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Simple Summary: MEG3 is a class of lncRNA, which is considered a tumor suppressor. It is lost or
decreased in different biological processes of various human tumors and is closely related to various
diseases. MEG3 can modulate the expression of target genes through transcription, translation, post-
translational modification and epigenetic regulation. Studies have shown that MEG3 dysfunction
has been linked to a poor prognosis and drug resistance. MEG3 mediates the hallmarks of cancer
through a variety of mechanisms, acting as a tumor suppressor to limit tumor growth. Hence, MEG3
is a potential prognostic marker and antitumor therapeutic target.

Abstract: Long non-coding RNAs (lncRNAs) are critical regulators in various biological processes
involved in the hallmarks of cancer. Maternally expressed gene 3 (MEG3) is lncRNA that regulates
target genes through transcription, translation, post-translational modification, and epigenetic regula-
tion. MEG3 has been known as a tumor suppressor, and its downregulation could be found in various
cancers. Furthermore, clinical studies revealed that impaired MEG3 expression is associated with
poor prognosis and drug resistance. MEG3 exerts its tumor suppressive effect by suppressing various
cancer hallmarks and preventing cells from acquiring cancer-specific characteristics; as it could sup-
press tumor cells proliferation, invasion, metastasis, and angiogenesis; it also could promote tumor
cell death and regulate tumor cell metabolic reprogramming. Hence, MEG3 is a potential prognostic
marker, and overexpressing MEG3 might become a potential antitumor therapeutic strategy. Herein,
we summarize recent knowledge regarding the role of MEG3 in regulating tumor hallmarks as well
as the underlying molecular mechanisms. Furthermore, we also discuss the clinical importance of
MEG3, as well as their potential in tumor prognosis and antitumor therapeutic strategies.

Keywords: maternally expressed gene 3 (MEG3); competing endogenous RNA; long non-coding
RNA; microRNA; hallmarks of cancer

1. Introduction

Cancer is the main cause of death globally and a significant impediment to extending
life expectancy. In 2020, there was an estimated 19.3 million new cases of cancer and
nearly 10 million cancer-related mortality globally [1]. While cancers that are accessible for
early identification are slowing down, other prevalent malignancies are making significant
progress [2]. Hence, there is an urgent need to find novel prognostic biomarkers and tumor
therapeutic targets to combat cancer.

Tumorigenesis as well as the malignant transformation from benign tumors to malig-
nant cancers is a complex process due to aberrant gene expressions. Distinct from normal
cells, tumor cells have gained special characteristics, which are known as “hallmarks of
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cancer”, including sustaining proliferative signaling, resisting cell death, inducing angio-
genesis, activating invasion and metastasis, and metabolic reprogramming [3,4]. Besides
mutations in protooncogenes and tumor suppressor genes, impaired gene expression reg-
ulatory pathways such as transcriptional, translational, post-translational, or epigenetic
regulations are also the main reasons for tumorigenesis and malignant transformation [5,6].
In the last two decades, numerous studies have revealed that non-coding RNA (ncRNA),
such as microRNA (miRNA), long non-coding RNA (lncRNA), circular RNA (circRNA),
small interfering RNA (siRNA), and RNA interacting with piwi proteins (piRNA), are
crucial regulators of gene expression. These ncRNAs could exert their regulatory functions
by regulating various steps of gene expression, that is, transcription, post-transcriptional
modifications, translation, post-translational modifications, chromatin remodeling, and
signal transduction [7,8].

Long non-coding RNAs (lncRNAs) are a class of non-coding RNAs more than 200 nu-
cleotides in length. LncRNAs can act as competing endogenous RNA (ceRNA) that sponges
and blocks the effect of miRNAs, a class of ncRNA that suppresses target genes expression
at their translational level by binding to their 3′ untranslated regions (3′ UTR) [9]. Further-
more, lncRNAs could interact with DNA, RNA, protein molecules and/or their complexes,
acting as an essential regulator in transcriptional, post-transcriptional, and chromatin re-
modeling regulations [10]. Interestingly, recent studies found that some lncRNAs contain
short open reading frames (sORFs), which can encode small proteins or micropeptides to
exert their physiological roles [11,12]. Aberrant lncRNA expression, which could be caused
by single nucleotide polymorphism (SNPs), copy number alterations, and mutations, has been
found in various tumors such as colorectal cancer (CRC), thyroid cancer, and ovarian cancer
(OC), and is closely related with cancer hallmarks and malignant transformation [13–15].
Thus, lncRNAs have gained attention as novel biomarkers for tumors and as targets for
antitumor therapeutic strategies [16].

Maternally expressed gene 3 (MEG3) is an imprinted gene with an approximate length
of 35 kbp and found at the DLK1-MEG3 locus on human chromosome 14q32.3 [17]. Its
mouse homolog, gene trap loci 2 (Gtl2), is located on mouse distal chromosome 12 [18].
MEG3 is transcribed by RNA polymerase 2 and spliced into 10 exons containing five key
structural motifs (M-I to M-V) [17,19–21]. Mature MEG3 RNA, which is 1.6 kbp in length,
is polyadenylated at its 3′ ends, and is located both in the nucleus and cytoplasm [22,23]
(Figure 1). MEG3 could impact various diseases, including ischemic neuronal death,
atherosclerosis and type 2 diabetes mellitus [24–26]. Recent studies revealed that MEG3
expression decreased in a wide variety of tumors, playing a crucial role as a tumor suppres-
sor [27,28]. The first study regarding the role of MEG3 in tumors was reported by Zhang
et al. They found the defect of MEG3 expression in pituitary adenomas, and that ectopic
expression of this gene suppressed tumor cell growth [29]. More recently, Moradi et al.
reported that MEG3 could function as a ceRNA that interact directly with multiple genes or
proteins, including p53, enhancer of zeste homologue 2 (EZH2), and nuclear factor-kappa B
(NF-κB). MEG3 exerts its tumor-suppressive effect by regulating various cancer hallmarks,
as it could inhibit tumor cell proliferation, induce cell death, reduce invasion and metastasis,
prevent angiogenesis, and inhibit tumor cells’ metabolic reprogramming.

In this review, we summarized the current knowledge regarding the expression level,
functions, as well as the molecular mechanism underlying MEG3 regulation on cancer
hallmarks. Furthermore, we highlighted the clinical significance of MEG3 as a biomarker
for cancer prognosis, as well as a novel therapeutic strategy for cancer therapy.
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Figure 1. Schematic diagram of DLK1-MEG3 locus on human chromosome 14. The 837 kb-long 
DLK1-MEG3 locus contains the protein-coding genes DIO3, RTL1, and DLK1. The MEG3 gene has 
ten exons and is 35 kb long. The IG-DMR is 13 kb upstream of the MEG3 gene. The MEG3-DMR 
overlaps with the MEG3 promoter. IG-DMR: intergenic differentially methylated region. 
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LncRNAs can function as ceRNAs that bind to target miRNAs like a sponge and pre-
vent miRNA from binding to its target mRNA, thus affecting the mRNA abundance of 
the target gene and their protein levels [30,31]. Numerous studies have reported that 
MEG3 can function as ceRNA by sponging and sequestering miRNAs, such as miR-21, 
miR-181a, and miR-421, from their target genes [32–42]. Similar to the targets of the miR-
NAs it regulates, MEG3 possesses microRNA response elements (MREs). Through these 
MREs, MEG3 binds to the miRNA binding sites competitively with the corresponding 
target mRNAs, thereby removing the target mRNAs and eliminating the inhibitory effect 
of miRNA on them. The lncRNA-miRNA-mRNA forms a complex network of action, 
whose homeostasis is crucial for maintaining normal physiological conditions. Mean-
while, disruption of this homeostasis is closely related to diseases including cancers [43].  

2.2. MEG Regulations on Target Genes Transcription 
Besides as a ceRNA, MEG3 can regulate its targets through transcriptional as well as 

post-translational regulations (Figure 2). For example, MEG3 could promote p53 expres-
sion by promoting its transcriptional activity and post-translational modification. MEG3 
could enhance p53 transcriptional activity, thereby increasing p53 expression level and 
negatively regulating the cell cycle [44,45] Furthermore, MEG3 could also decrease the 
level of murine double minute 2 (MDM2), an E3 ubiquitin ligase that enhances p53 ubiq-
uitination/proteasomal degradation, leading to p53 protein stabilization and transcrip-
tional activation of p53 downstream targets [46]. Meanwhile, Weng et al. also found that 
MEG3, through its 732-1174 nucleic acid region, binds directly to Clusterin (CLU) protein 
and impedes CLU’s interactions with its target proteins, such as vascular endothelial 
growth factor (VEGF) or matrix metalloproteinase (MMP-9) [47]. MEG3 affects the stabil-
ity of proteins by regulating their post-translational modifications. Zhang et al. showed 
that MEG3 could suppress the accumulation of the phosphorylated signal transducer and 
activator of transcription 3 (p-STAT3) protein by recruiting ubiquitination enzymes and 

Figure 1. Schematic diagram of DLK1-MEG3 locus on human chromosome 14. The 837 kb-long
DLK1-MEG3 locus contains the protein-coding genes DIO3, RTL1, and DLK1. The MEG3 gene has
ten exons and is 35 kb long. The IG-DMR is 13 kb upstream of the MEG3 gene. The MEG3-DMR
overlaps with the MEG3 promoter. IG-DMR: intergenic differentially methylated region.

2. Mechanism of MEG3 Regulations
2.1. MEG3 Could Sponge miRNAs

LncRNAs can function as ceRNAs that bind to target miRNAs like a sponge and
prevent miRNA from binding to its target mRNA, thus affecting the mRNA abundance
of the target gene and their protein levels [30,31]. Numerous studies have reported that
MEG3 can function as ceRNA by sponging and sequestering miRNAs, such as miR-21,
miR-181a, and miR-421, from their target genes [32–42]. Similar to the targets of the
miRNAs it regulates, MEG3 possesses microRNA response elements (MREs). Through
these MREs, MEG3 binds to the miRNA binding sites competitively with the corresponding
target mRNAs, thereby removing the target mRNAs and eliminating the inhibitory effect
of miRNA on them. The lncRNA-miRNA-mRNA forms a complex network of action,
whose homeostasis is crucial for maintaining normal physiological conditions. Meanwhile,
disruption of this homeostasis is closely related to diseases including cancers [43].

2.2. MEG Regulations on Target Genes Transcription

Besides as a ceRNA, MEG3 can regulate its targets through transcriptional as well as
post-translational regulations (Figure 2). For example, MEG3 could promote p53 expres-
sion by promoting its transcriptional activity and post-translational modification. MEG3
could enhance p53 transcriptional activity, thereby increasing p53 expression level and
negatively regulating the cell cycle [44,45] Furthermore, MEG3 could also decrease the
level of murine double minute 2 (MDM2), an E3 ubiquitin ligase that enhances p53 ubiqui-
tination/proteasomal degradation, leading to p53 protein stabilization and transcriptional
activation of p53 downstream targets [46]. Meanwhile, Weng et al. also found that MEG3,
through its 732-1174 nucleic acid region, binds directly to Clusterin (CLU) protein and
impedes CLU’s interactions with its target proteins, such as vascular endothelial growth
factor (VEGF) or matrix metalloproteinase (MMP-9) [47]. MEG3 affects the stability of
proteins by regulating their post-translational modifications. Zhang et al. showed that
MEG3 could suppress the accumulation of the phosphorylated signal transducer and acti-
vator of transcription 3 (p-STAT3) protein by recruiting ubiquitination enzymes and thus
directing pSTAT3 into ubiquitin/proteasomal degradation pathway without affecting its
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phosphorylation. This in turn suppresses the p-STAT3/c-Myc axis, and subsequently, leads
to a decrease in cell proliferation potential [48].
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Figure 2. MEG3 inhibits cancer progression through different mechanisms. MEG3 is involved in
tumor progression in two ways, such as acting as a sponge for miRNA and regulating its targets
through transcriptional as well as post-translational regulations.

Several studies have reported that lncRNAs are involved in chromatin remodeling
by directing the recruitment of chromatin modifiers to target gene sites, for example, by
associating with polycomb repressive complex 2 (PRC2) and inducing the trimethylation
of histone H3 lysine 27 (H3K27me3) [49,50]. MEG3 could function as a molecular scaffold
linking different proteins and forming large complexes that regulate chromatin structure
and gene expression. By interacting with the RNA binding domain of Jumonji and AT-rich
interaction domain containing 2 (JARID2), MEG3 stimulates PRC2 and JARID2 assembly,
thereby enhancing H3K27me3 recruitment and suppressing the transcription of E-cadherin
and miR-200 family [51].

MEG3 could also induce H3K27me3 by interacting with EZH2, a catalytic subunit of
the PRC2 complex. Through this regulation, MEG3 induces the deposition of H3K27me3
in the distal regulatory region (DRE) of the transforming growth factor-β (TGF-β) gene,
thereby inhibiting TGF-β gene transcription in trans, and subsequently, the transcription of
TGF-β pathway genes transforming growth factor beta receptor 1 (TGFBR1), transforming
growth factor beta 1 (TGFB1), and SMAD family member 2 (SMAD2) [52]. Similarly, MEG3
inhibits engrailed-2 (EN-2) expression by EZH2-mediated H3K27me3 [53]. Interestingly,
MEG3 could also interact with EZH2 protein and stimulates its ubiquitination/proteasomal
degradation; EZH2 could in turn suppress MEG3 through its interaction with DNA methyl-
transferase 1 (DNMT1) and histone deacetylase 1 (HDAC1), thereby suppressing MEG3
transcription by inducing DNA methylation. Hence, the regulation of MEG3 on EZH2
forms a concerted negative feedback loop [54].

3. MEG3 Regulates Various Hallmarks of Cancer

Recent studies revealed that MEG3 is associated with hallmarks of cancer, including
proliferation, cell death, invasion and metastasis, metabolic reprogramming, and angiogen-
esis, by regulating various pathways (Table 1). MEG3 inhibits cancer progression through
different mechanisms. MEG3 is involved in tumor progression in two ways, such as act-
ing as a sponge for miRNA and regulating its targets through transcriptional as well as



Cancers 2022, 14, 6032 5 of 17

post-translational regulations. For example, MEG3 is closely related to the expression level
of p53, a tumor suppressor whose mutation could be found in more than 50% of cancer
patients [55]. MEG3 can directly interact with the DNA binding domain of p53 thereby
enhancing the transcription of numerous p53 target genes [56]. MEG3 can also regulate
p53 expression level indirectly by decreasing MDM2 protein level, leading to the decrease
in MDM2-mediated p53 ubiquitination/proteasomal degradation, thereby stabilizing p53
protein levels [57,58].

Table 1. Biological implications of MEG3 on hallmarks of cancer.

Cancer Type miRNA Related Genes Hallmarks Refs

Breast cancer miR-494-3p OTUD4 Growth inhibition [59]
Glioma / Wnt/β-catenin Cell cycle regulation [60]

T-cell lymphoblastic
lymphoma miR-214 AIFM2, Ki-67,

PCNA Growth inhibition [61]

Clear cell renal cell
carcinoma miR-7 RASL11B Growth inhibition [62]

CRC miR-376 PKD1 Cell cycle regulation [63]
Pancreatic

neuroendocrine tumor miR-183 BRI3 Growth inhibition [64]

OSCC miR-548d-3p SOCS5, SOCS6 Apoptosis induction [65]
CML miR-147 JAK/STAT3 Apoptosis induction [66]

Cervical cancer miR-21-5p p53, caspase3 Apoptosis induction [67]
Breast cancer miR-421 E-cadherin EMT inhibition [42]

Ovarian cancer miR-219a-5p EGFR EMT inhibition [68]
Glioma miR-19a PTEN Metastasis inhibition [69]

HCC miR-544b BTG2 Metastasis inhibition [70]
Bladder cancer miR-27a PHLPP2, c-Myc Metastasis inhibition [71]

CRC / LDHA, PKM2,
HK2

Metabolic
reprogramming [72]

OSCC miR-361-5p succinate Metabolic
reprogramming [73]

Breast cancer /
VEGFA, PGF,

bFGF, TGF-β1,
MMP-9, AKT

Angiogenesis
inhibition [74]

Lung cancer /

VEGFA, VEGFB,
bFGF, SDF-1,

TGF-β,
angiogenin,

MMP-9

Angiogenesis
promotion [75]

Abbreviations: CRC: colorectal cancer; OSCC: oral squamous cell carcinoma; CML: chronic myeloid leukemia;
HCC: hepatocellular carcinoma; EMT: epithelial-mesenchymal transition.

3.1. MEG3 Inhibits Tumor Cell Proliferation

Abnormal, uncontrolled cell growth due to the dysregulation of cell proliferation
is the most fundamental cause of tumorigenesis. Aberrant MEG3 expression has been
observed in various tumors and is closely linked with tumor cell proliferation [76]. MEG3
could up-regulate OTU deubiquitinase 4 (OTUD4) and RNA binding motif single-stranded
interacting protein 3 (RBMS3) by sponging miR-494 and miR-141-3p, respectively, thereby
suppressing breast cancer cells proliferation [59,77]. MEG3 could inhibit the growth and
proliferation of T-cell lymphoblastic lymphoma by sponging miR-214, thereby activating
apoptosis-inducing factor mitochondrion-associated 2 (AIFM2) expression [61]. By spong-
ing miR-494 and miR-374a-5p, MEG3 can up-regulate phosphatase and tensin homolog
(PTEN), resulting in cell growth inhibition in bladder cancer and pancreatic ductal adeno-
carcinoma [78,79]. MEG3 also can inhibit cholangiocarcinoma proliferation and invasion
by inhibiting the major components of the PRC1 complex, B lymphoma Mo-MLV insertion
region 1 (Bmi1), and RING finger protein 2 (RNF2) [80].
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The cell cycle is an important process that regulates cell proliferation. MEG3 could in-
duce cell-cycle arrest in G0/G1 phase, thereby suppressing cell proliferation and ultimately
inducing cell apoptosis. MEG3 could induce G0/G1 cell cycle arrest in glioma and ovarian
cancer cells by inactivating the Wnt/β-catenin signaling pathway and upregulating PTEN
expression, respectively [60,81]. Furthermore, by sponging its target miRNAs, such as
miR-10a-5p, MEG3 can cause G0/G1 cell cycle arrest and enhance the expression of PTEN,
Bcl-2-associated X (Bax), and p53 protein in hepatocellular carcinoma (HCC) [82], or by
sponging miR-7 and miR-376, leading to the downregulation of miR-7/RAS like family
11 member B (RASL11B) and miR-376/protein kinase D1 (PKD1) axis [62,63].

MEG3 could also inactivate the PI3K/Akt and ERK pathways, which are crucial
for cell proliferation [3]. In renal cell carcinoma, MEG3 upregulates β-galactoside α-
2,3-sialyltransferase 1 (ST3Gal1) through its interaction with transcription factor c-Jun,
leading to the decrease in epithelial growth factor receptor (EGFR) phosphorylation and
PI3K/Akt pathway inactivation [83]. Meanwhile, in gliomas and hemangiomas, MEG3
could inactivate PI3K/Akt pathway by sponging miR-93 and miR-494, respectively [84,85]; in
pancreatic neuroendocrine tumors, MEG3 downregulates brain protein I3 (BRI3) expression
by sponging miR-183, leading to the inactivation of p38/ERK/Akt and Wnt/β-catenin
signaling pathways [64].

Cancer stem cells (CSCs) are a small population of tumor cells that are usually in the
dormant stage and have been assumed to be the main reason for tumorigenesis potential,
tumor metastasis, recurrence, and drug resistance [86]. Targeting CSCs has been considered
a potential therapeutic strategy for eradicating cancers; however, they are significantly
less sensitive to current chemotherapy- and radiotherapy-based antitumor therapeutic
strategies, as these strategies target proliferative cells [87]. MEG3 can repress CSC self-
renewal ability and decrease cancer stemness phenotype in oral CSCs by blocking miR-
421 [88]. Furthermore, by sponging miR-708, MEG3 enhances SOCS3 expression, thereby
decreasing colorectal CSCs stemness by suppressing STAT3 signaling [89].

3.2. MEG3 Induces Cell Death

Apoptosis is a programmed cell death controlled by a signaling cascade to maintain
a stable internal environment. The elimination of cancer cells by apoptosis has been a
key cue in clinical cancer treatment [90]. Apoptosis could be divided into intrinsic and
extrinsic apoptotic pathways. The intrinsic apoptotic pathway, also known as mitochondria-
mediated apoptosis, is regulated by pro-apoptotic B-cell lymphoma 2 (Bcl-2) proteins, anti-
apoptotic Bcl-2 proteins, and BH3-only proteins, which triggers the activation of executor
caspases 3 and 7 by activating caspase 8. Meanwhile, the extrinsic apoptotic pathway
is regulated by death receptors, such as the tumor necrosis factor (TNF) receptor, which
promotes the cleavage of initiator caspase, caspase 9, subsequently activating executor
caspases [91,92].

Previous reports have shown that MEG3 could enhance intrinsic apoptosis by various
mechanisms. In prostate cancer, osteosarcoma, urinary tract epithelial cancer and pituitary
tumor cells, MEG3 could directly bind to miR-361-5p, miR-96, and miR-376B-3p, leading
to the promotion of forkhead box M1 (FoxM1) and tropomyosin 1 (TPM1) expression
while repressing oncogene high mobility group AT-hook 2 (HMGA2) expression. This
results in the reduction in Bcl-2 and the rising of Bax protein levels, as well as the increase
in caspases-3 and -9 cleavages, thereby inducing tumor cell apoptosis [93–96]. In oral
squamous cell carcinoma (OSCC) and CML, MEG3 promoted apoptosis by sponging miR-
548d-3p and miR-147, thereby promoting suppressor of cytokine signaling 5 (SOCS5) and
suppressor of cytokine signaling 6 (SOCS6) expression while inhibiting the JAK-STAT
signaling pathway [65,66].

MEG3 could also trigger apoptosis in ESCC and CRC by increasing endoplasmic
reticulum (ER) stress-related proteins, including glucose-regulated protein 78 (GRP78),
activating transcription factor 6 (ATF6), protein kinase R-like endoplasmic reticulum kinase
(PERK), and C/EBP-homologous protein (CHOP), leading to enhanced caspases-9 and
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-3 cleavages [97,98]. Furthermore, MEG3 could activate apoptotic cascade in laryngeal
cancer by sponging miR-23a and promotes apoptotic protease activating factor-1 (APAF-1)
expression [99], and in gallbladder cancer by promoting EZH2 ubiquitination/proteasomal
degradation. This in turn suppressed the expression level of its downstream target tumor
suppressor large tumor suppressor 2 (LATS2), thus increasing the levels of cleaved PARP,
Bax, and Bcl-2 [100]. Moreover, it could also downregulate miR-21-5p, leading to an increase
in p53 and caspase 3 cleavage protein cleavage [67].

Besides intrinsic apoptosis, MEG3 could also trigger extrinsic apoptosis pathways. In
cholangiocarcinoma and gallbladder cancer, MEG3 stimulated NF-κB signaling pathway
and triggered apoptosis by sponging miR-361-5p expression and activating TNF receptor-
associated factor 3 (TRAF3) [101,102].

Autophagy is an intracellular self-destructive form of cell death that transfers cytoplas-
mic proteins or organelles to the lysosome to fulfill the metabolic and self-renewal needs of
organelles and the cell itself [103–105]. Previous studies have reported that MEG3 could
attenuate autophagy by suppressing the forkhead box O1 (FOXO1) expression, leading to
the decrease in autophagy-related proteins microtubule-associated protein light chain 3 II
(LC3 II), beclin 1, autophagy related 3 (ATG3), autophagy related 5 (ATG5), and autophagy
related 12 (ATG12), as well as the increase in the autophagy substrate p62 [106]. Hence,
MEG3 regulation on autophagy needs further investigation.

3.3. MEG3 Negatively Regulates Tumor Cells Invasion and Metastasis Potentials

Metastasis is a complex process that includes epithelial-mesenchymal transition (EMT),
invasion, intravasation, cell survival in circulation, extravasation, and metastatic coloniza-
tion [107,108]. EMT is the first, initiative event in cancer metastasis in which epithelial
cells gained mesenchymal characteristics such as decreased intercellular adhesion and
increased motility, while losing epithelial characteristics [109,110]. MEG3 could suppress
GC cells’ EMT and metastasis potential by sponging miR-21, leading to the increase in
the expression of epithelial marker E-cadherin, and a decrease in mesenchymal markers
such as N-cadherin, Snail, and β-catenin as well as cell migration markers such as matrix
metalloproteinase-2 (MMP-2), matrix metalloproteinase-3 (MMP-3), and MMP-9 [34,111]
and by inhibiting the binding between miR-665 and its target, cytokine signaling 3 (SOCS3),
thereby enhancing SOCS3 expression and suppressing FAK/Src pathway [112]. Meanwhile,
by sponging miR-216a, MEG3 enhances programmed death-1 (PD-1) expression while sup-
pressing EMT inducer myeloid cell leukemia-1 (MCL-1) in endometrial cancer cells [113].
In OC cells, MEG3 could inhibit tumor cells migration and invasion potentials by sponging
up miR-219a-5p and miR-30e-3p, resulting in the downregulation of EGFR and increase in
laminin subunit alpha 4 (LAMA4), respectively [68,114]. Meanwhile, by sponging miR-19a,
MEG3 enhanced PTEN expression, thereby suppressing glioma cell migration and inva-
sion potentials [69]. Furthermore, in HCC, MEG3 could inhibit metastasis by sponging
miR-544b and miR-5195-3p, thereby upregulating target genes B-cell translocation gene
(BTG2) and FOXO1 expression [70,115]. Moreover, MEG3 could also suppress EMT by
blocking the phosphoserine aminotransferase 1 (PSAT1)-dependent glycogen synthase
kinase (GSK)-3β/Snail signaling [116].

The link between MEG3 and metastasis has also been confirmed by clinical samples
from thyroid cancer (TC) patients showing that MEG3 downregulation was associated
with lymph node metastasis. MEG3 could suppress TC cell migration and invasion by
downregulating Rac family small GTPase 1 (Rac1) expression by targeting its 3′ UTR [117].
Furthermore, MEG3 competitively interacts with miR-27a as the ceRNA of PH domain
and leucine-rich repeat protein phosphatase 2 (PHLPP2) mRNA, promoting PHLPP2
protein translation and inhibiting c-Jun phosphorylation and c-Jun-mediated c-Myc mRNA
transcription, thereby impairing invasion and lung metastasis of bladder cancer cells [71].
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3.4. MEG3 Regulation on Tumor Cells Metabolic Reprogramming

Metabolic alteration is a characteristic of tumor cells crucial for supporting their rapid
cell growth [3]. Unlike normal cells, which mainly depend on glycolysis followed by oxida-
tive phosphorylation, tumor cells prefer inefficient aerobic glycolysis with a significantly
higher turnover rate compared to normal cells even under adequate oxygen availability.
This phenomenon is known as the Warburg effect [118,119]. The reprogrammed metabolic
network generates intermediates, such as those involved in the glycolysis or tricarboxylic
acid (TCA) cycle processes, which benefit cancer cells by helping them meet their energy
needs as well as anabolic and redox and building blocks demands in the early stages of
cancer development [120]. MEG3 activated by vitamin D can inhibit aerobic glycolysis and
lactic acid production in CRC cells by inducing ubiquitin-dependent c-Myc degradation,
thereby inhibiting c-Myc target genes expression involved in the glycolysis pathway, such
as lactate dehydrogenase A (LDHA), pyruvate kinase muscle 2 (PKM2) and hexokinase 2
(HK2) [72]. Furthermore, MEG3 can promote succinate dehydrogenase (SDH) expression
by sponging miR-361-5p, leading to an increase in succinate, a key TCA metabolite, thereby
suppressing OSCC progression [73].

3.5. MEG3 Suppresses Tumor Angiogenesis

Formation of new blood vessels in tumor tissues from existing blood vessels is crucial
for supplying tumor cells with oxygen and nutrient, for adapting to the fluctuating oxygen
pressure in their microenvironment, as well as for metastasis [121]. This process involved
many angiogenic factors, including vascular endothelial growth factor A (VEGFA), basic
fibroblast growth factor (bFGF), and angiogenin. These factors increase endothelial cell de-
velopment and vascular permeability, resulting in the formation of new blood vessels [122].
The role of MEG3 in tumor angiogenesis remains intriguing. Zhang et al. reported that
MEG3 can suppress angiogenesis-related gene VEGFA, placental growth factor (PGF), bFGF,
transforming growth factor β1 (TGF-β1) and MMP-9 expression by decreasing phosphory-
lated levels of AKT and inhibiting AKT pathway, ultimately suppressing angiogenesis in
breast cancer [74]. However, Li et al. demonstrated that MEG3 could promote angiogenesis
in lung carcinoma, as it could significantly increase the expression of angiogenesis-related
factors VEGFA, vascular endothelial growth factor B (VEGFB), bFGF, stromal cell-derived
factor-1 (SDF-1), transforming growth factor β (TGF-β), angiogenin, and MMP-9 [75]. The
reasons underlying this discrepancy need further investigation.

4. Clinical Significance of lncRNA MEG3
4.1. MEG3 Is a Potential Biomarker for Tumor Prognosis

Decreased expression of MEG3 was associated with poor prognosis in a variety
of human malignancies [123]. As shown in Table 2, MEG3 has been proven to have
anti-tumor effects, and potential prognostic and clinical significance in various human
cancers [60,76,123–130].

Analysis of MEG3 expression in glioma patients showed that low expression of MEG3
was associated with poor overall survival rates, advanced WHO grade, low Karnofsky
performance score (KPS), isocitrate dehydrogenase (IDH) wild-type, and tumor recur-
rence [60,125]. Xu et al. revealed that the copy number variation (CNV) levels of MEG3
were positively associated with overall survival and progression-free survival compared
to the wild-type in low-grade glioma [123]; Gao et al. revealed, using 63 patients with
retinoblastoma, that hypermethylation of MEG3 promoter was highly associated with poor
survival, further confirming that MEG3 expression level is negatively correlated with poor
prognosis [128]. Meanwhile, using 58 clinical ESCC tissues, Ma et al. found that low MEG3
expression was correlated with tumor size, lymph node metastasis, clinical stage, and poor
prognosis [126]. These results were in accordance with other studies involving 48 CRC
cases [129]. Furthermore, a negative correlation between MEG3 expression and short over-
all survival, relapse-free survival, and poor prognosis has also been found in breast cancer,
NSCLC, and glioblastoma [76,127,130]. Together, these results show a negative correlation
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between MEG3 and tumor progression as well as prognosis, indicating the potential of
using MEG3 as a biomarker for tumor prognosis.

Table 2. MEG3 expression and relevant clinical characteristics in human cancers.

Cancer Type Expression Relevant Clinical Characteristics Refs

Glioma Downregulated
Overall survival rates, Advanced WHO grade,
Karnofsky performance score, IDH wild-type,
tumor recurrence, progression-free survival

[125]

ESCC Downregulated Tumor size, lymph node metastasis, poor
prognosis [126]

NSCLC Downregulated Survival rate [130]
Glioma Downregulated Tumor grade [60]

CRC Downregulated Lymph node metastasis, TNM staging, Overall
survival [129]

Glioblastoma Downregulated Survival [76]

Breast cancer Downregulated Overall survival, Relapse-free survival, Distant
metastasis-free survival, Disease-specific survival [127]

Retinoblastoma Downregulated Survival [128]
Glioma Downregulated Overall survival, Progression-free survival [123]

Abbreviations: ESCC: esophageal squamous cell carcinoma; NSCLC: non-small cell lung carcinoma; CRC:
colorectal cancer.

4.2. MEG3 Is a Potential Target for Tumor Therapy

Anti-tumor therapies have been evolving and improving in recent years, yet resistance
to chemotherapy, radiotherapy, targeted therapy, and immunotherapy remains a major
problem [131]. Cytotoxic anti-tumor drugs such as cisplatin, paclitaxel, and doxorubicin, as
well as targeted medicines such as imatinib, have been used for clinical cancer treatment.
However, the persistent rise of drug resistance seriously undermines their efficacies [132].
MEG3 can facilitate chemotherapeutic drug sensitivity and radiosensitivity by altering key
signaling pathways, making it a novel therapeutic strategy for cancer treatment (Table 3).

Assessment using 90 peritoneal biopsies of high-grade serous OC showed that MEG3
expression is associated with sensitivity to platinum-based chemotherapy [133]. MEG3
can act as an agonist of cisplatin in suppressing triple-negative breast cancer (TNBC)
growth and metastasis potentials, and facilitate pyroptosis by activating cisplatin-induced
NLRP3/caspase-1/gasdermin D (GSDMD) pathway [134]. MEG3 can also enhance NSCLC
sensitivity to cisplatin by sponging miR-21-5p and thereby upregulating SRY-box transcrip-
tion factor 7 (SOX7) expression [135]; by sponging miR-141, MEG3 could overcome CRC
cells chemoresistance to oxaliplatin and promote programmed cell death factor 4 (PDCD4)
expression [129]. Subsequently, MEG3 could suppress cisplatin and cyclophosphamide
resistance in T-cell lymphoblastic lymphoma cells through the PI3K/mTOR pathway [136].

MEG3 could also act as an agonist of other antitumor drugs. Through MEG3/miR-
4513/phenazine biosynthesis-like domain-containing (PBLD) axis, MEG3 promoted breast
cancer cells’ sensitivity to paclitaxel [137]. Furthermore, MEG3 suppresses the levels of
drug-resistant transporters, including multidrug resistance-associated protein-1 (MRP1),
multidrug resistance protein 1 (MDR1), and ATP binding cassette subfamily G member
2 (ABCG2), thus increasing CML cells’ sensitivity against imatinib; miR-21 mimics could
reverse their levels [138]. Meanwhile, by sponging miR-155, MEG3 upregulated alpha-1,2-
mannosyltransferase (ALG9) expression, thereby promoting AML cells’ sensitivity against
adriamycin and vincristine [139]. Moreover, MEG3 could promote pancreatic cancer cells’
chemoresistance to gemcitabine [140].
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Table 3. Roles of MEG3 in therapeutic resistance of cancers.

Cancer Type Expression Target Chemical-/Radioresistance Refs

TNBC Downregulated
NLRP3/caspase-

1/GSDMD
pathway

Cisplatin (DDP) [134]

NSCLC Downregulated miR-21-5p/SOX7 Cisplatin [135]
T-cell

lymphoblastic
lymphoma

Downregulated PI3K/mTOR signaling Cisplatin and
Cyclophosphamide [136]

CRC Downregulated miR-141/PDCD4 Oxaliplatin [129]

AML Downregulated miR-21/MRP1, MDR1,
and ABCG2 Imatinib [138]

Breast cancer Downregulated miR-4513/PBLD Paclitaxel (PTX) [137]
ACL Downregulated miR-155/ALG9 Adriamycin and Vincristine [139]

Thyroid carcinoma Downregulated miR-182 131I [141]

Abbreviations: TNBC: triple-negative breast cancer; ESCC: esophageal squamous cell carcinoma; CRC: colorectal
cancer; AML: chronic myeloid leukemia; ACL: acute myeloid leukemia.

Besides, MEG3 was closely related to 131I-sensitivity of thyroid carcinoma by spong-
ing miR-182 [141]. Finally, very recent research showed that tumor-targeting therapy of
osteosarcoma (OS) can be performed by a highly effective engineered and MEG3-loaded
exosome, as a combination of MEG3 and exosome significantly increased MEG3 thera-
peutic effect [142]. Together, these findings suggest that MEG3 plays a significant role in
enhancing chemotherapeutic drug sensitivity and radiosensitivity in a variety of human
cancers, making it a potential therapeutic target for cancer treatment.

5. Conclusions and Perspectives

MEG3 has emerged as a potential tumor suppressor that could regulate various hall-
marks of cancer including cell proliferation, cell death, invasion and metastasis, metabolic
reprogramming, angiogenesis, and drug resistance (Figure 3). MEG3 expression is down-
regulated in most malignant tumors, including glioma, HCC, CRC, and breast cancer. As
shown in Figure 2, MEG3 regulation on tumor progression occurs through its function
as a sponge that adsorbs miRNA, transcription, protein translation and post-translational
modifications. However, in some cases, for example in angiogenesis, the role of MEG3 is
still unclear, as current studies provide paradoxical results that require further detailed
investigation. It is also noteworthy that a recent study showed that MEG3 could promote
HCC cell senescence by sponging miR-16-5p, leading to the decrease in vestigial like fam-
ily member 4 (VGLL4), which is a tumor suppressor and transcriptional cofactor, while
increasing the levels of senescence-related markers p21 and p16 [143].

Hence, while more detailed studies are still needed to investigate whether MEG3
could regulate other hallmarks of cancer, such as avoiding immune destruction, genome
instability and mutation, non-mutational epigenetic reprogramming, unlocking phenotypic
plasticity and polymorphic microbiomes and whether there are exceptions for its tumor
suppressive effects in certain hallmarks of cancer, present results demonstrate the tumor
suppressive function of MEG3. Furthermore, although detailed investigations are still
needed, MEG3 is a potential diagnostic biomarker and anti-tumor therapeutic target.
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myeloid cell leukemia-1; MDM2: murine double minute 2; MDR1: multidrug resistance protein
1; MEG3: maternally expressed gene 3; miRNA: microRNA; MMP-2: matrix metalloproteinase 2;
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proliferating cell nuclear antigen; PD-1: programmed death-1; PDCD4: programmed cell death 4;
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stromal cell-derived factor-1; SDH: succinate dehydrogenase; SOCS3: cytokine signaling 3; sORFs:
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signaling 6; SOX7: SRY-box transcription factor 7; ST3Gal1: β-galactoside α-2,3-sialyltransferase 1;
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