Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = maternally expressed gene 3 (MEG3)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 2070 KiB  
Review
Role of Lnc-RNAs in the Pathogenesis and Development of Diabetic Retinopathy
by Sofia Perisset, M. Constanza Potilinski and Juan E. Gallo
Int. J. Mol. Sci. 2023, 24(18), 13947; https://doi.org/10.3390/ijms241813947 - 11 Sep 2023
Cited by 11 | Viewed by 3851
Abstract
Important advances in diabetic retinopathy (DR) research and management have occurred in the last few years. Neurodegenerative changes before the onset of microvascular alterations have been well established. So, new strategies are required for earlier and more effective treatment of DR, which still [...] Read more.
Important advances in diabetic retinopathy (DR) research and management have occurred in the last few years. Neurodegenerative changes before the onset of microvascular alterations have been well established. So, new strategies are required for earlier and more effective treatment of DR, which still is the first cause of blindness in working age. We describe herein gene regulation through Lnc-RNAs as an interesting subject related to DR. Long non-coding RNAs (Lnc-RNAs) are non-protein-coding transcripts larger than 200 nucleotides. Lnc-RNAs regulate gene expression and protein formation at the epigenetic, transcriptional, and translational levels and can impact cell proliferation, apoptosis, immune response, and oxidative stress. These changes are known to take part in the mechanism of DR. Recent investigations pointed out that Lnc-RNAs might play a role in retinopathy development as Metastasis-Associated Lung Adenocarcinoma Transcript (Lnc-MALAT1), Maternally expressed gene 3 (Lnc-MEG3), myocardial-infarction-associated transcript (Lnc-MIAT), Lnc-RNA H19, Lnc-RNA HOTAIR, Lnc-RNA ANRIL B-Raf proto-oncogene (Lnc-RNA BANCR), small nucleolar RNA host gene 16 (Lnc-RNA SNHG16) and others. Several molecular pathways are impacted. Some of them play a role in DR pathophysiology, including the PI3K-Akt signaling axis, NAD-dependent deacetylase sirtuin-1 (Sirti1), p38 mitogen-activated protein kinase (P38/mapk), transforming growth factor beta signaling (TGF-β) and nuclear factor erythroid 2-related factor 2 (Nrf2). The way Lnc-RNAs affect diabetic retinopathy is a question of great relevance. Performing a more in-depth analysis seems to be crucial for researchers if they want to target Lnc-RNAs. New knowledge on gene regulation and biomarkers will enable investigators to develop more specialized therapies for diabetic retinopathy, particularly in the current growing context of precision medicine. Full article
(This article belongs to the Special Issue Retinal Diseases: From Molecular Pathology to Therapies)
Show Figures

Figure 1

11 pages, 1871 KiB  
Article
Urinary Long Non-Coding RNA Levels as Biomarkers of Lupus Nephritis
by Cheuk-Chun Szeto, Ho So, Peter Yam-Kau Poon, Cathy Choi-Wan Luk, Jack Kit-Chung Ng, Winston Wing-Shing Fung, Gordon Chun-Kau Chan, Kai-Ming Chow, Fernand Mac-Moune Lai and Lai-Shan Tam
Int. J. Mol. Sci. 2023, 24(14), 11813; https://doi.org/10.3390/ijms241411813 - 22 Jul 2023
Cited by 12 | Viewed by 2390
Abstract
Background: Emerging evidence suggests that long non-coding RNA (lncRNA) plays important roles in the regulation of gene expression. We determine the role of using urinary lncRNA as a non-invasive biomarker for lupus nephritis. Method: We studied three cohorts of lupus nephritis patients (31, [...] Read more.
Background: Emerging evidence suggests that long non-coding RNA (lncRNA) plays important roles in the regulation of gene expression. We determine the role of using urinary lncRNA as a non-invasive biomarker for lupus nephritis. Method: We studied three cohorts of lupus nephritis patients (31, 78, and 12 patients, respectively) and controls (6, 7, and 24 subjects, respectively). The urinary sediment levels of specific lncRNA targets were studied using real-time quantitative polymerase chain reactions. Results: The severity of proteinuria inversely correlated with urinary maternally expressed gene 3 (MEG3) (r = −0.423, p = 0.018) and ANRIL levels (r = −0.483, p = 0.008). Urinary MEG3 level also inversely correlated with the SLEDAI score (r = −0.383, p = 0.034). Urinary cancer susceptibility candidate 2 (CASC2) levels were significantly different between histological classes of nephritis (p = 0.026) and patients with pure class V nephritis probably had the highest levels, while urinary metastasis-associated lung carcinoma transcript 1 (MALAT1) level significantly correlated with the histological activity index (r = −0.321, p = 0.004). Urinary taurine-upregulated gene 1 (TUG1) level was significantly lower in pure class V lupus nephritis than primary membranous nephropathy (p = 0.003) and minimal change nephropathy (p = 0.04), and urinary TUG1 level correlated with eGFR in class V lupus nephritis (r = 0.706, p = 0.01). Conclusions: We identified certain urinary lncRNA targets that may help the identification of lupus nephritis and predict the histological class of nephritis. Our findings indicate that urinary lncRNA levels may be developed as biomarkers for lupus nephritis. Full article
(This article belongs to the Special Issue Technological and Molecular Advances in Systemic Lupus Erythematosus)
Show Figures

Figure 1

14 pages, 582 KiB  
Review
Long Non-Coding RNA MEG3 in Metal Carcinogenesis
by Zhuo Zhang, Sophia Shi, Jingxia Li and Max Costa
Toxics 2023, 11(2), 157; https://doi.org/10.3390/toxics11020157 - 7 Feb 2023
Cited by 15 | Viewed by 3607
Abstract
Most transcripts from human genomes are non-coding RNAs (ncRNAs) that are not translated into proteins. ncRNAs are divided into long (lncRNAs) and small non-coding RNAs (sncRNAs). LncRNAs regulate their target genes both transcriptionally and post-transcriptionally through interactions with proteins, RNAs, and DNAs. Maternally [...] Read more.
Most transcripts from human genomes are non-coding RNAs (ncRNAs) that are not translated into proteins. ncRNAs are divided into long (lncRNAs) and small non-coding RNAs (sncRNAs). LncRNAs regulate their target genes both transcriptionally and post-transcriptionally through interactions with proteins, RNAs, and DNAs. Maternally expressed gene 3 (MEG3), a lncRNA, functions as a tumor suppressor. MEG3 regulates cell proliferation, cell cycle, apoptosis, hypoxia, autophagy, and many other processes involved in tumor development. MEG3 is downregulated in various cancer cell lines and primary human cancers. Heavy metals, such as hexavalent chromium (Cr(VI)), arsenic, nickel, and cadmium, are confirmed human carcinogens. The exposure of cells to these metals causes a variety of cancers. Among them, lung cancer is the one that can be induced by exposure to all of these metals. In vitro studies have demonstrated that the chronic exposure of normal human bronchial epithelial cells (BEAS-2B) to these metals can cause malignant cell transformation. Metal-transformed cells have the capability to cause an increase in cell proliferation, resistance to apoptosis, elevated migration and invasion, and properties of cancer stem-like cells. Studies have revealed that MEG is downregulated in Cr(VI)-transformed cells, nickel-transformed cells, and cadmium (Cd)-transformed cells. The forced expression of MEG3 reduces the migration and invasion of Cr(VI)-transformed cells through the downregulation of the neuronal precursor of developmentally downregulated protein 9 (NEDD9). MEG3 suppresses the malignant cell transformation of nickel-transformed cells. The overexpression of MEG3 decreases Bcl-xL, causing reduced apoptosis resistance in Cd-transformed cells. This paper reviews the current knowledge of lncRNA MEG3 in metal carcinogenesis. Full article
(This article belongs to the Section Metals and Radioactive Substances)
Show Figures

Figure 1

17 pages, 2107 KiB  
Review
The Biological Roles and Molecular Mechanisms of Long Non-Coding RNA MEG3 in the Hallmarks of Cancer
by Lei Zhang, Fuqiang Zhao, Wenfang Li, Guanbin Song, Vivi Kasim and Shourong Wu
Cancers 2022, 14(24), 6032; https://doi.org/10.3390/cancers14246032 - 7 Dec 2022
Cited by 27 | Viewed by 3787
Abstract
Long non-coding RNAs (lncRNAs) are critical regulators in various biological processes involved in the hallmarks of cancer. Maternally expressed gene 3 (MEG3) is lncRNA that regulates target genes through transcription, translation, post-translational modification, and epigenetic regulation. MEG3 has been known as a tumor [...] Read more.
Long non-coding RNAs (lncRNAs) are critical regulators in various biological processes involved in the hallmarks of cancer. Maternally expressed gene 3 (MEG3) is lncRNA that regulates target genes through transcription, translation, post-translational modification, and epigenetic regulation. MEG3 has been known as a tumor suppressor, and its downregulation could be found in various cancers. Furthermore, clinical studies revealed that impaired MEG3 expression is associated with poor prognosis and drug resistance. MEG3 exerts its tumor suppressive effect by suppressing various cancer hallmarks and preventing cells from acquiring cancer-specific characteristics; as it could suppress tumor cells proliferation, invasion, metastasis, and angiogenesis; it also could promote tumor cell death and regulate tumor cell metabolic reprogramming. Hence, MEG3 is a potential prognostic marker, and overexpressing MEG3 might become a potential antitumor therapeutic strategy. Herein, we summarize recent knowledge regarding the role of MEG3 in regulating tumor hallmarks as well as the underlying molecular mechanisms. Furthermore, we also discuss the clinical importance of MEG3, as well as their potential in tumor prognosis and antitumor therapeutic strategies. Full article
Show Figures

Figure 1

10 pages, 2679 KiB  
Article
Novel Insights into MEG3/miR664a-3p/ADH4 Axis and Its Possible Role in Hepatocellular Carcinoma from an in Silico Perspective
by Shreyas H. Karunakara, Lakshana D. Puttahanumantharayappa, Nirmala G. Sannappa Gowda, Varsha D. Shiragannavar and Prasanna K. Santhekadur
Genes 2022, 13(12), 2254; https://doi.org/10.3390/genes13122254 - 30 Nov 2022
Cited by 10 | Viewed by 2424
Abstract
Hepatocellular carcinoma (HCC) is a complex disease involving altered interactomes of transcripts and proteins. MicroRNAs (miRNAs) are small-noncoding RNAs that can interact with specific gene transcripts and an array of other vital endogenous non-coding RNAs (lncRNAs) that can influence gene expression. Maternally Expressed [...] Read more.
Hepatocellular carcinoma (HCC) is a complex disease involving altered interactomes of transcripts and proteins. MicroRNAs (miRNAs) are small-noncoding RNAs that can interact with specific gene transcripts and an array of other vital endogenous non-coding RNAs (lncRNAs) that can influence gene expression. Maternally Expressed Gene 3 (MEG3) is an imprinted lncRNA that is reported to be downregulated in HCC (in both cell lines and tumors). Alcohol Dehydrogenase 4 (ADH4) is a well-known prognostic protein biomarker for predicting the survival outcomes of patients with hepatocellular carcinoma whose expression is regulated by miR-664a-3p, which is upregulated in HCC. In this study, we performed a battery of robust and systematic in silico analyses to predicate the possible lncRNA–miRNA interactions between MEG3, miR-664a-3p, and ADH4. miRNA–mRNA and lncRNA–miRNA hybrid structures were primarily obtained, and the minimum free energies (MFEs) for the 3′UTR (Untranslated Regions) of ADH4-miR-664a-3p and the 3′UTR of MEG3-miR-664a-3p interactions were assessed to predict the stability of the obtained RNA heteroduplex hybrids. The hybrid with the least minimum free energy (MFE) was considered to be the most favorable. The MFEs were around −28.1 kcal/mol and −31.3 kCal/mol for the ADH4-miR-664a-3p and MEG3-miR-66a-3p RNA hybrids, respectively. This demonstrated that lncRNA-MEG3 might be a competitive endogenous RNA that acts as a molecular sponge for miR-664a-3p. In summary, our interaction analyses results predict the significance of the MEG3/miR-664a-3p/ADH4 axis, where MEG3 downregulation results in miR-664a-3p overexpression and the subsequential underexpression of ADH4 in HCC, as a novel axis of interest that demands further validation. Full article
(This article belongs to the Special Issue Liver Disease: Genetic Research and Clinical Diagnosis)
Show Figures

Graphical abstract

19 pages, 6269 KiB  
Article
The Association of MEG3 lncRNA with Nuclear Speckles in Living Cells
by Sarah E. Hasenson, Ella Alkalay, Mohammad K. Atrash, Alon Boocholez, Julianna Gershbaum, Hodaya Hochberg-Laufer and Yaron Shav-Tal
Cells 2022, 11(12), 1942; https://doi.org/10.3390/cells11121942 - 16 Jun 2022
Cited by 8 | Viewed by 4030
Abstract
Nuclear speckles are nuclear bodies containing RNA-binding proteins as well as RNAs including long non-coding RNAs (lncRNAs). Maternally expressed gene 3 (MEG3) is a nuclear retained lncRNA found to associate with nuclear speckles. To understand the association dynamics of MEG3 lncRNA with nuclear [...] Read more.
Nuclear speckles are nuclear bodies containing RNA-binding proteins as well as RNAs including long non-coding RNAs (lncRNAs). Maternally expressed gene 3 (MEG3) is a nuclear retained lncRNA found to associate with nuclear speckles. To understand the association dynamics of MEG3 lncRNA with nuclear speckles in living cells, we generated a fluorescently tagged MEG3 transcript that could be detected in real time. Under regular conditions, transient association of MEG3 with nuclear speckles was observed, including a nucleoplasmic fraction. Transcription or splicing inactivation conditions, known to affect nuclear speckle structure, showed prominent and increased association of MEG3 lncRNA with the nuclear speckles, specifically forming a ring-like structure around the nuclear speckles. This contrasted with metastasis-associated lung adenocarcinoma (MALAT1) lncRNA that is normally highly associated with nuclear speckles, which was released and dispersed in the nucleoplasm. Under normal conditions, MEG3 dynamically associated with the periphery of the nuclear speckles, but under transcription or splicing inhibition, MEG3 could also enter the center of the nuclear speckle. Altogether, using live-cell imaging approaches, we find that MEG3 lncRNA is a transient resident of nuclear speckles and that its association with this nuclear body is modulated by the levels of transcription and splicing activities in the cell. Full article
(This article belongs to the Special Issue Technologies and Applications of RNA Imaging)
Show Figures

Figure 1

15 pages, 4421 KiB  
Article
Downregulation of the LncRNA MEG3 Promotes Osteogenic Differentiation of BMSCs and Bone Repairing by Activating Wnt/β-Catenin Signaling Pathway
by Juan Liu, Xin Qi, Xiao-Hong Wang, Hong-Sheng Miao, Zi-Chao Xue, Le-Le Zhang, San-Hu Zhao, Liang-Hao Wu, Guo-Yi Gao, Mei-Qing Lou and Cheng-Qing Yi
J. Clin. Med. 2022, 11(2), 395; https://doi.org/10.3390/jcm11020395 - 13 Jan 2022
Cited by 10 | Viewed by 3078
Abstract
Background: Previous studies have demonstrated that long non-coding RNA maternally expressed gene 3 (MEG3) emerged as a key regulator in development and tumorigenesis. This study aims to investigate the function and mechanism of MEG3 in osteogenic differentiation of bone marrow mesenchymal stem cells [...] Read more.
Background: Previous studies have demonstrated that long non-coding RNA maternally expressed gene 3 (MEG3) emerged as a key regulator in development and tumorigenesis. This study aims to investigate the function and mechanism of MEG3 in osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and explores the use of MEG3 in skull defects bone repairing. Methods: Endogenous expression of MEG3 during BMSCs osteogenic differentiation was detected by quantitative real-time polymerase chain reaction (qPCR). MEG3 was knockdown in BMSCs by lentiviral transduction. The proliferation, osteogenic-related genes and proteins expression of MEG3 knockdown BMSCs were assessed by Cell Counting Kit-8 (CCK-8) assay, qPCR, alizarin red and alkaline phosphatase staining. Western blot was used to detect β-catenin expression in MEG3 knockdown BMSCs. Dickkopf 1 (DKK1) was used to block wnt/β-catenin pathway. The osteogenic-related genes and proteins expression of MEG3 knockdown BMSCs after wnt/β-catenin inhibition were assessed by qPCR, alizarin red and alkaline phosphatase staining. MEG3 knockdown BMSCs scaffold with PHMG were implanted in a critical-sized skull defects of rat model. Micro-computed tomography(micro-CT), hematoxylin and eosin staining and immunohistochemistry were performed to evaluate the bone repairing. Results: Endogenous expression of MEG3 was increased during osteogenic differentiation of BMSCs. Downregulation of MEG3 could promote osteogenic differentiation of BMSCs in vitro. Notably, a further mechanism study revealed that MEG3 knockdown could activate Wnt/β-catenin signaling pathway in BMSCs. Wnt/β-catenin inhibition would impair MEG3-induced osteogenic differentiation of BMSCs. By using poly (3-hydroxybutyrate-co-3-hydroxyhexanoate, PHBHHx)-mesoporous bioactive glass (PHMG) scaffold with MEG3 knockdown BMSCs, we found that downregulation of MEG3 in BMSCs could accelerate bone repairing in a critical-sized skull defects rat model. Conclusions: Our study reveals the important role of MEG3 during osteogenic differentiation and bone regeneration. Thus, MEG3 engineered BMSCs may be effective potential therapeutic targets for skull defects. Full article
(This article belongs to the Special Issue Advances in Neurotrauma)
Show Figures

Figure 1

26 pages, 3593 KiB  
Review
Role of Long Non-Coding RNAs and the Molecular Mechanisms Involved in Insulin Resistance
by Vianet Argelia Tello-Flores, Fredy Omar Beltrán-Anaya, Marco Antonio Ramírez-Vargas, Brenda Ely Esteban-Casales, Napoleón Navarro-Tito, Luz del Carmen Alarcón-Romero, Carlos Aldair Luciano-Villa, Mónica Ramírez, Óscar del Moral-Hernández and Eugenia Flores-Alfaro
Int. J. Mol. Sci. 2021, 22(14), 7256; https://doi.org/10.3390/ijms22147256 - 6 Jul 2021
Cited by 42 | Viewed by 5728
Abstract
Long non-coding RNAs (lncRNAs) are single-stranded RNA biomolecules with a length of >200 nt, and they are currently considered to be master regulators of many pathological processes. Recent publications have shown that lncRNAs play important roles in the pathogenesis and progression of insulin [...] Read more.
Long non-coding RNAs (lncRNAs) are single-stranded RNA biomolecules with a length of >200 nt, and they are currently considered to be master regulators of many pathological processes. Recent publications have shown that lncRNAs play important roles in the pathogenesis and progression of insulin resistance (IR) and glucose homeostasis by regulating inflammatory and lipogenic processes. lncRNAs regulate gene expression by binding to other non-coding RNAs, mRNAs, proteins, and DNA. In recent years, several mechanisms have been reported to explain the key roles of lncRNAs in the development of IR, including metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), imprinted maternal-ly expressed transcript (H19), maternally expressed gene 3 (MEG3), myocardial infarction-associated transcript (MIAT), and steroid receptor RNA activator (SRA), HOX transcript antisense RNA (HOTAIR), and downregulated Expression-Related Hexose/Glucose Transport Enhancer (DREH). LncRNAs participate in the regulation of lipid and carbohydrate metabolism, the inflammatory process, and oxidative stress through different pathways, such as cyclic adenosine monophosphate/protein kinase A (cAMP/PKA), phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT), polypyrimidine tract-binding protein 1/element-binding transcription factor 1c (PTBP1/SREBP-1c), AKT/nitric oxide synthase (eNOS), AKT/forkhead box O1 (FoxO1), and tumor necrosis factor-alpha (TNF-α)/c-Jun-N-terminal kinases (JNK). On the other hand, the mechanisms linked to the molecular, cellular, and biochemical actions of lncRNAs vary according to the tissue, biological species, and the severity of IR. Therefore, it is essential to elucidate the role of lncRNAs in the insulin signaling pathway and glucose and lipid metabolism. This review analyzes the function and molecular mechanisms of lncRNAs involved in the development of IR. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

19 pages, 1475 KiB  
Review
Non-Coding RNAs as Potential Novel Biomarkers for Early Diagnosis of Hepatic Insulin Resistance
by Ariadna Pielok and Krzysztof Marycz
Int. J. Mol. Sci. 2020, 21(11), 4182; https://doi.org/10.3390/ijms21114182 - 11 Jun 2020
Cited by 26 | Viewed by 4997
Abstract
In the recent years, the prevalence of metabolic conditions such as type 2 Diabetes (T2D) and metabolic syndrome (MetS) raises. The impairment of liver metabolism resulting in hepatic insulin resistance is a common symptom and a critical step in the development of T2D [...] Read more.
In the recent years, the prevalence of metabolic conditions such as type 2 Diabetes (T2D) and metabolic syndrome (MetS) raises. The impairment of liver metabolism resulting in hepatic insulin resistance is a common symptom and a critical step in the development of T2D and MetS. The liver plays a crucial role in maintaining glucose homeostasis. Hepatic insulin resistance can often be identified before other symptoms arrive; therefore, establishing methods for its early diagnosis would allow for the implementation of proper treatment in patients before the disease develops. Non-coding RNAs such as miRNAs (micro-RNA) and lncRNAs (long-non-coding RNA) are being recognized as promising novel biomarkers and therapeutic targets—especially due to their regulatory function. The dysregulation of miRNA and lncRNA activity has been reported in the livers of insulin-resistant patients. Many of those transcripts are involved in the regulation of the hepatic insulin signaling cascade. Furthermore, for several miRNAs (miR-802, miR-499-5p, and miR-122) and lncRNAs (H19 imprinted maternally expressed transcript (H19), maternally expressed gene 3 (MEG3), and metastasis associated lung adenocarcinoma transcript 1 (MALAT1)), circulating levels were altered in patients with prediabetes, T2D, and MetS. In the course of this review, the role of the aforementioned ncRNAs in hepatic insulin signaling cascade, as well as their potential application in diagnostics, is discussed. Overall, circulating ncRNAs are precise indicators of hepatic insulin resistance in the development of metabolic diseases and could be applied as early diagnostic and/or therapeutic tools in conditions associated with insulin resistance. Full article
(This article belongs to the Collection Regulation by Non-coding RNAs)
Show Figures

Figure 1

19 pages, 1908 KiB  
Article
Clinical Value of lncRNA MEG3 in High-Grade Serous Ovarian Cancer
by Marianna Buttarelli, Marta De Donato, Giuseppina Raspaglio, Gabriele Babini, Alessandra Ciucci, Enrica Martinelli, Pina Baccaro, Tina Pasciuto, Anna Fagotti, Giovanni Scambia and Daniela Gallo
Cancers 2020, 12(4), 966; https://doi.org/10.3390/cancers12040966 - 14 Apr 2020
Cited by 31 | Viewed by 11556
Abstract
Long non-coding RNAs (lncRNAs) are emerging as regulators in cancer development and progression, and aberrant lncRNA profiles have been reported in several cancers. Here, we evaluated the potential of using the maternally expressed gene 3 (MEG3) tissue level as a prognostic marker in [...] Read more.
Long non-coding RNAs (lncRNAs) are emerging as regulators in cancer development and progression, and aberrant lncRNA profiles have been reported in several cancers. Here, we evaluated the potential of using the maternally expressed gene 3 (MEG3) tissue level as a prognostic marker in high-grade serous ovarian cancer (HGSOC), the most common and deadliest gynecologic malignancy. To the aim of the study, we measured MEG3 transcript levels in 90 pre-treatment peritoneal biopsies. We also investigated MEG3 function in ovarian cancer biology. We found that high MEG3 expression was independently associated with better progression-free (p = 0.002) and overall survival (p = 0.01). In vitro and in vivo preclinical studies supported a role for MEG3 as a tumor suppressor in HGSOC, possibly through modulation of the phosphatase and tensin homologue (PTEN) network. Overall, results from this study demonstrated that decreased MEG3 is a hallmark for malignancy and tumor progression in HGSOC. Full article
(This article belongs to the Special Issue Preclinical and Clinical Advances in Ovarian Cancer)
Show Figures

Graphical abstract

19 pages, 1705 KiB  
Review
The Roles and Mechanisms of lncRNAs in Liver Fibrosis
by Zhi He, Deying Yang, Xiaolan Fan, Mingwang Zhang, Yan Li, Xiaobin Gu and Mingyao Yang
Int. J. Mol. Sci. 2020, 21(4), 1482; https://doi.org/10.3390/ijms21041482 - 21 Feb 2020
Cited by 89 | Viewed by 8972
Abstract
Many studies have revealed that circulating long noncoding RNAs (lncRNAs) regulate gene and protein expression in the process of hepatic fibrosis. Liver fibrosis is a reversible wound healing response followed by excessive extracellular matrix accumulation. In the development of liver fibrosis, some lncRNAs [...] Read more.
Many studies have revealed that circulating long noncoding RNAs (lncRNAs) regulate gene and protein expression in the process of hepatic fibrosis. Liver fibrosis is a reversible wound healing response followed by excessive extracellular matrix accumulation. In the development of liver fibrosis, some lncRNAs regulate diverse cellular processes by acting as competing endogenous RNAs (ceRNAs) and binding proteins. Previous investigations demonstrated that overexpression of lncRNAs such as H19, maternally expressed gene 3 (MEG3), growth arrest-specific transcript 5 (GAS5), Gm5091, NR_002155.1, and HIF 1alpha-antisense RNA 1 (HIF1A-AS1) can inhibit the progression of liver fibrosis. Furthermore, the upregulation of several lncRNAs [e.g., nuclear paraspeckle assembly transcript 1 (NEAT1), hox transcript antisense RNA (Hotair), and liver-enriched fibrosis-associated lncRNA1 (lnc-LFAR1)] has been reported to promote liver fibrosis. This review will focus on the functions and mechanisms of lncRNAs, the lncRNA transcriptome profile of liver fibrosis, and the main lncRNAs involved in the signalling pathways that regulate hepatic fibrosis. This review provides insight into the screening of therapeutic and diagnostic markers of liver fibrosis. Full article
(This article belongs to the Special Issue Fibrosis-Related lncRNA)
Show Figures

Figure 1

20 pages, 4425 KiB  
Article
MEG3 Promotes Differentiation of Porcine Satellite Cells by Sponging miR-423-5p to Relieve Inhibiting Effect on SRF
by Xiaofang Cheng, Long Li, Gaoli Shi, Lin Chen, Chengchi Fang, Mengxun Li and Changchun Li
Cells 2020, 9(2), 449; https://doi.org/10.3390/cells9020449 - 15 Feb 2020
Cited by 25 | Viewed by 7546
Abstract
Although thousands of long noncoding RNAs (lncRNAs) have been identified in porcine growth and development, the regulation mechanisms of functional lncRNAs have not been well explored. In this study, using 5′- and 3′-rapid amplification of cDNA ends (RACE) assays, we obtained two different [...] Read more.
Although thousands of long noncoding RNAs (lncRNAs) have been identified in porcine growth and development, the regulation mechanisms of functional lncRNAs have not been well explored. In this study, using 5′- and 3′-rapid amplification of cDNA ends (RACE) assays, we obtained two different variants of lncRNA maternally expressed gene 3 (MEG3), namely, MEG3 v1 and MEG3 v2, that were both highly expressed in porcine skeletal muscle and in the early stage of the differentiation of porcine satellite cells. Moreover, we identified the core transcript MEG3 v2. Functional analyses showed that MEG3 overexpression could effectively arrest myoblasts in the G1 phase, inhibit DNA replication, and promote myoblast differentiation, whereas MEG3 knockdown resulted in the opposite effects. Interestingly, the expression of serum response factor (SRF), a crucial transcription factor for myogenesis process, remarkably increased and decreased in mRNA and protein levels with the respective overexpression and knockdown of MEG3. Dual luciferase reporter assay showed that MEG3 could attenuate the decrease of luciferase activity of SRF induced by miR-423-5p in a dose-dependent manner. MEG3 overexpression could relieve the inhibitory effect on SRF and myoblast differentiation induced by miR-423-5p. In addition, results of RNA immunoprecipitation analysis suggested that MEG3 could act as a ceRNA for miR-423-5p. Our findings initially established a novel connection among MEG3, miR-423-5p, and SRF in porcine satellite cell differentiation. This novel role of MEG3 may shed new light on understanding of molecular regulation of lncRNA in porcine myogenesis. Full article
Show Figures

Figure 1

17 pages, 6336 KiB  
Article
Transthyretin Upregulates Long Non-Coding RNA MEG3 by Affecting PABPC1 in Diabetic Retinopathy
by Guangming Fan, Yu Gu, Jiaojiao Zhang, Yu Xin, Jun Shao, Francesca Giampieri and Maurizio Battino
Int. J. Mol. Sci. 2019, 20(24), 6313; https://doi.org/10.3390/ijms20246313 - 13 Dec 2019
Cited by 25 | Viewed by 4375
Abstract
The aim of the study was to demonstrate how transthyretin (TTR) could affect long non-coding RNA (lncRNA) of maternally expressed gene 3 (MEG3) and play important roles in diabetic retinopathy (DR). A DR model in C57BL/6 mice was established after intraperitoneal injection of [...] Read more.
The aim of the study was to demonstrate how transthyretin (TTR) could affect long non-coding RNA (lncRNA) of maternally expressed gene 3 (MEG3) and play important roles in diabetic retinopathy (DR). A DR model in C57BL/6 mice was established after intraperitoneal injection of streptozotocin (STZ). After intravitreal injection with TTR pAAV vector, MEG3 short hairpin RNA (shRNA), scrambled shRNA, or MEG3, retinal imaging, retinal trypsin digestion, and fundus vascular permeability tests were performed. Cell counting kit-8 (CCK8), transwell, and Matrigel assays were employed to detect the proliferation and migration of human retinal microvascular endothelial cells (hRECs). The binding between long non-coding RNA of maternally expressed gene 3 (lncRNA-MEG3) and microRNA-223-3p (miR-223-3p) was observed by using luciferase reporter assays, while co-immunoprecipitation (co-IP) was employed to confirm the interaction between TTR and the target. In the DR mice model, retinal vascular leakage and angiogenesis were repressed by overexpressing TTR. In vitro, the added TTR promoted the level of lncRNA-MEG3 by interacting with poly (A) binding protein cytoplasmic 1 (PABPC1), and then repressed proliferation and angiogenesis of hRECs. In vivo, silencing or overexpressing lncRNA-MEG3 significantly affected retinal vascular phenotypes. Additionally, the interaction between lncRNA-MEG3 and miR-223-3p was confirmed, and silencing of miR-223-3p revealed similar effects on hRECs as overexpression of lncRNA-MEG3. In summary, in the DR environment, TTR might affect the lncRNA MEG3/miR-223-3p axis by the direct binding with PABPC1, and finally repress retinal vessel proliferation. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

15 pages, 3544 KiB  
Article
MEF2A Regulates the MEG3-DIO3 miRNA Mega Cluster-Targeted PP2A Signaling in Bovine Skeletal Myoblast Differentiation
by Yaning Wang, Chugang Mei, Xiaotong Su, Hongbao Wang, Wucai Yang and Linsen Zan
Int. J. Mol. Sci. 2019, 20(11), 2748; https://doi.org/10.3390/ijms20112748 - 4 Jun 2019
Cited by 22 | Viewed by 3755
Abstract
Understanding the molecular mechanisms of skeletal myoblast differentiation is essential for studying muscle developmental biology. In our previous study, we reported that knockdown of myocyte enhancer factor 2A (MEF2A) inhibited myoblast differentiation. Here in this study, we further identified that MEF2A controlled this [...] Read more.
Understanding the molecular mechanisms of skeletal myoblast differentiation is essential for studying muscle developmental biology. In our previous study, we reported that knockdown of myocyte enhancer factor 2A (MEF2A) inhibited myoblast differentiation. Here in this study, we further identified that MEF2A controlled this process through regulating the maternally expressed 3 (MEG3)—iodothyronine deiodinase 3 (DIO3) miRNA mega cluster and protein phosphatase 2A (PP2A) signaling. MEF2A was sufficient to induce MEG3 expression in bovine skeletal myoblasts. A subset of miRNAs in the MEG3-DIO3 miRNA cluster was predicted to target PP2A subunit genes. Consistent with these observations, MEF2A regulated PP2A signaling through its subunit gene protein phosphatase 2 regulatory subunit B, gamma (PPP2R2C) during bovine myoblast differentiation. MiR-758 and miR-543 in the MEG3-DIO3 miRNA cluster were down-regulated in MEF2A-depleted myocytes. Expression of miR-758 and miR-543 promoted myoblast differentiation and repressed PPP2R2C expression. Luciferase activity assay showed that PPP2R2C was post-transcriptionally targeted by miR-758 and miR-543. Taken together, these results reveal that the MEG3-DIO3 miRNAs function at downstream of MEF2A to modulate PP2A signaling in bovine myoblast differentiation. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

Back to TopTop