Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = marine-derived Aspergillus fumigatus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 691 KiB  
Article
Investigation of Potent Antifungal Metabolites from Marine Streptomyces bacillaris STR2 (MK045300) from Western Algeria
by Nesrine Boublenza, Nadir Boudjlal Dergal, Larbi Belyagoubi, Ameur Cherif and Abdelhanine Ayad
Bacteria 2024, 3(4), 390-404; https://doi.org/10.3390/bacteria3040027 - 8 Nov 2024
Viewed by 1726
Abstract
Fungal infections significantly threaten public health, and many strains are resistant to antifungal drugs. Marine Actinobacteria have been identified as the generators of powerful bioactive compounds with antifungal activity and can be used to address this issue. In this context, strains of Actinomycetes [...] Read more.
Fungal infections significantly threaten public health, and many strains are resistant to antifungal drugs. Marine Actinobacteria have been identified as the generators of powerful bioactive compounds with antifungal activity and can be used to address this issue. In this context, strains of Actinomycetes were isolated from the marine area of Rachgoun Island, located in western Algeria. The isolates were phenotypically and genetically characterized. The most potent antifungal isolate was selected, and its crude extract was purified and characterized by the GC/MS method. The results revealed that the STR2 strain showed the strongest activity against at least one target fungal species tested on a panel of fungal pathogens, including Candida albicans, Aspergillus fumigatus, Aspergillus niger, and Fusarium oxysporum. The molecular assignment of the STR2 strain based on the 16S rRNA gene positioned this isolate as a Streptomyces bacillaris species. The presence of safranal (2,3-dihydro-2,2,6-trimethylbenzaldehyde) in the crude chloroform extract of Streptomyces bacillaris STR2 strain was discovered for the first time in bacteria using chromatographic analysis of its TLC fractions. Moreover, certain molecules of biotechnological interest, such as phenols, 1,3-dioxolane, and phthalate derivatives, were also identified. This study highlights the potential of marine actinomycetes to produce structurally unique natural compounds with antifungal activity. Full article
Show Figures

Figure 1

18 pages, 1355 KiB  
Article
The Discovery, Enzymatic Characterization and Functional Analysis of a Newly Isolated Chitinase from Marine-Derived Fungus Aspergillus fumigatus df347
by Ya-Li Wu, Sheng Wang, Deng-Feng Yang, Li-Yan Yang, Qing-Yan Wang, Jun Yu, Nan Li and Li-Xia Pan
Mar. Drugs 2022, 20(8), 520; https://doi.org/10.3390/md20080520 - 15 Aug 2022
Cited by 25 | Viewed by 3256
Abstract
In order to discover a broad-specificity and high stability chitinase, a marine fungus, Aspergillus fumigatus df347, was identified in the sediments of mangrove wetlands in Qinzhou Bay, China. The chitinase gene (AfChi28) from A. fumigatus df347 was cloned and heterologously expressed [...] Read more.
In order to discover a broad-specificity and high stability chitinase, a marine fungus, Aspergillus fumigatus df347, was identified in the sediments of mangrove wetlands in Qinzhou Bay, China. The chitinase gene (AfChi28) from A. fumigatus df347 was cloned and heterologously expressed in Escherichia coli, and the recombinant enzyme AfChi28 was purified and characterized. AfChi28 is an acido-halotolerant- and temperature-resistant bifunctional enzyme with both endo- and exo-cleavage functions. Its enzymatic products are mainly GlcNAc, (GlcNAc)2, (GlcNAc)3 and (GlcNAc)4. Na+, Mg2+, K+, Ca2+ and Tris at a concentration of 50 mM had a strong stimulatory effect on AfChi28. The crude enzyme and pure enzyme exhibited the highest specific activity of 0.737 mU/mg and 52.414 mU/mg towards colloidal chitin. The DxDxE motif at the end of strand β5 and with Glu154 as the catalytic residue was verified by the AlphaFold2 prediction and sequence alignment of homologous proteins. Moreover, the results of molecular docking showed that molecular modeling of chitohexaose was shown to bind to AfChi28 in subsites −4 to +2 in the deep groove substrate-binding pocket. This study demonstrates that AfChi28 is a promising chitinase for the preparation of desirable chitin oligosaccharides, and provides a foundation for elucidating the catalytic mechanism of chitinases from marine fungi. Full article
(This article belongs to the Special Issue Application of Marine Chitin and Chitosan II)
Show Figures

Figure 1

18 pages, 2945 KiB  
Article
Discovery of Anti-MRSA Secondary Metabolites from a Marine-Derived Fungus Aspergillus fumigatus
by Rui Zhang, Haifeng Wang, Baosong Chen, Huanqin Dai, Jingzu Sun, Junjie Han and Hongwei Liu
Mar. Drugs 2022, 20(5), 302; https://doi.org/10.3390/md20050302 - 28 Apr 2022
Cited by 18 | Viewed by 4450
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA), a WHO high-priority pathogen that can cause great harm to living beings, is a primary cause of death from antibiotic-resistant infections. In the present study, six new compounds, including fumindoline A–C (13), 12β, [...] Read more.
Methicillin-resistant Staphylococcus aureus (MRSA), a WHO high-priority pathogen that can cause great harm to living beings, is a primary cause of death from antibiotic-resistant infections. In the present study, six new compounds, including fumindoline A–C (13), 12β, 13β-hydroxy-asperfumigatin (4), 2-epi-tryptoquivaline F (17) and penibenzophenone E (37), and thirty-nine known ones were isolated from the marine-derived fungus Aspergillus fumigatus H22. The structures and the absolute configurations of the new compounds were unambiguously assigned by spectroscopic data, mass spectrometry (MS), electronic circular dichroism (ECD) spectroscopic analyses, quantum NMR and ECD calculations, and chemical derivatizations. Bioactivity screening indicated that nearly half of the compounds exhibit antibacterial activity, especially compounds 8 and 11, and 3338 showed excellent antimicrobial activities against MRSA, with minimum inhibitory concentration (MIC) values ranging from 1.25 to 2.5 μM. In addition, compound 8 showed moderate inhibitory activity against Mycobacterium bovis (MIC: 25 μM), compound 10 showed moderate inhibitory activity against Candida albicans (MIC: 50 μM), and compound 13 showed strong inhibitory activity against the hatching of a Caenorhabditis elegans egg (IC50: 2.5 μM). Full article
(This article belongs to the Special Issue Bioactive Secondary Metabolites of Marine Fungi)
Show Figures

Graphical abstract

19 pages, 1881 KiB  
Article
Genome-Inspired Chemical Exploration of Marine Fungus Aspergillus fumigatus MF071
by Jianying Han, Miaomiao Liu, Ian D. Jenkins, Xueting Liu, Lixin Zhang, Ronald J. Quinn and Yunjiang Feng
Mar. Drugs 2020, 18(7), 352; https://doi.org/10.3390/md18070352 - 6 Jul 2020
Cited by 29 | Viewed by 5437
Abstract
The marine-derived fungus Aspergillus fumigatus MF071, isolated from sediment collected from the Bohai Sea, China, yielded two new compounds 19S,20-epoxy-18-oxotryprostatin A (1) and 20-hydroxy-18-oxotryprostatin A (2), in addition to 28 known compounds (330). [...] Read more.
The marine-derived fungus Aspergillus fumigatus MF071, isolated from sediment collected from the Bohai Sea, China, yielded two new compounds 19S,20-epoxy-18-oxotryprostatin A (1) and 20-hydroxy-18-oxotryprostatin A (2), in addition to 28 known compounds (330). The chemical structures were established on the basis of 1D, 2D NMR and HRESIMS spectroscopic data. This is the first report on NMR data of monomethylsulochrin-4-sulphate (4) and pseurotin H (10) as naturally occurring compounds. Compounds 15, 16, 20, 23, and 30 displayed weak antibacterial activity (minimum inhibitory concentration: 100 μg/mL). Compounds 18 and 19 exhibited strong activity against S. aureus (minimum inhibitory concentration: 6.25 and 3.13 μg/mL, respectively) and E. coli (minimum inhibitory concentration: 6.25 and 3.13 μg/mL, respectively). A genomic data analysis revealed the putative biosynthetic gene clusters ftm for fumitremorgins, pso for pseurotins, fga for fumigaclavines, and hel for helvolinic acid. These putative biosynthetic gene clusters fundamentally underpinned the enzymatic and mechanistic function study for the biosynthesis of these compounds. The current study reported two new compounds and biosynthetic gene clusters of fumitremorgins, pseurotins, fumigaclavines and helvolinic acid from Aspergillus fumigatus MF071. Full article
Show Figures

Figure 1

8 pages, 605 KiB  
Article
Two New Spiro-Heterocyclic γ-Lactams from A Marine-Derived Aspergillus fumigatus Strain CUGBMF170049
by Xiuli Xu, Jiahui Han, Yanan Wang, Rui Lin, Haijin Yang, Jiangpeng Li, Shangzhu Wei, Steven W. Polyak and Fuhang Song
Mar. Drugs 2019, 17(5), 289; https://doi.org/10.3390/md17050289 - 14 May 2019
Cited by 15 | Viewed by 3657
Abstract
Two new spiro-heterocyclic γ-lactam derivatives, cephalimysins M (1) and N (2), were isolated from the fermentation cultures of the marine-derived fungus Aspergillus fumigatus CUGBMF17018. Two known analogues, pseurotin A (3) and FD-838 (4), as [...] Read more.
Two new spiro-heterocyclic γ-lactam derivatives, cephalimysins M (1) and N (2), were isolated from the fermentation cultures of the marine-derived fungus Aspergillus fumigatus CUGBMF17018. Two known analogues, pseurotin A (3) and FD-838 (4), as well as four previously reported helvolic acid derivatives, 16-O-propionyl-16-O-deacetylhelvolic acid (5), 6-O-propionyl-6-O-deacetylhelvolic acid (6), helvolic acid (7), and 1,2-dihydrohelvolic acid (8) were also identified. One-dimensional (1D), two-dimensional (2D) NMR, HRMS, and circular dichroism spectral analysis characterized the structures of the isolated compounds. Full article
(This article belongs to the Special Issue Marine Microbial Diversity as a Source of Bioactive Natural Products)
Show Figures

Figure 1

12 pages, 12896 KiB  
Article
Effects of the Combination of Gliotoxin and Adriamycin on the Adriamycin-Resistant Non-Small-Cell Lung Cancer A549 Cell Line
by Le Van Manh Hung, Yeon Woo Song and Somi Kim Cho
Mar. Drugs 2018, 16(4), 105; https://doi.org/10.3390/md16040105 - 27 Mar 2018
Cited by 20 | Viewed by 6984
Abstract
Acquired drug resistance constitutes an enormous hurdle in cancer treatment, and the search for effective compounds against resistant cancer is still advancing. Marine organisms are a promising natural resource for the discovery and development of anticancer agents. In this study, we examined whether [...] Read more.
Acquired drug resistance constitutes an enormous hurdle in cancer treatment, and the search for effective compounds against resistant cancer is still advancing. Marine organisms are a promising natural resource for the discovery and development of anticancer agents. In this study, we examined whether gliotoxin (GTX), a secondary metabolite isolated from marine-derived Aspergillus fumigatus, inhibits the growth of adriamycin (ADR)-resistant non-small-cell lung cancer (NSCLC) cell lines A549/ADR. We investigated the effects of GTX on A549/ADR cell viability with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and the induction of apoptosis in A549/ADR cells treated with GTX via fluorescence-activated cell sorting analysis, Hoechst staining, annexin V/propidium iodide staining, tetraethylbenzimidazolylcarbocyanine iodide (JC-1) staining, and western blotting. We found that GTX induced apoptosis in A549/ADR cells through the mitochondria-dependent pathway by disrupting mitochondrial membrane potential and activating p53, thereby increasing the expression levels of p21, p53 upregulated modulator of apoptosis (PUMA), Bax, cleaved poly (ADP-ribose) polymerase (PARP), and cleaved caspase-9. More importantly, we discovered that GTX works in conjunction with ADR to exert combinational effects on A549/ADR cells. In conclusion, our results suggest that GTX may have promising effects on ADR-resistant NSCLC cells by inducing mitochondria-dependent apoptosis and through the combined effects of sequential treatment with ADR. Full article
(This article belongs to the Collection Marine Compounds and Cancer)
Show Figures

Figure 1

12 pages, 1392 KiB  
Article
MDN-0170, a New Napyradiomycin from Streptomyces sp. Strain CA-271078
by Rodney Lacret, Ignacio Pérez-Victoria, Daniel Oves-Costales, Mercedes De la Cruz, Elizabeth Domingo, Jesús Martín, Caridad Díaz, Francisca Vicente, Olga Genilloud and Fernando Reyes
Mar. Drugs 2016, 14(10), 188; https://doi.org/10.3390/md14100188 - 18 Oct 2016
Cited by 31 | Viewed by 8067
Abstract
A new napyradiomycin, MDN-0170 (1), was isolated from the culture broth of the marine-derived actinomycete strain CA-271078, together with three known related compounds identified as 4-dehydro-4a-dechloronapyradiomycin A1 (2), napyradiomycin A1 (3) and 3-chloro-6,8-dihydroxy-8-α-lapachone (4). The [...] Read more.
A new napyradiomycin, MDN-0170 (1), was isolated from the culture broth of the marine-derived actinomycete strain CA-271078, together with three known related compounds identified as 4-dehydro-4a-dechloronapyradiomycin A1 (2), napyradiomycin A1 (3) and 3-chloro-6,8-dihydroxy-8-α-lapachone (4). The structure of the new compound was determined using a combination of spectroscopic techniques, including 1D and 2D NMR and electrospray-time of flight mass spectrometry (ESI-TOF MS). The relative configuration of compound 1, which contains two independent stereoclusters, has been established by molecular modelling in combination with nOe and coupling constant analyses. Biosynthetic arguments also allowed us to propose its absolute stereochemistry. The antimicrobial properties of the compounds isolated were evaluated against methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli, Aspergillus fumigatus, and Candida albicans. The potent bioactivity previously reported for compounds 2 and 3 against methicillin-sensitive S. aureus has been extended to methicillin-resistant strains in this report. Full article
(This article belongs to the Special Issue Marine Organohalides)
Show Figures

Graphical abstract

26 pages, 8291 KiB  
Article
New Polyketides and New Benzoic Acid Derivatives from the Marine Sponge-Associated Fungus Neosartorya quadricincta KUFA 0081
by Chadaporn Prompanya, Tida Dethoup, Luís Gales, Michael Lee, José A. C. Pereira, Artur M. S. Silva, Madalena M. M. Pinto and Anake Kijjoa
Mar. Drugs 2016, 14(7), 134; https://doi.org/10.3390/md14070134 - 16 Jul 2016
Cited by 27 | Viewed by 8131
Abstract
Two new pentaketides, including a new benzofuran-1-one derivative (1) and a new isochromen-1-one (5), and seven new benzoic acid derivatives, including two new benzopyran derivatives (2a, b), a new benzoxepine derivative (3), two new [...] Read more.
Two new pentaketides, including a new benzofuran-1-one derivative (1) and a new isochromen-1-one (5), and seven new benzoic acid derivatives, including two new benzopyran derivatives (2a, b), a new benzoxepine derivative (3), two new chromen-4-one derivatives (4b, 7) and two new benzofuran derivatives (6a, b), were isolated, together with the previously reported 2,3-dihydro-6-hydroxy-2,2-dimethyl-4H-1-benzopyran-4-one (4a), from the culture of the marine sponge-associated fungus Neosartorya quadricincta KUFA 0081. The structures of the new compounds were established based on 1D and 2D NMR spectral analysis, and in the case of compounds 1, 2a, 4b, 5, 6a and 7, the absolute configurations of their stereogenic carbons were determined by an X-ray crystallographic analysis. None of the isolated compounds were active in the tests for antibacterial activity against Gram-positive and Gram-negative bacteria, as well as multidrug-resistant isolates from the environment (MIC > 256 μg/mL), antifungal activity against yeast (Candida albicans ATTC 10231), filamentous fungus (Aspergillus fumigatus ATTC 46645) and dermatophyte (Trichophyton rubrum FF5) (MIC > 512 µg/mL) and in vitro growth inhibitory activity against the MCF-7 (breast adenocarcinoma), NCI-H460 (non-small cell lung cancer) and A375-C5 (melanoma) cell lines (GI50 > 150 µM) by the protein binding dye SRB method. Full article
(This article belongs to the Special Issue Marine Fungal Natural Products)
Show Figures

Graphical abstract

6 pages, 739 KiB  
Article
Terpenoids from the Marine-Derived Fungus Aspergillus fumigatus YK-7
by Yu Wang, Da-Hong Li, Zhan-Lin Li, Yan-Jun Sun, Hui-Ming Hua, Tao Liu and Jiao Bai
Molecules 2016, 21(1), 31; https://doi.org/10.3390/molecules21010031 - 28 Dec 2015
Cited by 27 | Viewed by 6701
Abstract
Two new β-bergamotane sesquiterpenoids, E-β-trans-5,8,11-trihydroxybergamot-9-ene (1) and β-trans-2β,5,15-trihydroxybergamot-10-ene (2), were isolated from the marine-derived fungus Aspergillus fumigatus YK-7, along with three known terpenoids 35. Their structures were determined by spectroscopic methods [...] Read more.
Two new β-bergamotane sesquiterpenoids, E-β-trans-5,8,11-trihydroxybergamot-9-ene (1) and β-trans-2β,5,15-trihydroxybergamot-10-ene (2), were isolated from the marine-derived fungus Aspergillus fumigatus YK-7, along with three known terpenoids 35. Their structures were determined by spectroscopic methods (1D and 2D NMR, HR-ESI-MS). Antiproliferative effects on human leukemic monocyte lymphoma U937 and human prostate cancer PC-3 cell lines were measured in vitro. Compound 4 exhibited potent activity against the U937 cell line with an IC50 value of 4.2 μM. Full article
(This article belongs to the Collection Bioactive Compounds)
Show Figures

Figure 1

24 pages, 1299 KiB  
Article
Fumigaclavine C from a Marine-Derived Fungus Aspergillus Fumigatus Induces Apoptosis in MCF-7 Breast Cancer Cells
by Yong-Xin Li, S.W.A. Himaya, Pradeep Dewapriya, Chen Zhang and Se-Kwon Kim
Mar. Drugs 2013, 11(12), 5063-5086; https://doi.org/10.3390/md11125063 - 13 Dec 2013
Cited by 73 | Viewed by 11047
Abstract
Recently, much attention has been given to discovering natural compounds as potent anti-cancer candidates. In the present study, the anti-cancer effects of fumigaclavine C, isolated from a marine-derived fungus, Aspergillus fumigatus, was evaluated in vitro. In order to investigate the impact [...] Read more.
Recently, much attention has been given to discovering natural compounds as potent anti-cancer candidates. In the present study, the anti-cancer effects of fumigaclavine C, isolated from a marine-derived fungus, Aspergillus fumigatus, was evaluated in vitro. In order to investigate the impact of fumigaclavine C on inhibition of proliferation and induction of apoptosis in breast cancer, MCF-7 cells were treated with various concentrations of fumigaclavine C, and fumigaclavine C showed significant cytotoxicity towards MCF-7 cells. Anti-proliferation was analyzed via cell mobility and mitogen-activated protein kinase (MAPK) signaling pathway. In addition, fumigaclavine C showed potent inhibition on the protein and gene level expressions of MMP-2, -9 in MCF-7 cells which were manifested in Western blot and reverse transcription polymerase chain reaction (RT-PCR) results. The apoptosis induction abilities of the fumigaclvine C was studied by analyzing the expression of apoptosis related proteins, cell cycle analysis, DNA fragmentation and molecular docking studies. It was found that fumigaclavine C fragmented the MCF-7 cell DNA and arrested the cell cycle by modulating the apoptotic protein expressions. Moreover, fumigaclavine C significantly down-regulated the NF-kappa-B cell survival pathway. Collectively, data suggest that fumigaclavine C has a potential to be developed as a therapeutic candidate for breast cancer. Full article
(This article belongs to the Collection Marine Compounds and Cancer)
Show Figures

Graphical abstract

Back to TopTop