Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = marine gravimeter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 11636 KiB  
Technical Note
Establishing a Marine Gravimeter Test Site in the South China Sea to Validate the Performance of Different Marine Gravimeters
by Yuan Yuan, Zhaocai Wu, Jinyao Gao and Zhongshan Jiang
Remote Sens. 2025, 17(1), 14; https://doi.org/10.3390/rs17010014 - 25 Dec 2024
Cited by 1 | Viewed by 891
Abstract
Marine gravity anomalies play an important role in geophysics applications. To observe high-precision and high-resolution gravity anomalies, a high-performance marine gravimeter is key. At present, the marine gravimeters widely used in the world have different measurement principles, such as the two-axis stable platform [...] Read more.
Marine gravity anomalies play an important role in geophysics applications. To observe high-precision and high-resolution gravity anomalies, a high-performance marine gravimeter is key. At present, the marine gravimeters widely used in the world have different measurement principles, such as the two-axis stable platform gravimeter, gimbaled inertial navigation gravimeter, and strapdown gravimeter. However, the performances of marine gravimeters with different measurement principles show different precision levels in real applications. A synchronized comparison test on the same platform is the most direct method for evaluating their performance, which is a relative analysis method. To absolutely evaluate the performance of different kinds of marine gravimeters, a new method is presented to remove the residual noise from the measured free air gravity anomaly to establish an “air truth” free air gravity anomaly. Synchronous measurements with different gravimeters were carried out in the north area of the South China Sea, measured three times over a round trip, and the highest-precision free air gravity anomaly measured by GT-2M, SAG-2M, and ZL11-1A was chosen to establish the “air truth” free air gravity anomaly. The external consistency of the free air gravity anomaly upon the removal of residual noise of frequencies 0.03 Hz to 0.06 Hz improved, and the three separate standard free air gravity anomalies of each gravimeter were the same with no deviation. The weighted result of the three average values of GT-2M, SAG-2M, and ZL11-1A is the established “air truth” free air gravity anomaly, which can be used as a standard to estimate the performance of marine gravimeters with different kinds of principles. Full article
Show Figures

Figure 1

15 pages, 17356 KiB  
Article
Multidimensional Evaluation of Altimetry Marine Gravity Models with Shipborne Gravity Data from a New Platform Marine Gravimeter
by Bo Wang, Lin Wu, Pengfei Wu, Qianqian Li, Lifeng Bao and Yong Wang
J. Mar. Sci. Eng. 2024, 12(8), 1314; https://doi.org/10.3390/jmse12081314 - 3 Aug 2024
Cited by 2 | Viewed by 1407
Abstract
With the development of satellite altimetry technology and the application of new altimetry satellites, the accuracy and resolution of altimeter-derived gravity field models have improved over the last decades. Nowadays, they are close enough to shipborne gravimetry. In this paper, multi-source shipborne gravity [...] Read more.
With the development of satellite altimetry technology and the application of new altimetry satellites, the accuracy and resolution of altimeter-derived gravity field models have improved over the last decades. Nowadays, they are close enough to shipborne gravimetry. In this paper, multi-source shipborne gravity data in the South China Sea were taken to evaluate the accuracies of two high-precision altimeter-derived marine gravity field models (SS V30.1, DTU17). In these shipborne gravity data, there are dozens of routes’ ship gravimetry data, obtained from the National Geophysical Data Center (NGDC); data were tracked from a marine survey with a commercial marine gravimeter (type KSS31M), and data were tracked from a marine gravimetry campaign that was conducted with a newly developed platform gravimeter (type JMG) in the South China Sea in September 2020. After various data filtering, processing, and calibrations, the shipborne gravity data were validated with crossover points analysis. Then, the processed shipborne data were employed to evaluate the accuracy of the altimeter-derived marine gravity field models. During this procedure, the quality of JMG shipborne gravity data was compared with the results of KSS31M and NGDC data. Analysis and evaluation results show that the crossover points verification accuracies of KSS31M and JMG are 0.70 mGal and 1.61 mGal, which are much better than the accuracy of NGDC, which is larger than 8.0 mGal. In the area where the bathymetry changes slowly, the root mean square error values between altimetry gravity models and KSS31M data are respectively 3.28 mGal and 4.54 mGal, and those of the JMG data are respectively 2.94 mGal and 2.60 mGal. According to the above results, we can conclude that the JMG has the same 1–2 mGal accuracy level as KSS31M and can meet the measurement requirements of marine gravity. Full article
(This article belongs to the Special Issue Ocean Observations)
Show Figures

Figure 1

28 pages, 10554 KiB  
Review
Classical and Atomic Gravimetry
by Jie Fang, Wenzhang Wang, Yang Zhou, Jinting Li, Danfang Zhang, Biao Tang, Jiaqi Zhong, Jiangong Hu, Feng Zhou, Xi Chen, Jin Wang and Mingsheng Zhan
Remote Sens. 2024, 16(14), 2634; https://doi.org/10.3390/rs16142634 - 18 Jul 2024
Cited by 7 | Viewed by 6355
Abstract
Gravity measurements have important applications in geophysics, resource exploration, geodesy, and inertial navigation. The range of classical gravimetry includes laser interferometer (LI)-based absolute gravimeters, spring relative gravimeters, superconducting gravimeters, airborne/marine gravimeters, micro-electromechanical-system (MEMS) gravimeters, as well as gravity satellites and satellite altimetry. Atomic [...] Read more.
Gravity measurements have important applications in geophysics, resource exploration, geodesy, and inertial navigation. The range of classical gravimetry includes laser interferometer (LI)-based absolute gravimeters, spring relative gravimeters, superconducting gravimeters, airborne/marine gravimeters, micro-electromechanical-system (MEMS) gravimeters, as well as gravity satellites and satellite altimetry. Atomic gravimetry is a new absolute gravity measurement technology based on atom interferometers (AIs) and features zero drift, long-term stability, long-term continuous measurements, and high precision. Atomic gravimetry has been used to measure static, marine, and airborne gravity; gravity gradient; as well as acceleration to test the weak equivalence principle at the China Space Station. In this paper, classical gravimetry is introduced, and the research progress on static and airborne/marine atomic gravimeters, space AIs, and atomic gravity gradiometers is reviewed. In addition, classical and atomic gravimetry are compared. Future atomic gravimetry development trends are also discussed with the aim of jointly promoting the further development of gravity measurement technologies alongside classical gravimetry. Full article
Show Figures

Figure 1

14 pages, 7253 KiB  
Article
ICEEMDAN/LOESS: An Improved Vibration-Signal Analysis Method for Marine Atomic Interferometric Gravimetry
by Jinxiu Ma, An Li, Fangjun Qin, Wenbin Gong and Hao Che
J. Mar. Sci. Eng. 2024, 12(2), 302; https://doi.org/10.3390/jmse12020302 - 8 Feb 2024
Cited by 4 | Viewed by 1742
Abstract
The marine atomic interferometric gravimeter is a vital precision instrument for measuring marine geophysical information, which is widely used in mineral resources exploration, military applications, and missile launches. In practical measurements, vibration disturbance is an important factor that affects measurement accuracy. This paper [...] Read more.
The marine atomic interferometric gravimeter is a vital precision instrument for measuring marine geophysical information, which is widely used in mineral resources exploration, military applications, and missile launches. In practical measurements, vibration disturbance is an important factor that affects measurement accuracy. This paper proposes the combination of improved complete ensemble empirical mode decomposition with adaptive noise and locally weighted regression for vibration characterization of gravimeter vibration data. Firstly, the original signal is added into a pair of white noise for adaptive noise-complete ensemble empirical mode decomposition to obtain multiple intrinsic mode functions. The efficient IMF components and noise components are filtered out under the dual indicators of correlation coefficient and variance contribution ratio, and then the LOESS filtering method is used for noise reduction to obtain useful signal detail information; finally, the noise-containing components are reconstructed with the effective components after the noise-reduction process. The experimental results of both simulated and measured vibration signals show that the proposed method can effectively decompose the different high- and low-frequency bands contained in the vibration signal and remove the noise of the original signal. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

13 pages, 3906 KiB  
Article
High-Precision Atom Interferometer-Based Dynamic Gravimeter Measurement by Eliminating the Cross-Coupling Effect
by Yang Zhou, Wenzhang Wang, Guiguo Ge, Jinting Li, Danfang Zhang, Meng He, Biao Tang, Jiaqi Zhong, Lin Zhou, Runbing Li, Ning Mao, Hao Che, Leiyuan Qian, Yang Li, Fangjun Qin, Jie Fang, Xi Chen, Jin Wang and Mingsheng Zhan
Sensors 2024, 24(3), 1016; https://doi.org/10.3390/s24031016 - 4 Feb 2024
Cited by 13 | Viewed by 2960
Abstract
A dynamic gravimeter with an atomic interferometer (AI) can perform absolute gravity measurements with high precision. AI-based dynamic gravity measurement is a type of joint measurement that uses an AI sensor and a classical accelerometer. The coupling of the two sensors may degrade [...] Read more.
A dynamic gravimeter with an atomic interferometer (AI) can perform absolute gravity measurements with high precision. AI-based dynamic gravity measurement is a type of joint measurement that uses an AI sensor and a classical accelerometer. The coupling of the two sensors may degrade the measurement precision. In this study, we analyzed the cross-coupling effect and introduced a recovery vector to suppress this effect. We improved the phase noise of the interference fringe by a factor of 1.9 by performing marine gravity measurements using an AI-based gravimeter and optimizing the recovery vector. Marine gravity measurements were performed, and high gravity measurement precision was achieved. The external and inner coincidence accuracies of the gravity measurement were ±0.42 mGal and ±0.46 mGal after optimizing the cross-coupling effect, which was improved by factors of 4.18 and 4.21 compared to the cases without optimization. Full article
(This article belongs to the Collection Inertial Sensors and Applications)
Show Figures

Figure 1

23 pages, 23360 KiB  
Article
High-Resolution Gravity Measurements on Board an Autonomous Underwater Vehicle: Data Reduction and Accuracy Assessment
by Dinh Toan Vu, Jérôme Verdun, José Cali, Marcia Maia, Charles Poitou, Jérôme Ammann, Clément Roussel, Jean-François D’Eu and Marie-Édith Bouhier
Remote Sens. 2024, 16(3), 461; https://doi.org/10.3390/rs16030461 - 25 Jan 2024
Cited by 3 | Viewed by 2646
Abstract
Gravity on Earth is of great interest in geodesy, geophysics, and natural resource exploration. Ship-based gravimeters are a widely used instrument for the collection of surface gravity field data in marine regions. However, due to the considerable distance from the sea surface to [...] Read more.
Gravity on Earth is of great interest in geodesy, geophysics, and natural resource exploration. Ship-based gravimeters are a widely used instrument for the collection of surface gravity field data in marine regions. However, due to the considerable distance from the sea surface to the seafloor, the spatial resolution of surface gravity data collected from ships is often insufficient to image the detail of seafloor geological structures and to explore offshore natural minerals. Therefore, the development of a mobile underwater gravimetry system is necessary. The GraviMob gravimeter, developed for a moving underwater platform by Geo-Ocean (UMR 6538 CNRS-Ifremer-UBO-UBS), GeF (UR4630, Cnam) and MAPPEM Geophysics, has been tested over the last few years. In this study, we report on the high-resolution gravity measurements from the GraviMob system mounted on an Autonomous Underwater Vehicle, which can measure at depths of up to several kilometres. The dedicated GraviMob underwater gravity measurements were conducted in the Mediterranean Sea in March 2016, with a total of 26 underwater measurement profiles. All these measurement profiles were processed and validated. In a first step, the GraviMob gravity measurements were corrected for temperature based on a linear relationship between temperature and gravity differences. Through repeated profiles, we acquired GraviMob gravity measurements with an estimated error varying from 0.8 to 2.6 mGal with standard deviation after applying the proposed temperature correction. In a second step, the shipborne gravity data were downward continued to the measurement depth to validate the GraviMob measurements. Comparisons between the corrected GraviMob gravity anomalies and downward continued surface shipborne gravity data revealed a standard deviation varying from 0.8 to 3.2 mGal and a mean bias value varying from −0.6 to 0.6 mGal. These results highlight the great potential of the GraviMob system in measuring underwater gravity. Full article
Show Figures

Figure 1

10 pages, 2816 KiB  
Article
Study on the CHZ-II Gravimeter and Its Calibrations along Forward and Reverse Overlapping Survey Lines
by Haibo Tu, Kun Liu, Heng Sun, Qian Cui, Yuan Yuan, Sunjun Liu, Jiangang He and Lintao Liu
Micromachines 2022, 13(12), 2124; https://doi.org/10.3390/mi13122124 - 30 Nov 2022
Cited by 4 | Viewed by 2459
Abstract
The moving-base gravimeter is one of the key instruments used for Earth gravity survey. The accuracy of the survey data is closely related to the calibration precision of several key parameters, such as the damping delay time, the drift coefficient, the gravity scale [...] Read more.
The moving-base gravimeter is one of the key instruments used for Earth gravity survey. The accuracy of the survey data is closely related to the calibration precision of several key parameters, such as the damping delay time, the drift coefficient, the gravity scale factor, and the measurement accuracy. This paper will introduce the development of the CHZ-II gravimeter system in which a cylindrical sampling mass suspended vertically by a zero-length spring acts as a sensitive probe to measure specific force. Meanwhile, a GNSS (Global Navigation Satellite System) positioning system is employed to monitor the carrier motion and to remove the inertia acceleration. In order to achieve high-precision calibrations for the key parameters, a new calibration method performed along forward and reverse overlapping lines is proposed, which is used to calibrate the above parameters and to estimate the measurement accuracy of the instrument used for a normal gravity survey. The calibration principle and the shipboard calibration data processing method are introduced. The calibration was performed for three moving-base gravimeters and the corresponding results are determined, indicating that the method can significantly improve the accuracy of the parameters. For the CHZ-II gravimeter, the measurement accuracy of the survey is 0.471 mGal (1 mGal = 10−5 m/s2), which improved by 19.5% after applying the calibrated parameters. This method is also practical for use with aviation, marine and even vehicle-carried moving-base gravimeters. Full article
(This article belongs to the Special Issue Accelerometer and Magnetometer: From Fundamentals to Applications)
Show Figures

Figure 1

20 pages, 7580 KiB  
Article
Marine Gravimetry and Its Improvements to Seafloor Topography Estimation in the Southwestern Coastal Area of the Baltic Sea
by Biao Lu, Chuang Xu, Jinbo Li, Bo Zhong and Mark van der Meijde
Remote Sens. 2022, 14(16), 3921; https://doi.org/10.3390/rs14163921 - 12 Aug 2022
Cited by 3 | Viewed by 7546
Abstract
Marine gravimetry provides high-quality gravity measurements, particularly in coastal areas. After the update of new sensors in GFZ’s air-marine gravimeter Chekan-AM, gravimetry measurements showed a significant improvement from the first new campaign DENEB2017 with an accuracy of 0.3/2=0.21 mGal [...] Read more.
Marine gravimetry provides high-quality gravity measurements, particularly in coastal areas. After the update of new sensors in GFZ’s air-marine gravimeter Chekan-AM, gravimetry measurements showed a significant improvement from the first new campaign DENEB2017 with an accuracy of 0.3/2=0.21 mGal @ 1 km along the tracks, which is at the highest accuracy level of marine gravimetry. Then, these measurements were used to assess gravity data derived from satellite altimetry (about 3 mGal) and a new finding is that a bias of −1.5 mGal exists in the study area. Additionally, ship soundings were used to assess existing seafloor topography models. We found that the accuracy of SRTM model and SIO model is at a level of 2 m, while the accuracy of the regional model EMODnet reaches the lever of sub-meters. Furthermore, a bias of 0.7 m exists and jumps above 5 m in the SRTM model near the coast of Sweden. Finally, new combined gravity anomalies with sounding data are used to reveal the fine structure of ocean topography. Our estimated seafloor topography model is more accurate than existing digital elevation data sets such as EMODnet, SRTM and SIO models and, furthermore, shows some more detailed structure of seafloor topography. The marine gravimetry and sounding measurements as well as the estimated seafloor topography are crucial for future geoid determination, 3D-navigation and resource exploration in the Baltic Sea. Full article
(This article belongs to the Special Issue GRACE for Earth System Mass Change: Monitoring and Measurement)
Show Figures

Figure 1

10 pages, 3185 KiB  
Article
MicroGal Gravity Measurements with MGS-6 Micro-g LaCoste Gravimeter
by Marek Przyborski, Jerzy Pyrchla, Krzysztof Pyrchla and Jakub Szulwic
Sensors 2019, 19(11), 2592; https://doi.org/10.3390/s19112592 - 6 Jun 2019
Cited by 8 | Viewed by 4664
Abstract
The article discusses the registration of micro-gravity changes with the MGS-6 Micro-g LaCoste gravity sensor during static measurements. An experiment was carried out to determine how small changes in gravity can be registered using the MGS-6 system sensor. The tides of the Earth’s [...] Read more.
The article discusses the registration of micro-gravity changes with the MGS-6 Micro-g LaCoste gravity sensor during static measurements. An experiment was carried out to determine how small changes in gravity can be registered using the MGS-6 system sensor. The tides of the Earth’s crust were chosen as the source of disturbance of the field with small amplitude and long-term changes. The tested sensor was placed in a geophysical observatory on a specially designed tripod. Simultaneously on the nearby concrete pillar, the registration of changes in gravity was carried out using the superconducting iGrav gravimeter. The high temporal stability of the superconducting gravimeters and the low noise combined with leading sensitivity of its reading allow it to be considered as a reliable reference source for MGS-6. The article discusses the impact of non-leveling changes of the MGS-6 gravimetry on the reading and determines the size of its non-linear drift. The obtained differences in indications between devices did not exceed 50 μ Gal for 68% of data. The measurements also showed excellent time stability of the MGS-6 measurement system. The data collected during the experiment allowed determining the level of accuracy that can be sought during real measurements using the MGS-6 system on research vessels. They also give an overview of the dynamics of the drift phenomenon of the analyzed research system. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

13 pages, 7406 KiB  
Article
Measurements and Accuracy Evaluation of a Strapdown Marine Gravimeter Based on Inertial Navigation
by Wei Wang, Jinyao Gao, Dongming Li, Tao Zhang, Xiaowen Luo and Jinling Wang
Sensors 2018, 18(11), 3902; https://doi.org/10.3390/s18113902 - 12 Nov 2018
Cited by 24 | Viewed by 4670
Abstract
The strapdown gravimetry system uses the combination of an Inertial Measuring Unit (IMU) and a Global Navigation Satellite System (GNSS) to measure the Earth’s gravity field. Due to limited accuracies of IMU and GNSS, early strapdown gravimetry systems were more often used in [...] Read more.
The strapdown gravimetry system uses the combination of an Inertial Measuring Unit (IMU) and a Global Navigation Satellite System (GNSS) to measure the Earth’s gravity field. Due to limited accuracies of IMU and GNSS, early strapdown gravimetry systems were more often used in airborne surveys, but less used in marine surveys. We developed a strapdown inertial navigation system (SINS), the Sea-Air Gravimeter-2Marine (SAG-2M), using novel IMU components, whose accuracy was further improved with the application of Precise Point Positioning (PPP) and enhanced algorithm, making it possible to be used in marine gravity survey. The testing results of the SAG-2M were compared to those of the Lacoste and Romberg S-129 gravimeter on the same ship in the South China Sea basin. The cruise lasted for 50 days, during which 134 effective gravity profiles were measured, resulting in 174 crossover points. The results showed that, for the SAG-2M, the root mean square (RMS) crossover points were 1.35 mGal before difference adjustment and 0.69 mGal after difference adjustment; for the S-129 gravimeter, they were 5.62 mGal and 0.95 mGal, correspondingly. In calm sea conditions, the results of the two systems were relatively consistent at all wavelengths. However, in rough sea conditions, since the SAG-2M was not affected by the cross-coupling effect, its data demonstrated less high-frequency jump. A physical platform adopted in SAG-2M can further make the transition data effective when the ship is turning around. Therefore, SAG-2M was able to improve the proportion of valid data and the efficiency of data post-processing for measurements taken during the cruise. The testing results indicate that in terms of accuracy and efficiency in the marine gravity survey, SAG-2M is better than S-129. In addition, as the miniaturization and precision of inertial components are developing continuously, SAG-2M also shows great potential in miniaturization. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

13 pages, 2112 KiB  
Article
Location Accuracy of INS/Gravity-Integrated Navigation System on the Basis of Ocean Experiment and Simulation
by Hubiao Wang, Lin Wu, Hua Chai, Lifeng Bao and Yong Wang
Sensors 2017, 17(12), 2961; https://doi.org/10.3390/s17122961 - 20 Dec 2017
Cited by 24 | Viewed by 5590
Abstract
An experiment comparing the location accuracy of gravity matching-aided navigation in the ocean and simulation is very important to evaluate the feasibility and the performance of an INS/gravity-integrated navigation system (IGNS) in underwater navigation. Based on a 1′ × 1′ marine gravity anomaly [...] Read more.
An experiment comparing the location accuracy of gravity matching-aided navigation in the ocean and simulation is very important to evaluate the feasibility and the performance of an INS/gravity-integrated navigation system (IGNS) in underwater navigation. Based on a 1′ × 1′ marine gravity anomaly reference map and multi-model adaptive Kalman filtering algorithm, a matching location experiment of IGNS was conducted using data obtained using marine gravimeter. The location accuracy under actual ocean conditions was 2.83 nautical miles (n miles). Several groups of simulated data of marine gravity anomalies were obtained by establishing normally distributed random error N ( u , σ 2 ) with varying mean u and noise variance σ 2 . Thereafter, the matching location of IGNS was simulated. The results show that the changes in u had little effect on the location accuracy. However, an increase in σ 2 resulted in a significant decrease in the location accuracy. A comparison between the actual ocean experiment and the simulation along the same route demonstrated the effectiveness of the proposed simulation method and quantitative analysis results. In addition, given the gravimeter (1–2 mGal accuracy) and the reference map (resolution 1′ × 1′; accuracy 3–8 mGal), location accuracy of IGNS was up to reach ~1.0–3.0 n miles in the South China Sea. Full article
(This article belongs to the Special Issue Inertial Sensors for Positioning and Navigation)
Show Figures

Figure 1

14 pages, 1892 KiB  
Article
Characteristics of Marine Gravity Anomaly Reference Maps and Accuracy Analysis of Gravity Matching-Aided Navigation
by Hubiao Wang, Lin Wu, Hua Chai, Yaofei Xiao, Houtse Hsu and Yong Wang
Sensors 2017, 17(8), 1851; https://doi.org/10.3390/s17081851 - 10 Aug 2017
Cited by 42 | Viewed by 6746
Abstract
The variation of a marine gravity anomaly reference map is one of the important factors that affect the location accuracy of INS/Gravity integrated navigation systems in underwater navigation. In this study, based on marine gravity anomaly reference maps, new characteristic parameters of the [...] Read more.
The variation of a marine gravity anomaly reference map is one of the important factors that affect the location accuracy of INS/Gravity integrated navigation systems in underwater navigation. In this study, based on marine gravity anomaly reference maps, new characteristic parameters of the gravity anomaly were constructed. Those characteristic values were calculated for 13 zones (105°–145° E, 0°–40° N) in the Western Pacific area, and simulation experiments of gravity matching-aided navigation were run. The influence of gravity variations on the accuracy of gravity matching-aided navigation was analyzed, and location accuracy of gravity matching in different zones was determined. Studies indicate that the new parameters may better characterize the marine gravity anomaly. Given the precision of current gravimeters and the resolution and accuracy of reference maps, the location accuracy of gravity matching in China’s Western Pacific area is ~1.0–4.0 nautical miles (n miles). In particular, accuracy in regions around the South China Sea and Sulu Sea was the highest, better than 1.5 n miles. The gravity characteristic parameters identified herein and characteristic values calculated in various zones provide a reference for the selection of navigation area and planning of sailing routes under conditions requiring certain navigational accuracy. Full article
(This article belongs to the Special Issue Inertial Sensors for Positioning and Navigation)
Show Figures

Figure 1

12 pages, 1434 KiB  
Article
A Flight Test of the Strapdown Airborne Gravimeter SGA-WZ in Greenland
by Lei Zhao, René Forsberg, Meiping Wu, Arne Vestergaard Olesen, Kaidong Zhang and Juliang Cao
Sensors 2015, 15(6), 13258-13269; https://doi.org/10.3390/s150613258 - 5 Jun 2015
Cited by 15 | Viewed by 6267
Abstract
An airborne gravimeter is one of the most important tools for gravity data collection over large areas with mGal accuracy and a spatial resolution of several kilometers. In August 2012, a flight test was carried out to determine the feasibility and to assess [...] Read more.
An airborne gravimeter is one of the most important tools for gravity data collection over large areas with mGal accuracy and a spatial resolution of several kilometers. In August 2012, a flight test was carried out to determine the feasibility and to assess the accuracy of the new Chinese SGA-WZ strapdown airborne gravimeter in Greenland, in an area with good gravity coverage from earlier marine and airborne surveys. An overview of this new system SGA-WZ is given, including system design, sensor performance and data processing. The processing of the SGA-WZ includes a 160 s length finite impulse response filter, corresponding to a spatial resolution of 6 km. For the primary repeated line, a mean r.m.s. deviation of the differences was less than 1.5 mGal, with the error estimate confirmed from ground truth data. This implies that the SGA-WZ could meet standard geophysical survey requirements at the 1 mGal level. Full article
(This article belongs to the Special Issue Inertial Sensors and Systems)
Show Figures

Figure 1

Back to TopTop