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Abstract: This paper proposes an energy-efficient cluster head selection method in the wireless
ad hoc network by using a hybrid quantum-classical approach. The wireless ad hoc network is
divided into several clusters via cluster head selection, and the performance of the network topology
depends on the distribution of these clusters. For an energy-efficient network topology, none of
the selected cluster heads should be neighbors. In addition, all the selected cluster heads should
have high energy-consumption efficiency. Accordingly, an energy-efficient cluster head selection
policy can be defined as a maximum weight independent set (MWIS) formulation. The cluster head
selection policy formulated with MWIS is solved by using the quantum approximate optimization
algorithm (QAOA), which is a hybrid quantum-classical algorithm. The accuracy of the proposed
energy-efficient cluster head selection via QAOA is verified via simulations.

Keywords: energy-efficient cluster head selection; hybrid quantum-classical algorithm;
maximum weight independent set (MWIS); quantum approximate optimization algorithm (QAOA);
quantum simulation

1. Introduction

The present era is a turbulent period of technological advancement towards the noisy
intermediate-scale quantum (NISQ) era and the 6G era [1,2]. With the development of NISQ
devices, various fields, such as quantum communication, quantum machine learning, and quantum
optimization, are evolving as components of 6G. In the field of quantum optimization, in particular,
various studies have been conducted, based on technologies such as quantum adiabatic algorithm
(QAA), variational quantum eigensolver (VQE), and quantum approximate optimization algorithm
(QAOA) [3–5]. Among them, the QAOA, a special case of bounded-error quantum polynomial time
(BQP) algorithm, can be applied to various fields because of its simple structure [6,7]. The structure
of QAOA is divided into a parameterized quantum circuit part and a classical optimization part that
determines the optimal parameters. Heuristic methods are mainly used in the classical optimization
part, and control of hyperparameters is necessary to find the optimal parameter. Therefore, QAOA does
not always guarantee quantum supremacy; however, it has the flexibility to adapt to variations of
the target problem [8,9]. The main target problem of QAOA research is the maximum cut problem,
and various studies have been conducted to empirically optimize this problem [10–15]. In addition,
QAOA application studies have also been actively conducted [16,17]. Along with these various
research attempts, QAOA is expected to be useful as a quantum heuristic optimizer in the near future.

The wireless ad hoc network is an important research topic, even in the 6G era, because of its
relevance to the internet of things (IoT) and autonomous driving [18–22]. In a wireless ad hoc network
using limited resources, it is advantageous to construct a hierarchical network topology through
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clustering [23]. In the hierarchical network topology, the cluster heads are located at the centers
of the clusters and play pivotal roles in communication between nodes. Therefore, considering
both communication quality and network lifetime, the cluster heads are preferably nodes with
high energy-consumption efficiency. In various types of real-world wireless ad hoc networks,
energy-consumption considerations are essential.

Although energy-efficient clustering is an old problem, various researches are still being actively conducted
due to its importance. Various clustering methods have been proposed, and clustering mechanisms
based especially on game theory are very practical and efficient [24,25]. However, more simple and
flexible clustering methods should be required in wireless ad hoc networks. Thus, this paper proposes
an energy-efficient cluster head selection method via QAOA, which has a more intuitive and flexible
structure than these existing methods. First, the weight of the node is assigned according to the
energy-consumption efficiency of each node constituting the network. The cluster head selection
policy is modeled using the maximum weight independent set (MWIS) formulation, as MWIS-based
clustering has various advantages over minimum ID clustering and maximum degree clustering and is
preferable in terms of energy efficiency [26]. The policy modeled as an MWIS formulation is mapped
to the problem Hamiltonian via Boolean functions. The QAOA circuit is designed based on the problem
Hamiltonian. The optimal parameter of the designed QAOA circuit is determined using the stochastic
gradient descent method. By obtaining the expectation value of the problem Hamiltonian in the optimal
parameterized state, an approximate solution of the policy modeled by the MWIS formulation is
obtained. The cluster heads are selected based on the approximate solution.

This MWIS-based clustering via QAOA has several characteristics compared to related works
such as game theory-based clustering. In terms of purpose, the game theory-based clustering proposed
by Soorki et al. [24] focuses on both reduction of the system-fail ratio and energy-consumption
by considering energy-consumption and queue length of access requests as the payoffs. However,
MWIS-based clustering via QAOA focuses only primarily on energy-consumption efficiency. Thus,
game theory-based clustering prefers the completely separated clusters (nonoverlapping clusters),
but the MWIS-based clustering via QAOA does not. Structurally, game theory-based clustering does
not need to search all partitions or send information to a centralized controller about the changes.
On the other hand, MWIS-based clustering via QAOA is better to search all partitions and to send
information about the changes to a centralized controller or an arbitrary node. This is because the rapid
quantum computations in one quantum circuit can update the information of all nodes simultaneously
by the principles of superposition and entanglement.

The remainder of this paper is organized as follows. Section 2 describes the QAOA and MWIS
as background materials. Section 3 describes the details of energy-efficient cluster head selection via
QAOA. In particular, Section 3.3 describes the intuitive design method of the problem Hamiltonian and
the implementation of the QAOA circuit. Section 4 presents the simulation and analyzes the results of
QAOAp (1 ≤ p ≤ 10) for the 3-regular weighted and 5-regular weighted graphs. Section 5 concludes
the paper.

2. Background

For many decades, quantum computing researchers have aimed to find quantum algorithms that
can surpass classical algorithms. Various attempts have been made, and a few quantum algorithms
with quantum supremacy over classical algorithms in certain cases have been identified [5,27,28].
In the NISQ era, the discovery of potential quantum algorithms has been accelerated because of the
evolved quantum processors and interactions with machine learning techniques [1]. In particular,
QAOA is one of the lightest and most flexible hybrid quantum-classical optimization algorithms in the
NISQ era and is suitable for application to various graph-based systems [5,29]. QAOA can control the
resource (quantum operations and times) usage-performance trade-off by adjusting the circuit depth,
so it can be used in various environments. If the proper quantum hardware is supported, QAOA is also
suitable in sensor networks or embedded systems with limited resources and capabilities. Therefore,
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before discussing a hybrid quantum-classical approach to energy-efficient cluster head selection in
limited systems, this section describes the QAOA and a graph-based MWIS formulation.

2.1. Quantum Approximate Optimization Algorithm (QAOA)

QAOA is a hybrid quantum-classical optimization algorithm that uses a parameterized quantum
circuit composed of unitary operators [5,30,31]. In addition, the QAOA is a type of quantum heuristic
algorithm which is known to perform well in some combinatorial optimization problems.

The first step in QAOA is to map the objective function f (x) of the problem consisting of binary
bit strings to the Hamiltonian HP, as follows:

HP |x〉 = f (x) |x〉 , (1)

where HP is a problem Hamiltonian. The problem Hamiltonian HP can be divided into the objective
Hamiltonian HO and constraint Hamiltonian HC, as follows:

HP = HO + ρHC, (2)

where ρ ∈ R+ is a constant coefficient. The Hamiltonians HO and HC represent the objective and
constraint, respectively, of the problem.

The mixing Hamiltonian HM, a transverse-field Hamiltonian, is defined as follows:

HM =
n

∑
j=1

σx
j , (3)

where σx
j is a Pauli-X operator applied on the jth qubit. The Pauli-X operator acts similar to the

classical NOT operator, that is, it acts as a bit-flip.
To construct a quantum circuit, HP and HM are converted into unitary operators, as follows:

UP(γ) = e−iγHP = e−iγ(HO+ρHC), (4)

UM(β) = e−iβHM , (5)

where γ and β are parameters and where UP(γ) and UM(β) are usually called the problem operator and
mixing operator, respectively. In the QAOA circuit, the initial state |s〉 can be a uniform superposition
state, as follows:

|s〉 = 1√
2n ∑

x
|x〉 , (6)

where n ∈ Z+. If the depth of a quantum circuit is defined as p ∈ Z+, the 2p parameters are represented
as follows:

(γ, β) ≡ (γ1γ2 · · · γp, β1β2 · · · βp). (7)

Therefore, the parameterized state |γ, β〉, which is generated in a quantum circuit, is as follows:

|γ, β〉 = UM(βp)UP(γp) · · ·UM(β2)UP(γ2)UM(β1)UP(γ1) |s〉 . (8)

The expectation value of f (x) for the solution samples obtained via repeated measurements on
|γ, β〉 is as follows:

〈 f (x)〉γ,β = 〈γ, β|HP|γ, β〉 . (9)

The optimal parameters γop and βop can be obtained from the classical optimization loop;
therefore, the optimal solution can be computed from (9) via γop and βop.

A schematic of the QAOA is shown in Figure 1. The green part represents the classical optimization
loop, for example, the stochastic gradient descent (SGD). Indeed, the optimization of parameters in
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the classical optimization loop part has a significant impact on the performance of the QAOA. The p
value also has a significant impact on the performance of QAOA, and the proper p value is different
depending on the problem. When the p value increases, the number of unitary operators increases
and, thus, the number of quantum gates in the circuit increases. In other words, the accuracy of the
computation can be increased but the gate noise increases as well. Therefore, in QAOA, proper design
of the problem Hamiltonian, proper optimization of parameters, and proper setting of the p value are
all important.

| ۧ𝑠 1

| ۧ𝑠 𝑛

𝑈𝑃(𝛾1) 𝑈𝑀(𝛽1) 𝑈𝑃(𝛾2) 𝑈𝑀(𝛽2) 𝑈𝑃(𝛾𝑝) 𝑈𝑀(𝛽𝑝)⋯

⋯
⋯
⋯
⋯
⋯

⋯⋯

(𝛾, 𝛽)
Optimization

(𝛾, 𝛽) ≡ (𝛾1𝛾2⋯𝛾𝑝, 𝛽1𝛽2⋯𝛽𝑝) Update

Figure 1. Quantum approximate optimization algorithm (QAOA) circuit with the classical optimization
loop part.

2.2. Maximum Weight Independent Set (MWIS)

Let us consider a weighted graph G = (V, E) with |V| = n nodes and |E| = m edges. Assume that
the weight wj is at node vj ∈ V, where 1 ≤ j ≤ n. The independent set can be constructed by selecting
only nonadjacent nodes. Among the possible independent sets, the MWIS has the largest sum
of weights.

In Figure 2b,c, 2 cases represent the following independent sets V1 ⊂ V and V2 ⊂ V, respectively:

V1 = {v1, v3, v5, v7}, (10)

V2 = {v2, v4, v6, v8}. (11)

The sums of the weights of each set are as follows:

V1: w1 + w3 + w5 + w7 = 20 + 10 + 13 + 15 = 58, (12)

V2: w2 + w4 + w6 + w8 = 10 + 11 + 12 + 15 = 48. (13)
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(a) Sample graph G(8, 8).
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(b) MWIS case.
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(c) Non-MWIS case.

Figure 2. Examples of the maximum weight independent set (MWIS) and non-MWIS of sample
graph G(8, 8).
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There is no independent set having a sum of weights greater than 58; thus, V1 is MWIS. Expanding
from the example, the generalized formulation of the MWIS is as follows:

max :
n

∑
j=1

wjvj, (14)

s.t. vk + vl ≤ 1, (vk, vl) ∈ E, (15)

vk ∈ {1, 0}, ∀vk ∈ V, (16)

where vk =

{
1, if vk is selected,
0, otherwise.

(17)

The MWIS formulation has been applied to various research fields, such as communication,
machine learning, and computer vision [32–36]. Although the MWIS is non-deterministic
polynomial-time (NP) hard, which requires an approximate solution, it is useful for modeling complex
and large-scale structures.

3. Energy-Efficient Cluster Head Selection

Clustering is an essential technique for organizing networks more efficiently. In particular,
the communication between clusters in a wireless ad hoc network which has a distributed control
structure is performed by the cluster heads [26]. Therefore, it is very important to set the cluster head
selection policy according to the purpose of the wireless ad hoc network. This section describes the
clustering method via cluster head selection for an energy-efficient wireless ad hoc network.

3.1. Clustering Wireless Ad Hoc Network

The wireless ad hoc network is a multi-hop system of self-organizing wireless nodes that can
communicate with each other without additional infrastructure [37,38].

Let us consider a wireless ad hoc network, as shown in Figure 3. Figure 3a,b represents the
flat ad hoc network topology before clustering and the hierarchical ad hoc network topology after
clustering, respectively. The numbers on the nodes indicate the weight of each node. In real-world
applications, the weight can be a numerical representation of the feature; for example, the efficiency
of energy-consumption, level of security, or robustness [26]. In the graphs covered in this paper,
the weight of each node represents the efficiency of energy-consumption. When transmitting the
same data, less energy is used and more stable transmission is possible on a node that has high
efficiency of energy-consumption. Therefore, it is good to use nodes that have high efficiency of
energy-consumption in wireless ad hoc network communication.
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(a) Ad hoc network before clustering.
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(b) Ad hoc network after clustering.

Figure 3. Examples of wireless ad hoc network topology.
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In the wireless ad hoc network, a hierarchical structure such as that shown in Figure 3b has
more advantages than a nonhierarchical structure such as that in Figure 3a for limited resource
utilization [23,37]. In the hierarchical structure, all nodes are classified into cluster head, gateway,
and normal nodes. The general clustering process in which the roles of the nodes are determined
as follows:

(i) The cluster head nodes are determined sequentially according to the policy.
(ii) The clusters are created by grouping the cluster head nodes and adjacent nodes.
(iii) Except for the cluster head node in each cluster, the nodes required for communication with other

clusters are determined as gateway nodes.
(iv) The remaining nodes that are not required for communication with other clusters are determined

as normal nodes.

Through this process, 10 clusters are identified in Figure 3b, marked with dotted lines.
The completely separated clusters are marked with green dotted lines, and the others are marked
with red dotted lines. The network topology can be completely changed according to the cluster head
selection policy. In other words, the numbers and distributions of clusters depend on the cluster head
selection policy. Therefore, the stability and performance of the network also depend on the cluster
head selection.

3.2. Cluster Head Selection Policy using MWIS

As mentioned in Section 3.1, it is recommended to select nodes with high energy-consumption
efficiency as cluster heads, for stable data transmission. In order to construct an energy-efficient
network topology, the cluster heads should not be neighbors. Therefore, for an energy-efficient and
stable network, the cluster head selection policy can be formulated with MWIS. The proposed cluster
head selection policy is as follows:

max : ∑
∀vj∈V

wjvj, (18)

s.t. (vk + vl + Ek,l) ∈ {2, 1, 0}, ∀vk ∈ V , ∀vl ∈ V , (19)

where vk =

{
1, if the kth node is selected as cluster head,
0, otherwise,

Ek,l =

{
1, if there is an edge between the kth node and the lth node,
0, otherwise.

(20)

Note that vj ∈ {1, 0} is a binary decision variable of the jth node, V is the set of binary decision
variables of all nodes in the network topology, wj ∈ R+ is the energy-consumption efficiency of the jth
node, and E is the adjacency matrix.

The cluster head selection policy formulated with MWIS can be implemented using heuristic
approaches, such as the greedy algorithm [39]. For example, the clusters in Figure 3b are the
implementation results of the cluster head selection policy using MWIS. Clustering via the MWIS-based
cluster head selection policy has several advantages over minimum ID clustering and maximum degree
clustering [26]. One of the advantages of clustering via MWIS-based cluster head selection policy is
that it produces fewer completely separated clusters. This can reduce the communication time and
energy consumption when transmitting data between cluster heads.

3.3. Energy-Efficient Cluster Head Selection via QAOA

The cluster head selection policy proposed in Section 3.2 can be implemented via QAOA, a hybrid
quantum-classical optimization algorithm, by proper Hamiltonian design [5,12]. In other words,
the problem Hamiltonian, which represents the proposed policy, can be designed, and based on this,
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a QAOA circuit can be implemented. This approach with the QAOA circuit can have an advantage
in speed over the classical MWIS-based clustering algorithm by rapid quantum computation by the
principles of superposition and entanglement. In addition, the performance benefits can be also
expected if advanced quantum hardware is supported in the future. Theoretically, QAOA increases
the approximation quality corresponding to performance by increasing the circuit depth [5]. In the
advanced quantum hardware that is free from the effects of gate noise, the circuit depth can be increased
to a greater extent; thus, it can be possible to obtain a more accurate solution for the MWIS-formulated
cluster head selection policy.

3.3.1. Hamiltonian Design

By (2), the problem Hamiltonian is designed by dividing into the objective Hamiltonian and constraint
Hamiltonian. To match the optimization directions of the objective Hamiltonian and constraint Hamiltonian,
both Hamiltonians are designed to be minimized rather than maximized. The mixing Hamiltonian is
redefined with the symbols of (18).

The objective Hamiltonian. Suppose that there is a Boolean function, f1(x), as follows:

f1(x) = x where x ∈ {0, 1}. (21)

To obtain a Boolean Hamiltonian H1 mapped from f1(x), the following equation can be
constructed for a single qubit:

H1 = AI + Bσz, (22)

where I is the identity operator, σz is the Pauli-Z operator, and A and B are constant coefficients.
For the same input, the expectation value of H1 should be adjusted to the same value as the output
of f1(x).

Therefore, the system of equations for obtaining the values of A and B, according to Table 1,
is as follows: {

A + B = 0,

A− B = 1.
(23)

Table 1. Single-qubit mapping table to obtain H1 mapped from f1(x).

Input State 〈I〉 〈σz〉 〈H1〉
|0〉 1 1 0

|1〉 1 −1 1

The values of the constant coefficients A and B are obtained from (23) as 1
2 and − 1

2 , respectively.
Therefore, H1 mapped from f1(x) can be defined as follows, from (22):

H1 =
1
2
(I − σz). (24)

According to (24), the objective function (18) of the energy-efficient cluster head selection policy
is mapped to the following Hamiltonian HO∗ :

HO∗ = ∑
∀vj∈V

1
2

wj(I − σz
j ), (25)
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where σz
j is the Pauli-Z operator applied on the jth node. Because HO∗ should be maximized,

the objective Hamiltonian HO that should be minimized is as follows:

HO = ∑
∀vj∈V

1
2

wjσ
z
j . (26)

The constraint Hamiltonian. According to the constraint (19), all cases between two nodes are shown
in Figure 4. The black nodes represent the cluster heads, and in the energy-efficient cluster head
selection policy, it is a prohibition condition that two cluster heads are directly connected via an edge.
The constraint function C(k, l) that extends this prohibition condition to the entire network topology
can be defined as follows:

C(k, l) = ∑
∀vk∈V

∑
∀vl∈V

Ek,l(wk + wl)(vk ∧ vl) where k > l. (27)

Note that ∧ represents a Boolean AND operator and that k > l is a condition to avoid duplication
of Ek,l and El,k, indicating the same edge.

• 𝜺𝒌,𝒍 = 𝟎 :  No Edge Exists Between Two Nodes

• 𝜺𝒌,𝒍 = 𝟏 :  An Edge Exists Between Two Nodes

𝒗𝒌, 𝒗𝒍 = (𝟎, 𝟎) 𝒘𝒌 𝒘𝒍 𝒗𝒌, 𝒗𝒍 = (𝟎, 𝟏) 𝒘𝒌 𝒘𝒍 𝒗𝒌, 𝒗𝒍 = (𝟏, 𝟎) 𝒘𝒌 𝒘𝒍 𝒗𝒌, 𝒗𝒍 = (𝟏, 𝟏) 𝒘𝒌 𝒘𝒍

𝒗𝒌, 𝒗𝒍 = (𝟎, 𝟎) 𝒘𝒌 𝒘𝒍 𝒗𝒌, 𝒗𝒍 = (𝟎, 𝟏) 𝒘𝒌 𝒘𝒍 𝒗𝒌, 𝒗𝒍 = (𝟏, 𝟎) 𝒘𝒌 𝒘𝒍 𝒗𝒌, 𝒗𝒍 = (𝟏, 𝟏) 𝒘𝒌 𝒘𝒍

Prohibition Condition

Figure 4. Number of all possible cases between 2 nodes.

The definition of a Boolean AND function f2(x1, x2) is as follows:

f2(x1, x2) = x1 ∧ x2 where x1 ∈ {0, 1} and x2 ∈ {0, 1}. (28)

To obtain a Boolean Hamiltonian H2 mapped from f2(x1, x2), the following equation can
be constructed:

H2 = CI + Dσz
1 + Eσz

2 + Fσz
1 σz

2 , (29)

where C, D, E, and F are constant coefficients and σz
1 and σz

2 are Pauli-Z operators applied on the first
and second nodes, respectively.

According to Table 2, configured to obtain the Hamiltonian H2 that has the same expectation
value as the output of f2(x1, x2), the following system of equations can be constructed:

C + D + E + F = 0,

C + D− E− F = 0,

C− D + E− F = 0,

C− D− E + F = 1.

(30)
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Table 2. 2-qubit mapping table to obtain H2 mapped from f2(x1, x2).

Input State 〈I〉
〈
σz

1
〉
〈σz

2 〉
〈
σz

1 σz
2
〉
〈H2〉

|00〉 1 1 1 1 0

|01〉 1 1 −1 −1 0

|10〉 1 −1 1 −1 0

|11〉 1 −1 −1 1 1

The values of the constant coefficients C, D, E, and F are obtained from (30) as 1
4 , − 1

4 , − 1
4 , and 1

4 ,
respectively. Therefore, H2 mapped from f2(x1, x2) can be defined as follows, from (29):

H2 =
1
4
(I − σz

1 − σz
2 + σz

1 σz
2). (31)

According to (31), the constraint function (27) of the energy-efficient cluster head selection policy
is mapped to the following Hamiltonian HC∗ that should be minimized:

HC∗ = ∑
∀vk∈V

∑
∀vl∈V

1
4
Ek,l(wk + wl)(I − σz

k − σz
l + σz

k σz
l ) where k > l. (32)

In (32), σz
k and σz

l are the Pauli-Z operators applied on the kth and lth nodes, respectively.
By removing the constant term of (32), the simplified version of the constraint Hamiltonian HC that
should be minimized is obtained as follows:

HC = ∑
∀vk∈V

∑
∀vl∈V

−1
4
Ek,l(wk + wl)(σ

z
k + σz

l − σz
k σz

l ) where k > l. (33)

The problem Hamiltonian. From the definition of HO in (26) and HC in (33), the problem Hamiltonian
HP that should be minimized is defined as follows:

HP = HO + ρHC

= ∑
∀vj∈V

1
2

wjσ
z
j + ∑

∀vk∈V
∑
∀vl∈V

−1
4

ρEk,l(wk + wl)(σ
z
k + σz

l − σz
k σz

l ) where k > l. (34)

Note that ρ ∈ R+ is a constant coefficient called the penalty rate. ρ determines the proportion of
HC compared to HO, which determines the optimal value of HP.

The mixing Hamiltonian. The mixing Hamiltonian HM in (3) is redefined as follows:

HM = ∑
∀vj∈V

σx
j . (35)

3.3.2. Circuit Implementation

From the problem Hamiltonian HP in (34), which defines the energy-efficient cluster head selection
policy, and the mixing Hamiltonian HM in (35), which provides various states via bit-flip, the unitary
operators for constructing the quantum circuit are defined as follows:
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UP(γ) = UO(γ)UC(γ) = e−iγ(HO+ρHC), (36)

UO(γ) = e−iγHO

= ∏
∀vj∈V

e−i
γwj

2 σz
j , (37)

UC(γ) = e−iγρHC

= ∏
∀vk∈V

∏
∀vl∈V

e−i
{−Ek,l γρ(wk+wl )/2}

2 (σz
k+σz

l −σz
k σz

l ) where k > l, (38)

UM(β) = e−iβHM

= ∏
∀vj∈V

e−i 2β
2 σx

j . (39)

Note that UP(γ), UO(γ), UC(γ), and UM(β) are called the problem operator, objective operator,
constraint operator, and mixing operator, respectively. In addition, γ and β are the 2p parameters of the
QAOA circuit defined in (7). Note that the forms of Equations (37)–(39) are in consideration of the
rotation-z (RZ) and rotation-x (RX) gates.

The RZ gate RZ(θ), representing a single-qubit rotation about the z-axis, and the RX gate RX(θ),
representing a single-qubit rotation about the x-axis, are defined as follows:

RZ(θ) = e−i θ
2 σz

, (40)

RX(θ) = e−i θ
2 σx

. (41)

According to Equation (37), UO(γ) can be implemented using the RZ gates. Moreover, UC(γ)

can be implemented as a combination of the RZ gates and controlled-not (CNOT) gates, according
to Equation (38). Therefore, UP(γ) can be implemented with UO(γ) and UC(γ), according to
Equation (36). Subsequently, UM(β) can be implemented using the RX gates by (39).

The proposed QAOA circuit for energy-efficient cluster head selection is shown in Figure 5.
This circuit is an example applied to a simple network topology with 5 nodes and the following
adjacency matrix E .

E =


0 1 0 0 0
1 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 1 0 0

 . (42)

Each node corresponds to each qubit, and the initial state is set to a uniform superposition state
by the Hadamard gates. After passing the quantum gates that represent the unitary operators from the
initial state, the measurement is performed on the created parameterized state. This sample circuit
represents QAOA with depth p = 1; the parameters of unitary operators are expressed as γ1 and β1.
As p increases, the number of parameters increases, as in (7).

As shown in Figure 5, UO(γ1) requires as many RZ gates as the number of nodes. UC(γ1) requires
as many RZ gates and CNOT gates as 3 times and 2 times the number of edges, respectively. UM(β1)

requires as many RX gates as the number of nodes. The total number of RZ gates, CNOT gates, and RX
gates required for the QAOAp circuit, which has a circuit depth of p, is p times greater than that of the
QAOA1 circuit.
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Figure 5. Proposed QAOA1 circuit for MWIS with 5 qubits: The qubit qj corresponds to jth node.
γ1 and β1 are circuit parameters, and wj is the weight of jth node. Each qubit is initialized to the
uniform superposition state via the Hadamard gate. The objective operator UO(γ1) is implemented
using the RZ(γ1wj) gates. The constraint operator UC(γ1) is implemented as a combination of the
RZ(−Ek,lγ1ρ(wk + wl)/2) gates, CNOT gates, and RZ(Ek,lγ1ρ(wk + wl)/2) gates, where k > l. In (42),
only E2,1 (= E1,2) and E5,3 (= E3,5) are 1, so UC(γ1) is implemented only between q1 and q2 and between
q3 and q5. The mixing operator UM(β1) is implemented using the RX(2β1) gates. At the end of the
QAOA1 circuit, measurements are performed.

4. Simulation Results

This section discusses the QAOA simulation results for the energy-efficient cluster head selection
policy formulated using MWIS. The simulation is performed on the regular graphs that are suitable for
wireless ad hoc networks. QAOA is one of the simple quantum algorithms that intuitively express the
state with qubit rotation via the quantum gate [16,40]. This intuitive and simple process has something
in common with the classical greedy algorithm. Therefore, the greedy algorithm, which is also useful
for MWIS-based cluster head selection, is used as a comparison algorithm [26].

4.1. Simulation Method

A set of 10-node 3-regular weighted graphs and a set of 10-node 5-regular weighted graphs
were randomly generated with 1000 instances each. The range of the node weight representing the
energy-consumption efficiency was from 1 to 10. The optimal solution of each graph was found by the
brute-force search so that the following approximation ratio δ could be computed for each graph [41].

δ =
fapp

fop
=
〈γ, β|HP|γ, β〉

fop
, (43)

where fapp is the solution obtained via the approximation algorithm, fop is the optimal solution
obtained via brute-force search, HP is the problem Hamiltonian in (34), and γ and β are the parameters
of the QAOA circuit. For each instance, the greedy algorithm and QAOA with depth p = 1, 2, · · · , 10
were evaluated in terms of the δ obtained from 1000 measurements. The simulation was performed
using TensorFlow Quantum, and the Adam optimizer was used to optimize the parameters of the
QAOA circuit [42,43].

4.2. Simulation Analysis

The simulation aimed to find a valid circuit depth p for which the QAOA could outperform the
greedy algorithm in MWIS-based clustering.
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4.2.1. Simulation on 3-Regular Weighted Graphs

As shown in Figure 6a and Table A1, when focusing on the mean of δ on the 3-regular weighted
graphs, it is observed that QAOAp defeats the greedy algorithm when p ≥ 4. Moreover, QAOAp has a
larger minimum of δ than the greedy algorithm, except for QAOA1, QAOA4, and QAOA5. Based on
the mean and minimum of δ, it is confirmed that QAOAp outperforms the greedy algorithm at p ≥ 6.

In Figure 7a, most of QAOAp shows a better distribution than that of the greedy algorithm
expressed in dark gray. In particular, QAOAp shows an overwhelming performance over the greedy
algorithm at p = 9, 10 expressed in blue and dark blue, respectively. In Table A1, it can be numerically
confirmed that the optimal solution ratio of QAOAp is 85% at p = 9, 10, which outperforms 68% of the
greedy algorithm.
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(a) δ on 1000 3-regular weighted graphs.
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(b) δ on 1000 5-regular weighted graphs.

Figure 6. Approximation ratio δ of each algorithm: the performance of MWIS-based clustering depends
on the δ of each algorithm. As the circuit depth p increases, the mean of δ tends to increase.
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Figure 7. Cumulative distribution function F(δ): the accuracy of MWIS-based clustering heavily
depends on the ratio of δ = 1. In general, the ratio of δ = 1 tends to increase as the circuit depth
p increases.

4.2.2. Simulation on 5-Regular Weighted Graphs

As shown in Figure 6b and Table A2, when focusing on the mean of δ on the 5-regular weighted
graphs, it is observed that QAOAp defeats the greedy algorithm when p ≥ 3. Moreover, QAOAp has a
larger minimum δ than the greedy algorithm, except for QAOA1, QAOA2, and QAOA3. Based on the
mean and minimum of δ, it is confirmed that QAOAp outperforms the greedy algorithm at p ≥ 4.

In Figure 7b, most of QAOAp shows a better distribution than the greedy algorithm expressed in
dark gray. Similar to the 3-regular graphs case, QAOAp shows an overwhelming performance over the
greedy algorithm at p = 9, 10 expressed in blue and dark blue, respectively. In Table A2, QAOA9 and
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QAOA10 show the optimal solution ratios of 69% and 69.9%, respectively. These are overwhelming
accuracies when compared to that of the greedy algorithm with an optimal solution ratio of 41%.

4.3. Summary and Further Discussion

On the 3-regular weighted graphs and 5-regular weighted graphs, performance analysis was
performed for QAOAp (1 ≤ p ≤ 10) and the greedy algorithm.

As p increases, the mean of δ tends to increase, the standard deviation of δ tends to decrease,
and the optimal solution ratio tends to increase. In other words, it is experimentally proven that
the MWIS-based clustering accuracy via QAOAp increases as p increases. In particular, QAOA9 and
QAOA10 show overwhelming accuracies over the greedy algorithm. However, it is not a good choice
to increase p recklessly. Because each time p increases by 1, the number of parameters in the circuit
increases by 2, increasing the time spent on parameter optimization and increasing the risk of falling
into a local optimum. Therefore, finding the appropriate p, which depends on the graph type of the
network, is the key to clustering via QAOAp.

As a topic of further discussion, there is an interesting point about the measurement of QAOAp.
The best solution for each instance can be defined as the value closest to or the same as the optimal
solution, from among the outputs of the measurements. Therefore, the minimum number of
measurements required to obtain the best solution for each instance can be computed by dividing
the number of total measurements by the number of best solutions. N(p), which is the mean of the
minimum number of measurements required to obtain the best solution for all instances at the circuit
depth p, is as shown in Figure 8. On both 3-regular weighted and 5-regular weighted graphs, N(p)
shows a tendency to decrease as p increases. Considering that the optimal solution ratio tends to
increase as the circuit depth p increases, at large p, the possibility that the best solution and optimal
solution are the same is high. Therefore, at large p, the optimal solution can be obtained even with
a small number of measurements. This shows the potential for an efficient design of QAOAp by
reducing the number of measurements at large p.

0 1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

N
(p
)

p

  3-regular
  5-regular

Figure 8. N(p) is the mean of the minimum number of measurements required to obtain one best
solution for all instances at the circuit depth p. N(p) tends to decrease as p increases.

5. Conclusions and Future Work

This paper proposed an energy-efficient clustering method with a hybrid quantum-classical
approach. First, the cluster head selection policy was modeled via an MWIS formulation. Subsequently,
the objective and constraint of the modeled policy were mapped to a designed objective Hamiltonian
and constraint Hamiltonian, respectively. Based on the designed Hamiltonians, the QAOAp circuit
that implemented an energy-efficient cluster head selection policy was proposed. According to the
simulation results, the proposed QAOAp outperformed the greedy algorithm at p ≥ 6 on the 3-regular
weighted graphs and p ≥ 4 on the 5-regular weighted graphs. In particular, QAOA9 and QAOA10
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showed the highest performance. Finally, it was experimentally proven that the accuracy of the cluster
head selection via QAOAp tended to increase as p increased.

One of the future research directions will focus on improving the performance and efficiency
by optimizing the gate configuration of the constraint operator part. A larger number of nodes with a
large degree would lengthen the circuit of the constraint operator part. As a solution, a parallel gate
configuration of the circuit was considered. By separating the set of nodes into subsets via graph
preprocessing, the circuit of the constraint operator part could be divided into sub-circuits. Subsequently,
a parallel gate configuration could be created in which the CNOT gates on the sub-circuits ran at
the maximum simultaneously. This optimization of the gate configuration could certainly shorten
the circuit. Therefore, one of our next works would be a concrete implementation of the parallel
gate configuration.

Another future research direction will focus on data-intensive performance evaluation with
various types of real quantum computers or better testbeds. Using a superconducting quantum
computer, a photonic quantum computer, a trapped ion quantum computer, or a better testbed,
various clustering algorithms will be compared with our MWIS-based clustering via QAOA.
Considering the scalability, the experiment will be performed with more nodes. An analysis of
the energy-consumption according to the number of gates and qubits for each type of quantum
computer will also be performed to quantify the required energy. In other words, another of our next
works would be to conduct more realistic performance evaluations for real-world implementation.
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Appendix A. Details on Simulation Results

Here, there are supplementary data tables of the simulation results in Section 4.

Table A1. Simulation data for the 3-regular weighted graphs.

Algorithm Standard Deviation of δ Mean of δ Median of δ Minimum of δ Maximum of δ Ratio of δ = 1

Greedy 0.071 0.957 1.000 0.684 1.000 0.680
QAOA1 0.078 0.952 1.000 0.684 1.000 0.681
QAOA2 0.073 0.953 1.000 0.733 1.000 0.640
QAOA3 0.074 0.955 1.000 0.733 1.000 0.680
QAOA4 0.074 0.961 1.000 0.667 1.000 0.720
QAOA5 0.077 0.962 1.000 0.667 1.000 0.741
QAOA6 0.063 0.967 1.000 0.750 1.000 0.750
QAOA7 0.059 0.970 1.000 0.786 1.000 0.761
QAOA8 0.062 0.973 1.000 0.714 1.000 0.820
QAOA9 0.045 0.983 1.000 0.765 1.000 0.850
QAOA10 0.057 0.979 1.000 0.706 1.000 0.850
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Table A2. Simulation data for the 5-regular weighted graphs.

Algorithm Standard Deviation of δ Mean of δ Median of δ Minimum of δ Maximum of δ Ratio of δ = 1

Greedy 0.097 0.915 0.929 0.563 1.000 0.410
QAOA1 0.112 0.905 0.955 0.462 1.000 0.351
QAOA2 0.111 0.906 0.933 0.522 1.000 0.419
QAOA3 0.105 0.917 0.955 0.538 1.000 0.400
QAOA4 0.097 0.918 0.938 0.625 1.000 0.422
QAOA5 0.100 0.918 0.981 0.696 1.000 0.500
QAOA6 0.092 0.924 0.977 0.714 1.000 0.499
QAOA7 0.091 0.938 1.000 0.625 1.000 0.561
QAOA8 0.083 0.948 1.000 0.714 1.000 0.659
QAOA9 0.065 0.966 1.000 0.667 1.000 0.690
QAOA10 0.054 0.973 1.000 0.737 1.000 0.699
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