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Abstract: A dynamic gravimeter with an atomic interferometer (AI) can perform absolute gravity
measurements with high precision. AI-based dynamic gravity measurement is a type of joint mea-
surement that uses an AI sensor and a classical accelerometer. The coupling of the two sensors
may degrade the measurement precision. In this study, we analyzed the cross-coupling effect and
introduced a recovery vector to suppress this effect. We improved the phase noise of the interference
fringe by a factor of 1.9 by performing marine gravity measurements using an AI-based gravimeter
and optimizing the recovery vector. Marine gravity measurements were performed, and high gravity
measurement precision was achieved. The external and inner coincidence accuracies of the gravity
measurement were ±0.42 mGal and ±0.46 mGal after optimizing the cross-coupling effect, which
was improved by factors of 4.18 and 4.21 compared to the cases without optimization.

Keywords: atom interferometer; dynamic gravimeter measurement; high precision; gravimeter;
marine gravity survey; cold atom

1. Introduction

Gravity measurements have important applications in various fields, such as geodesy,
geophysics [1], navigation [2], and fundamental physics tests [3,4]. Gravity can be obtained
from static, dynamic, and satellite measurements. Dynamic gravimeters rely on dynamic
carriers, such as ships and aircraft. They can obtain gravitational information accurately
and efficiently and are usually relative sensors. They suffer from drift and have to be
calibrated before and after the gravity measurement. Recently, dynamic gravimetry based
on atomic interferometry has been developed [5,6]. It can measure absolute gravity without
measurement drift, which has wide potential applications.

The time-pulsed atom interferometer (AI) was first realized in 1991 [7] and has been
widely used for precision gravity measurements [8–15], gravity gradient measurements [16],
and rotation measurements [17]. Dynamic gravity measurements based on AI have been
realized in a moving elevator [18], vehicles [19–22], aircraft [23–25] and ships [6,26–28],
and the best measurement precision is better than 1 mGal [6,27]. Various methods, such as
vibration compensation [29,30] and data filtering [31–33], have been proposed to further
improve the precision of AI-based dynamic gravimeters.
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An AI-based dynamic gravimeter is a type of joint measurement using an AI and
a classical accelerometer. The AI utilizes the Raman laser to measure the acceleration of
the free-falling cold atom cloud relative to the retro-reflecting mirror of the Raman laser.
It has the advantage of absolute and high-precision gravity measurement, but suffers
from low data sample rate and limited measurement range. The classical accelerometer,
which is mounted to the Raman laser’s mirror, measures the acceleration of the mirror
itself. It has the advantages of a wide measurement range and high sample rate for gravity
measurement but has the disadvantage of unpredictable measurement drift. In the method
of joint measurement, the output of a classical accelerometer is compared and corrected
by the measured acceleration of the AI in real time. The bias and drift of a classical
accelerometer are eliminated. This method benefits from both the advantages of the AI
and the classical accelerometer and can provide accurate and continuous gravity outputs
with a wide measurement range. The dynamic environment can degrade the precision
of gravity measurement. Additional noise will be induced if the sensitive axes of the
classical accelerometer are misaligned with the sensitive axes of the AI. We call this effect
the cross-coupling effect. This effect could be induced by the installation error between
the classical accelerometer and the AI, and the cross talk of different sensitive axes of the
classical accelerometer itself [30].

In this study, we analyzed the cross-coupling effect and developed a method to
eliminate it. Subsequently, we performed marine gravity measurements and achieved
a high measurement precision. The remainder of this paper is organized as follows: In
Section 2, we introduce the cross-coupling effect and analyze the induced phase noise.
A recovery vector is proposed to eliminate this phase noise. In Section 3, we introduce
the marine gravity measurements experiment by using an AI-based gravimeter. Gravity
measurement results with and without optimizing the cross-coupling effect are evaluated
and compared. In Section 4, conclusions and discussion are presented.

2. Theoretical Methods
2.1. Joint Gravity Measurement Process

The principle of the joint gravity measurement process is illustrated in Figure 1.
The acceleration felt by AI is

⇀
a (t) =

{
ax(t), ay(t), az(t)

}
, and az(t) is in the direction of

gravity. The AI measures az(t) with its sensitive axis adjusted to the z-axis. The classical
accelerometer can measure the acceleration in 3 axes, and the measured acceleration
is

⇀
a cla(t) =

{
acla,x(t), acla,y(t), acla,z(t)

}
. In the ideal situation, the sensitive axes of the

accelerometer coincide with the axes of
⇀
a (t), and the value of

⇀
a cla(t) is different from

⇀
a (t) with an offset acceleration

⇀
a off(t) =

{
aoff,x(t), aoff,y(t), aoff,z(t)

}
, which is caused by

the preset offset or the measurement drift of the accelerometer. Then, we have

⇀
a cla(t) =

⇀
a (t) +

⇀
a off(t). (1)
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The population of AI after an interference measurement circle is P. It has the following
relationship with the interference phase ϕAI:

P = P0[1 + bcos(ϕAI)], (2)

where P0 and b are the offset and contrast of the interference fringe. The interference phase
can be calculated as

ϕAI = keff

∫ T

−T
f (t)

[
az(t)− achirp

]
dt, (3)

where keff is the effective wave vector, 2T is the interference time, f (t) is the response
function [23], achirp= 2πα0/keff is a constant equivalent acceleration induced by the laser
frequency chirp, and α0 is the laser frequency chirp rate used to compensate for the Doppler
shift of the atom cloud. Due to the vibration noise component in

⇀
a (t), the interference

phase ϕAI and the population P will vary randomly. The so-called vibration compensation
method is employed to recover the interference fringe. The acceleration component acla,z(t)
is used to calculate the compensation phase ϕcom as

ϕcom = keff

∫ T

−T
f (t)acla,z(t)dt. (4)

Then, ϕcom and P are set as the x- and y-axis coordinates, respectively, to recover the
interference fringe. By substituting Equations (1), (3), and (4) into Equation (2), one has

P = P0
[
1 + bcos

(
ϕcom − ϕfit

)]
, (5)

where we call ϕfit = ϕcom − ϕAI the fitting phase. By fitting this fringe, one can obtain the
fitting phase ϕfit, and thus the so-called fitting acceleration afit ≡ ϕfit/keffT2. The fitting
phase has the form

ϕfit = keff

∫ T

−T
f (t)

[
aoff,z(t) + achirp ]dt. (6)

From Equation (6), we can see that the fitting phase is not coupled with the acceleration,
which means that the vibration compensation method is perfect and the acceleration will not
induce noise to the fitting phase. If

⇀
a off(t) is constant, one can derive that afit = aoff,z + achirp.

By substituting this relationship into Equation (1), one can obtain

az(t) = acla,z(t) − afit + achirp. (7)

The acceleration az(t) felt by AI contains the acceleration of gravity agra(t) and the mo-
tion acceleration amot,z(t) of the gravimeter at the z direction. The gravitational acceleration
agra(t) can be calculated as

agra(t) = acla,z(t)− afit + achirp − amot,z(t). (8)

The acceleration acla,z(t) is measured by the classical accelerometer. The motion
acceleration amot,z(t) can be calculated from the position information of the gravimeter,
for example, from the signal of the Global Navigation Satellite System (GNSS) [24]. The
noises of these two terms can be reduced by using the low-pass filter. achirp is a constant
acceleration. This article focuses on the noise of fitting acceleration afit caused by the
cross-coupling effect.

2.2. Noise Induced by the Cross-Coupling Effect and Introduction of the Recovery Vector

We introduce the cross-coupling effect for the case that the sensitive axes of the
accelerometer are different from

⇀
a (t) and describe this effect as the following relationship

⇀
a cla(t) = C·⇀a (t) +⇀

a off(t), (9)
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where C =
[
Ci,j

]
(i, j = x, y, z) is the coupling matrix. If we still use the z-component of the

classical accelerometer acla,z(t) to calculate the compensation phase, after some derivation,
the fitting phase has the form

ϕfit = keff

∫ T

−T
f (t)

[
⇀
c ·⇀a (t) + aoff,z(t)− az(t) + achirp]dt, (10)

where we define
⇀
c ≡

{
Cz,x, Cz,y, Cz,z

}
as the coupling vector. One can see from Equation (10)

that if
⇀
c ̸= {0, 0,1}, the acceleration noise will couple to the coupling vector and induce

phase noise for the fitting phase.
To reduce this phase noise, we propose that a recovering process be inserted before the

calculation of the compensation phase, as shown in Figure 1. A matrix D =
[
Di,j

]
(i, j = x, y, z

)
is introduced to recover the measured acceleration of the classical accelerometer as

⇀
a rec(t) = D·⇀a cla(t). (11)

We call
⇀
a rec(t) the recovery acceleration, and we still use the z component of

⇀
a rec(t)

to calculate the compensation phase; after some derivation, the fitting phase has the
following form

ϕfit = keff

∫ T

−T
f (t)[

⇀
d ·(C·⇀a (t)) +

⇀
d ·⇀a off(t)− az(t) + achirp]dt, (12)

where we define the recovery vector as
⇀
d ≡

{
Dz,x, Dz,y, Dz,z

}
and arec,z(t) =

⇀
d ·⇀a cla(t). For

the special case of D = C−1, the fitting phase has the form

ϕfit = keff

∫ T

−T
f (t)[

⇀
d ·⇀a off(t) + achirp]dt. (13)

One can see that, similar to Equation (6), the acceleration will not induce noise to
the fitting phase. However, for the general form of the recovery vector, the acceleration
noise will induce phase noise to the fitting phase. The problem is how to optimize the

recovery vector
⇀
d for unknown coupling matrix C. The detailed optimization process will

be described in Section 3.4. We also want to mention that, because of the introduction of
the recovering process, the formulas presented in Equations (7) and (8) to calculate the
acceleration and gravity should make some modifications. They are modified as

az(t) = arec,z(t) − afit + achirp. (14)

agra(t) = arec,z(t)− afit + achirp − amot,z(t). (15)

3. Marine Gravity Measurement Experiment
3.1. Experiment Apparatus

We developed a compact AI-based dynamic gravimeter, as shown in Figure 2. It con-
sists of the sensor head [28], the inertial stabilization platform [33], the optical system [15,34],
and the electronic system [15]. Atomic interference occurs at the sensor head. It utilizes
the rubidium-85 cold atom cloud as the test mass, and it is surrounded by a magnetic field
shield. Additionally, a classical accelerometer (Titan accelerometer from Nanometrics [35])
is mounted on top of it. The sensor head has a compact size of 17 cm × 17 cm × 60 cm
and a weight of only 15 kg. It is installed on a homemade dual-axis inertial stabilization
platform. The platform has a size of ϕ58 cm × 100 cm and a weight of about 150 kg and
offers an angle control accuracy of approximately 0.2 mrad with a load of 30 kg [33]. A
compact optical system is used to provide the required laser power. It consists of several
homemade fiber modules and occupies a 3U chassis. Two laser beams are sent to the
sensor head by two single-mode polarization-maintaining fibers [15,34]. The electronic
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system is used to drive the components of the gravimeter, generate the time sequence, and
acquire and process the experimental data [15]. A GNSS receiver is used to obtain the
position information.
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The process of the AI is similar to the process of the AI-based gravimeter in [15,34].
Here, we introduce the process briefly. Firstly, the cold atom cloud is obtained by a
three-dimensional magneto-optical trap (3D-MOT) and polarization gradient cooling (PGC).
The number of the cold atoms is about 107 and the temperature of the cold atoms is about
5 µK. Then, the cold atoms are prepared to the |52S1/2, F = 2> state by applying the state
preparation laser pulse. Secondly, the π/2-π-π/2 Raman pulses are applied to realize the
Raman interference process. The time interval between Raman pulses can be adjusted from
10 ms to 40 ms. Finally, the population of the cold atoms is obtained by the normalized
fluorescence detection. The free fall distance of the cold atom is about 184 mm and the circle
time for each measurement is about 600 ms.

3.2. Systematic Error Evaluation of the AI-Based Gravimeter

Before the marine gravity measurements, we performed a systematic error evaluation
of the AI-based gravimeter. Long-term gravity measurements were conducted at the
National Geodetic Observatory in Wuhan. The interference time was set to 2T = 30 ms,
which was the same as that in the dynamic case. Several systematic error terms were
evaluated, as listed in Table 1. The gravity gradient term was evaluated using the local
gravity gradient and height of the sensor head. The single- and double-photon light shift
terms were evaluated using the sideband ratio of the Raman laser and the time sequence
of the Raman laser pulses [36]. The multi-sideband feature of the Raman laser induced
an additional laser line effect because a fiber electro-optic modulator (FEOM) was used to
produce the Raman laser. This effect was evaluated using the sideband ratio of the Raman
laser, the position of the reflection mirror of the Raman laser, and the trajectory of the cold
atom cloud [37]. The solid tide term was evaluated using theoretical calculations. The
wave vector inversion method was adopted to suppress the systematic errors induced by
the Zeeman and AC Stark shifts. After the systematic error correction and the long time
gravity measurement, the measured gravity of the AI-based gravimeter, compared with
the gravity value of the reference site, still had an offset of 116 µGal. This offset might be
caused by the residual Zeeman shift, wavefront aberration of the Raman laser, or other
systematic error terms. We treated this offset as a calibration term, as listed in Table 1. We
deduced the solid-tide-induced gravity variation from the measured gravity and calculated
the Allan standard deviation, as shown in Figure 3. The gravity measurement resolution
was approximately 1.85 mGal and 0.05 mGal at 1 s and 5000 s, respectively. More details can
be found in the reference [8]. For the dynamic case, due to the mean value of the external
acceleration being zero, the averaged systematic error in Table 1 will not change.
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Table 1. Systematic error evaluation for the AI-based gravimeter.

Systematic Error Terms Value (mGal) Uncertainty (mGal)

Gravity gradient −0.222 0.002
Single photon light shift 0.000 0.008

Double photon light shift 0.047 0.005
Additional laser lines −0.699 0.137

Gravity calibration −0.116 0.050
Systematic error in total −0.990 0.147
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3.3. Gravity Comparison under the Mooring State

The gravimeter was then transferred from Wuhan to Zhejiang Province and installed
on a survey ship. Before and after the dynamic gravity survey, we compared the gravity
measurement values of an AI-based gravimeter with the gravity value of a shore-based
gravity reference site when the survey ship was moored to the dock. We call this state the
mooring state. The latitude and height differences between the gravimeter and the reference
site were measured, and the induced gravity difference was calculated and compensated
for the measured gravity (Appendix A). During each comparison, we measured gravity
for 40 min and compared the average gravity value with that of the reference site. The
measured gravity differences are shown in Figure 4. The data points had a mean value
of −0.32 mGal and a standard deviation of 0.22 mGal. No apparent drift was observed
before or after the dynamic gravity surveying. The measurement errors before and after
the gravity survey are different; this is mainly caused by the different sea conditions.

Sensors 2024, 24, x FOR PEER REVIEW 6 of 13 
 

 

Table 1. Systematic error evaluation for the AI-based gravimeter. 

Systematic Error Terms Value (mGal) Uncertainty (mGal) 
Gravity gradient −0.222 0.002 

Single photon light shift 0.000 0.008 
Double photon light shift 0.047 0.005 

Additional laser lines −0.699 0.137 
Gravity calibration −0.116 0.050 

Systematic error in total −0.990 0.147 

 
Figure 3. (Color online.) Allan standard deviation of the measured gravity value at the National 
Geodetic Observatory in Wuhan for 2T = 30 ms. 

3.3. Gravity Comparison under the Mooring State 
The gravimeter was then transferred from Wuhan to Zhejiang Province and installed 

on a survey ship. Before and after the dynamic gravity survey, we compared the gravity 
measurement values of an AI-based gravimeter with the gravity value of a shore-based 
gravity reference site when the survey ship was moored to the dock. We call this state the 
mooring state. The latitude and height differences between the gravimeter and the refer-
ence site were measured, and the induced gravity difference was calculated and compen-
sated for the measured gravity (Appendix A). During each comparison, we measured 
gravity for 40 min and compared the average gravity value with that of the reference site. 
The measured gravity differences are shown in Figure 4. The data points had a mean value 
of −0.32 mGal and a standard deviation of 0.22 mGal. No apparent drift was observed 
before or after the dynamic gravity surveying. The measurement errors before and after 
the gravity survey are different; this is mainly caused by the different sea conditions. 

 
Figure 4. (Color online). Gravity comparison with a shore-based gravity reference site under
mooring state.



Sensors 2024, 24, 1016 7 of 13

3.4. Gravity Measurement under the Sailing State

Marine gravity measurements were conducted in the East China Sea. We carried out
repeated survey measurements in the east–west direction. The number of survey lines was
three. We removed some data points around the turning points of the survey lines due
to the unstable survey speed. The effective length of a single survey line was 45 km, and
the survey speed was approximately 11 knots. The trajectory of the survey line is shown
in Figure 5a. The power spectral density (PSD) of the acceleration was measured by the
Titan accelerometer during the survey and in the mooring state, as shown in Figure 5b. The
accelerations measured along the survey line had a peak-to-peak value of approximately
0.6 m/s2. In order to keep the measurement precision while adapting to the dynamic sea
conditions, the interference time was set to 2T = 30 ms during the gravity measurement. A
classical shipborne strapdown gravimeter (SN-022) [33,38] was installed nearby for gravity
measurements comparison.
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(b) The power spectral density amplitude of the measured acceleration in the z direction under the
mooring state (black dashed line) and sailing state (red solid line).

Before processing the measured gravity data, we set a value for the recovery vector
and recovered the interference fringe, as described in Section 2.2. The recovered fringe
was fitted to obtain the fitting phase ϕfit, and a group of the fitting phases were obtained
to calculate their standard deviation σϕ_fit. We scanned the values of the components of

the recovery vector
⇀
d around {0, 0, 1} and found the relationship between σϕ_fit and the

recovery vector components. The corresponding curves are referred to be the calibration
curves, as shown in Figure 6a. These curves had a valley shape, and the widths of the
valleys were inversely proportional to their corresponding coupling accelerations. This can
be understood using Equation (12). The recovery vector is coupled to the acceleration. If
the coupled acceleration is small, an offset of the recovery vector from its optimized value
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will lead to small phase noise. The x-coordinates of the bottom of the valleys represent the
optimized values of the components of the recovery vector. The optimized recovery vector
during the survey measurement was found to be {0.0060, −0.0034, 0.9860}. The typical
recovered fringes before and after the optimization are shown in Figure 6b,c. The fitting
phase uncertainty of these two fringes was 0.19 rad and 0.10 rad, respectively. The phase
noise was improved by a factor of 1.9.
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Figure 6. (Color online). (a) The calibration curves for the recovery vector components during
the gravity survey measurement, the z component of recovery vector is subtracted by 0.99 for the
convenience of display. (b) The recovered fringe when the recovery vector is set to {0, 0, 1}. (c) The
recovered fringe when the recovery vector is set to its optimized value {0.0060, −0.0034, 0.9860}.

After the optimization of the recovery vector, we calculated the gravity along the
survey lines. Firstly, the optimized recovery vector was used to calculate the recovery
acceleration arec,z(t). The measured value of arec,z(t) during the gravity survey is shown in
Figure 7a. Secondly, arec,z(t) was filtered using a fourth-order Bessel low-pass filter to filter
the motion acceleration of the surveying ship. The time constant of the filter was set to be
300 s, and the filtered acceleration is shown in Figure 7b. Thirdly, the motion acceleration,
amot,z(t), was calculated using the recorded GNSS signal. The same low-pass filter was
used for this acceleration. The filtered motion acceleration is shown in Figure 7c. Then, the
vibration compensation method was applied to recover the interference fringe. By fitting
the phase of the fringe, the acceleration afit was obtained. Finally, Equation (15) was used
to calculate the acceleration of gravity agra(t).
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Figure 7. (Color online). Data processing process of the gravity anomaly. The red solid line in
(a–c) represents data of the three survey lines, while the blue dashed line represents other data during
the gravity survey. (a) The recovery acceleration arec,z(t). (b) The recovery acceleration arec,z(t) after
the low-pass filter. (c) The calculated motion acceleration amot,z(t) after the low-pass filter. (d) The
measured gravity anomaly of the AI-based gravimeter (red solid line) and the classical shipborne
strapdown gravimeter (black dotted line).

The time-varied solid tide-induced gravity was calculated and subtracted from agra(t).
In order to subtract the majority part of the gravity and show the gravity change, the normal
gravity (model is China Geodetic Coordinate System 2000) was subtracted from agra(t) to
obtain the gravity anomaly. The calculated gravity anomaly along the survey lines is shown
in Figure 7d. This gravity anomaly was compared with the gravity anomaly measured by
the SN-022 shipborne strapdown gravimeter. The external coincidence accuracies of the
gravity anomaly measurements (Appendix B) for the three survey lines were calculated.
The results were ±0.46 mGal, ±0.42 mGal, and ±0.41 mGal, respectively. The result for
the three lines in total was ±0.43 mGal. However, if the recovery vector was set to be
{0, 0, 1}, the calculated external coincidence accuracy of the three lines was found to be
±1.80 mGal. The gravity measurement accuracy was improved by a factor of 4.18 by
optimizing the cross-coupling effect.

Then, we calculated the inner coincidence accuracy of the gravity measurements of the
three survey lines (Appendix B). The time-varying gravity anomaly data were converted to
position-varying data along the survey lines. The results are shown in Figure 8a. Significant
gravity measurement deviations were observed across the three survey lines. This was not
mainly caused by the measurement offset of the AI-based gravimeter but by the fluctuations
in the sea surface height. To eliminate this effect, the water depth was measured in real
time, as shown in the inset figure of Figure 8b, and the height-induced gravity variation
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was calculated. This gravity variation was deduced from the measured gravity anomaly.
The measured gravity anomaly was transferred from the surface to the bottom of the sea.
Then, the gravity anomalies of the three survey lines were compared again, and the results
are shown in Figure 8b. The consistency of the gravity anomalies was better than that
in Figure 8a, and the inner coincidence accuracy is calculated to be ±0.46 mGal. If the
recovery vector was set to be {0, 0, 1}, the calculated inner coincidence accuracy was found
to be 1.9 mGal. The gravity measurement accuracy was improved by a factor of 4.21.
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4. Conclusions

In this study, we introduced a model of a joint gravity measurement process for AI-
based dynamic gravity measurements. The cross-coupling effect was analyzed, and a
recovery vector was introduced to suppress this effect. The phase noise of the interfer-
ence fringe was improved by a factor of 1.9 in the sailing state by optimizing the value
of the recovery vector. Subsequently, the design of an AI-based dynamic gravimeter was
introduced, which was used for marine gravity measurement. Before the gravity survey,
the systematic error of the AI-based gravimeter was evaluated at a gravity observatory. A
gravity comparison with the shore-based gravity reference was performed in the mooring
state. The measured gravity difference had a mean value of −0.32 mGal and a standard
derivation of 0.22 mGal. Marine gravity measurements were performed using repeated sur-
vey lines. The measured gravity anomaly was compared with that of a classical shipborne
strapdown gravimeter. After optimizing the recovery vector, we achieved high precision for
the dynamic gravity measurement. The external coincidence accuracies of the three survey
lines in total was ±0.43 mGal. The gravity measurement inner coincidence accuracy of
the three survey lines was ±0.46 mGal after considering the water depth-induced gravity
variation. By optimizing the cross-coupling effect, the gravity measurement external and
inner coincidence accuracies were improved by factors of 4.18 and 4.21.

The introduction and optimization of the recovery vector are important for high-
precision AI-based marine gravity measurements. We believe that the strategies presented
in this study will be beneficial for the future design and data analysis of AI-based dynamic
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gravimeters. Further improvements to the dynamic gravity measurement precision include
the accurate calibration of the transfer function of the classical accelerometer and the
analysis of the cold atom cloud trajectory under dynamic environments.
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Appendix A. Gravity Difference Induced by the Latitude and Height Differences

The gravity can be described by the normal gravity model, and its value depends on
the latitude and height. So, the gravity difference of the two sites can be calculated by their
latitude and height differences.

The gravity difference δgB induced by the latitude difference is calculated as

δgB = 2.37081807 × 0.01055808 − 0.00001293 sin2B(
1 − 0.00669480 sin2B)

3
2

∆B, (A1)

where B is the latitude of the gravimeter, and ∆B is the latitude difference between the
gravimeter and the reference site.

The gravity difference δgh induced by the height difference is calculated as

δgh = −0.3086∆h, (A2)

where ∆h is the height difference between the gravimeter and the reference site.

Appendix B. Definitions of the Inner and External Coincidence Accuracy

The inner and external coincidence accuracy are used to evaluate the gravity mea-
surement precision. The inner coincidence accuracy is used to evaluate the measurement
consistency of the gravimeter itself under repeatable conditions, for example, under the
repeated survey lines. The external coincidence accuracy is used to evaluate the measure-
ment consistency of the gravimeter versus other gravity measurement results, for example,
a gravity reference or the gravity measurement value of another gravimeter.
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The inner coincidence accuracy is defined as

Minn= ±

√
∑n

k =1 ∑m
l =1(gkl − gk)

2

n × (m − 1)
, (A3)

where m is the number of repeat survey lines, n is the number of repeat measurement
points along the survey lines, gkl is the gravity anomaly data of the kth point along the lth
repeat survey line, and gk = ∑m

l =1 gkl /m is the averaged value of the gravity anomaly of
the kth point for all the survey lines.

The external coincidence accuracy is expressed as

Mext= ±

√
∑o

p=1
(

gAI,p − gCla,p
)2

o
, (A4)

where o is the number of measurement points along the survey lines, gAI,p is the pth gravity
anomaly measurement data by the AI-based gravimeter, and gCla,p is the pth gravity
anomaly measurement data by the classical shipborne strapdown gravimeter.
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