; Kim, J. The Useful Quantum Computing Techniques for Artificial Intelligence Engineers.

In Proceedings of the 34th IEEE ICOIN, Barcelona, Spain, 7–10 January 2020; pp. 1–3.
8. Zhou, L.; Wang, S.T.; Choi, S.; Pichler, H.; Lukin, M.D. Quantum Approximate Optimization Algorithm:

Performance, Mechanism, and Implementation on Near-Term Devices. Phys. Rev. X 2020, 10, 021067.
[CrossRef]

9. Choi, J.; Kim, J. A Tutorial on Quantum Approximate Optimization Algorithm (QAOA): Fundamentals and
Applications. In Proceedings of the 10th IEEE ICTC, Jeju Island, Korea, 16–18 October 2019; pp. 138–142.

10. Nawaz, S.J.; Sharma, S.K.; Wyne, S.; Patwary, M.N.; Asaduzzaman, M. Quantum Machine Learning for 6G
Communication Networks: State-of-the-Art and Vision for the Future. IEEE Access 2019, 7, 46317–46350.
[CrossRef]

11. Tariq, F.; Khandaker, M.R.; Wong, K.K.; Imran, M.A.; Bennis, M.; Debbah, M. A Speculative Study on 6G.
IEEE Wirel. Commun. 2020, 27, 118–125. [CrossRef]

12. Viswanathan, H.; Mogensen, P.E. Communications in the 6G Era. IEEE Access 2020, 8, 57063–57074.
[CrossRef]

13. Tang, F.; Kawamoto, Y.; Kato, N.; Liu, J. Future Intelligent and Secure Vehicular Network Toward 6G:
Machine-Learning Approaches. Proc. IEEE 2020, 108, 292–307. [CrossRef]

14. Kim, J.; Caire, G.; Molisch, A.F. Quality-Aware Streaming and Scheduling for Device-to-Device Video
Delivery. IEEE/ACM Trans. Netw. 2016, 24, 2319–2331. [CrossRef]

15. Basagni, S. Finding a Maximal Weighted Independent Set in Wireless Networks. Telecommun. Syst. 2001, 18,
155–168. [CrossRef]

16. Paschalidis, I.C.; Huang, F.; Lai, W. A Message-Passing Algorithm for Wireless Network Scheduling.
IEEE/ACM Trans. Netw. 2015, 23, 1528–1541. [CrossRef] [PubMed]

17. Sanghavi, S.; Shah, D.; Willsky, A.S. Message Passing for Maximum Weight Independent Set. IEEE Trans.
Inf. Theory 2009, 55, 4822–4834. [CrossRef]

18. Stapp, H.P. The Copenhagen Interpretation. Am. J. Phys. 1972, 40, 1098–1116. [CrossRef]
19. Duarte, F.J.; Taylor, T.S.; Slaten, J.C. On the Probability Amplitude of Quantum Entanglement and the Pauli

Matrices. Opt. Quantum Electron. 2020, 52, 106. [CrossRef]
20. Hadfield, S.; Wang, Z.; O’Gorman, B.; Rieffel, E.G.; Venturelli, D.; Biswas, R. From the Quantum Approximate

Optimization Algorithm to a Quantum Alternating Operator Ansatz. Algorithms 2019, 12, 34. [CrossRef]
21. Zinkevich, M.; Weimer, M.; Li, L.; Smola, A.J. Parallelized Stochastic Gradient Descent. In Proceedings of the

24th NIPS, Vancouver, BC, Canada, 6–9 December 2010; pp. 2595–2603.
22. Nawi, N.M.; Ransing, M.R.; Ransing, R.S. An Improved Learning Algorithm Based on the Broyden-Fletcher-

Goldfarb-Shanno (BFGS) Method for Back Propagation Neural Networks. In Proceedings of the 6th IEEE
ISDA, Jinan, China, 16–18 October 2006; pp. 152–157.

23. Streif, M.; Leib, M. Training the Quantum Approximate Optimization Algorithm without Access to
a Quantum Processing Unit. Quantum Sci. Technol. 2020, 5, 034008. [CrossRef]

http://dx.doi.org/10.1038/s41586-019-1666-5
http://www.ncbi.nlm.nih.gov/pubmed/31645734
http://dx.doi.org/10.1126/science.1057726
http://www.ncbi.nlm.nih.gov/pubmed/11313487
http://dx.doi.org/10.1038/nature23879
http://www.ncbi.nlm.nih.gov/pubmed/28905916
http://dx.doi.org/10.1103/PhysRevLett.94.170201
http://dx.doi.org/10.22331/q-2018-08-06-79
http://dx.doi.org/10.1103/PhysRevX.10.021067
http://dx.doi.org/10.1109/ACCESS.2019.2909490
http://dx.doi.org/10.1109/MWC.001.1900488
http://dx.doi.org/10.1109/ACCESS.2020.2981745
http://dx.doi.org/10.1109/JPROC.2019.2954595
http://dx.doi.org/10.1109/TNET.2015.2452272
http://dx.doi.org/10.1023/A:1016747704458
http://dx.doi.org/10.1109/TNET.2014.2338277
http://www.ncbi.nlm.nih.gov/pubmed/26752942
http://dx.doi.org/10.1109/TIT.2009.2030448
http://dx.doi.org/10.1119/1.1986768
http://dx.doi.org/10.1007/s11082-020-2205-1
http://dx.doi.org/10.3390/a12020034
http://dx.doi.org/10.1088/2058-9565/ab8c2b


Appl. Sci. 2020, 10, 7116 11 of 11

24. Wang, Z.; Hadfield, S.; Jiang, Z.; Rieffel, E.G. Quantum Approximate Optimization Algorithm for MaxCut:
A Fermionic View. Phys. Rev. A 2018, 97, 022304. [CrossRef]

25. Hadfield, S. On the Representation of Boolean and Real Functions as Hamiltonians for Quantum Computing.
arXiv 2018, arXiv:1804.09130.

26. Broughton, M.; Verdon, G.; McCourt, T.; Martinez, A.; Yoo, J.; Isakov, S.V.; Massey, P.; Niu, M.Y.; Halavati, R.;
Peters, E.; et al. TensorFlow Quantum: A Software Framework for Quantum Machine Learning. arXiv 2020,
arXiv:2003.02989.

27. Zhang, Z. Improved Adam Optimizer for Deep Neural Networks. In Proceedings of the 26th IEEE/ACM
IWQoS, Banff, AB, Canada, 4–6 June 2018; pp. 1–2.

28. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980.
29. Feo, T.A.; Resende, M.G. Greedy Randomized Adaptive Search Procedures. J. Glob. Optim. 1995, 6, 109–133.

[CrossRef]
30. Sakai, S.; Togasaki, M.; Yamazaki, K. A Note on Greedy Algorithms for the Maximum Weighted Independent

Set Problem. Discret. Appl. Math. 2003, 126, 313–322. [CrossRef]
31. Farhi, E.; Harrow, A.W. Quantum Supremacy through the Quantum Approximate Optimization Algorithm.

arXiv 2016, arXiv:1602.07674.
32. Bravyi, S.; Gosset, D.; König, R. Quantum Advantage with Shallow Circuits. Science 2018, 362, 308–311.

[CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1103/PhysRevA.97.022304
http://dx.doi.org/10.1007/BF01096763
http://dx.doi.org/10.1016/S0166-218X(02)00205-6
http://dx.doi.org/10.1126/science.aar3106
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries
	Bra–Ket Notation
	Basic Quantum Gates
	Quantum Approximate Optimization Algorithm (QAOA)

	Wireless Scheduling Modeling Using Maximum Weight Independent Set (MWIS)
	Quantum Approximate Optimization for Scheduling (QAOS)
	Design of the Problem Hamiltonian
	Design of the Objective Hamiltonian
	Design of the Constraint Hamiltonian

	Design of the Mixing Hamiltonian
	Apply to QAOA Sequence

	Performance Evaluation
	Software Implementation
	Experiments

	Concluding Remarks and Future Work
	References

