Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (139)

Search Parameters:
Keywords = marine geophysics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 6122 KiB  
Article
Decoding Salinization Dynamics in Mediterranean Coastal Aquifers: A Case Study from a Wetland in Southern Italy
by Giuseppe Passarella, Rita Masciale, Matia Menichini, Marco Doveri and Ivan Portoghese
Environments 2025, 12(7), 227; https://doi.org/10.3390/environments12070227 - 2 Jul 2025
Viewed by 562
Abstract
This study investigates the salinization processes affecting the coastal aquifer within the Torre Guaceto State Nature Reserve, a Mediterranean coastal area characterized by a unique ecological value of a brackish wetland threatened by water-intensive agricultural activities. Groundwater salinization threatens biodiversity, agriculture, and water [...] Read more.
This study investigates the salinization processes affecting the coastal aquifer within the Torre Guaceto State Nature Reserve, a Mediterranean coastal area characterized by a unique ecological value of a brackish wetland threatened by water-intensive agricultural activities. Groundwater salinization threatens biodiversity, agriculture, and water resource sustainability. This work integrates hydrogeological monitoring, geochemical and isotopic analyses, and geophysical surveys to understand salinity dynamics and identify key drivers, such as seawater intrusion, irrigation practices, and climate change. Data collected during monitoring campaigns from 2022 to 2024 reveal significant seasonal and spatial variations in groundwater salinity influenced by natural and human-induced factors. The results indicate that salt recycling from irrigation and marine spray deposition are important local contributors to groundwater salinity, in addition to seawater intrusion. These findings highlight the urgent need for integrated groundwater management approaches considering the combined effects of agricultural practices, irrigation water quality, and climate variability tailored to Mediterranean coastal ecosystems. Full article
Show Figures

Figure 1

36 pages, 3656 KiB  
Review
Current Status of Application of Spaceborne GNSS-R Raw Intermediate-Frequency Signal Measurements: Comprehensive Review
by Qiulan Wang, Jinwei Bu, Yutong Wang, Donglan Huang, Hui Yang and Xiaoqing Zuo
Remote Sens. 2025, 17(13), 2144; https://doi.org/10.3390/rs17132144 - 22 Jun 2025
Viewed by 476
Abstract
In recent years, spaceborne Global Navigation Satellite System reflectometry (GNSS-R) technology has made significant progress in the fields of Earth observation and remote sensing, with a wide range of applications, important research value, and broad development prospects. However, despite existing research focusing on [...] Read more.
In recent years, spaceborne Global Navigation Satellite System reflectometry (GNSS-R) technology has made significant progress in the fields of Earth observation and remote sensing, with a wide range of applications, important research value, and broad development prospects. However, despite existing research focusing on the application of spaceborne GNSS-R L1-level data, the potential value of raw intermediate-frequency (IF) signals has not been fully explored for special applications that require a high accuracy and spatiotemporal resolution. This article provides a comprehensive overview of the current status of the measurement of raw IF signals from spaceborne GNSS-R in multiple application fields. Firstly, the development of spaceborne GNSS-R microsatellites launch technology is introduced, including the ability of microsatellites to receive GNSS signals and receiver technique, as well as related frequency bands and technological advancements. Secondly, the key role of coherence detection in spaceborne GNSS-R is discussed. By analyzing the phase and amplitude information of the reflected signals, parameters such as scattering characteristics, roughness, and the shape of surface features are extracted. Then, the application of spaceborne GNSS-R in inland water monitoring is explored, including inland water detection and the measurement of the surface height of inland (or lake) water bodies. In addition, the widespread application of group delay sea surface height measurement and carrier-phase sea surface height measurement technology in the marine field are also discussed. Further research is conducted on the progress of spaceborne GNSS-R in the retrieval of ice height or ice sheet height, as well as tropospheric parameter monitoring and the study of atmospheric parameters. Finally, the existing research results are summarized, and suggestions for future prospects are put forward, including improving the accuracy of signal processing and reflection signal analysis, developing more advanced algorithms and technologies, and so on, to achieve more accurate and reliable Earth observation and remote sensing applications. These research results have important application potential in fields such as environmental monitoring, climate change research, and weather prediction, and are expected to provide new technological means for global geophysical parameter retrieval. Full article
(This article belongs to the Special Issue Satellite Observations for Hydrological Modelling)
Show Figures

Figure 1

20 pages, 14743 KiB  
Article
Seismic Prediction of Shallow Unconsolidated Sand in Deepwater Areas
by Jiale Chen, Yingfeng Xie, Tong Wang, Haoyi Zhou, Zhen Zhang, Yonghang Li, Shi Zhang and Wei Deng
J. Mar. Sci. Eng. 2025, 13(6), 1044; https://doi.org/10.3390/jmse13061044 - 26 May 2025
Viewed by 426
Abstract
Recently, shallow gas fields and hydrate-bearing sand in the deepwater area of the northern South China Sea have been successively discovered, and the accurate prediction of shallow sands is an important foundation. However, most of the current prediction methods are mainly for deep [...] Read more.
Recently, shallow gas fields and hydrate-bearing sand in the deepwater area of the northern South China Sea have been successively discovered, and the accurate prediction of shallow sands is an important foundation. However, most of the current prediction methods are mainly for deep oil and gas reservoirs. Compared with those reservoirs with high degree of consolidation, shallow sandy reservoirs are loose and unconsolidated, whose geophysical characteristics are not well understood. This paper analyzes the logging data of shallow sandy reservoirs recovered in the South China Sea recently, which show that the sand content has a significant influence on Young’s modulus and Poisson’s ratio of the sediments. Therefore, this paper firstly constructs a new petrophysical model of unconsolidated strata targeting sandy content and qualitatively links the mineral composition and the elastic parameters of the shallow marine sediments and defines a new indicator for sandy content: the modified brittleness index (MBI). The effectiveness of MBI in predicting sandy content is then verified by measured well data. Based on pre-stack seismic inversion, the MBI is then inverted, which will identify the sandy deposits. The method proposed provides technical support for the subsequent shallow gas and hydrate exploration in the South China Sea. Full article
Show Figures

Figure 1

23 pages, 33244 KiB  
Article
The Sedimentary Distribution and Evolution of Middle Jurassic Reefs and Carbonate Platform on the Middle Low Uplift in the Chaoshan Depression, Northern South China Sea
by Ming Sun, Hai Yi, Zhongquan Zhao, Changmao Feng, Guangjian Zhong and Guanghong Tu
J. Mar. Sci. Eng. 2025, 13(6), 1025; https://doi.org/10.3390/jmse13061025 - 23 May 2025
Viewed by 511
Abstract
The Chaoshan Depression, situated in the northern South China Sea, is a Mesozoic residual depression beneath the Cenozoic Pearl River Mouth Basin. Borehole LF35-1-1 has confirmed the existence of marine Jurassic layers rich in organic carbon within this depression. However, the understanding of [...] Read more.
The Chaoshan Depression, situated in the northern South China Sea, is a Mesozoic residual depression beneath the Cenozoic Pearl River Mouth Basin. Borehole LF35-1-1 has confirmed the existence of marine Jurassic layers rich in organic carbon within this depression. However, the understanding of petroleum geology in this area is limited due to the complex interplay of Mesozoic and Cenozoic tectonic activities and the poor quality of seismic imaging from previous surveys, which have obstructed insights into the characteristics of Mesozoic reservoirs and the processes of oil and gas accumulation. Recent quasi-3D seismic data have allowed for the identification of Mesozoic bioherms and carbonate platforms in the Middle Low Uplift of the Chaoshan Depression. This research employs integrated geophysical data (MCS, gravity, magnetic) and well data to explore the factors that influenced Middle Jurassic reef development and their implications for reservoir formation. The seismic reflection patterns of reefs and carbonate platforms are primarily characterized by high-amplitude discontinuous to chaotic reflections, with occasional blank reflections or weak, sub-parallel reflections, as well as significant high-velocity, high Bouguer gravity and low reduced-to-pole (RTP) magnetic anomalies. Atolls, stratiform reefs, and patch reefs are located on the local topographic highs of the platform. Three vertical evolutionary stages have been identified based on the size of atolls and fluctuations in relative sea level: initiation, growth, and submergence. The location of bioherms and carbonate platforms was influenced by paleotectonic topography, while their horizontal distribution was affected by variations in relative sea level. Furthermore, the reef limestone reservoirs from the upper member of the Middle Jurassic, combined with the mudstone source rocks from the Lower Jurassic and the lower section of the Middle Jurassic, as well as the bathyal mudstone caprocks from the lower part of the Late Jurassic, create highly favorable conditions for hydrocarbon accumulation. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

31 pages, 16165 KiB  
Review
Reappraisal of the Continental Rifting and Seafloor Spreading That Formed the South China Sea
by Brian Taylor
Geosciences 2025, 15(4), 152; https://doi.org/10.3390/geosciences15040152 - 16 Apr 2025
Cited by 1 | Viewed by 2570
Abstract
Recently published marine geophysical and seafloor drilling data permit a substantive reappraisal of the rifting and spreading that formed the South China Sea (SCS). The SCS rifted margins are different from those of the Atlantic type, having higher strain rates, younger orogenic crust, [...] Read more.
Recently published marine geophysical and seafloor drilling data permit a substantive reappraisal of the rifting and spreading that formed the South China Sea (SCS). The SCS rifted margins are different from those of the Atlantic type, having higher strain rates, younger orogenic crust, and distributed syn-rift magmatism. Rifting ~66–11 Ma and spreading 30–14 Ma split a Cretaceous Andean arc and forearc, producing >700 km of seafloor spreading in the east and a ~2000-km-wide rifted margin in the west. Luconia Shoals–Dangerous Grounds–Reed Bank–north Palawan–SW Mindoro were separated from China when the SCS opened. Brittle faulting of the upper crust was decoupled from ductile flow and magmatic intrusion of the lower crust, producing wide rifting with thin spots held together by less extended surrounds. Sediments accumulated in inter-montane lakes. Transform faults formed at/after breakup to link offset spreading segments. Spreading in the eastern subbasin from C11n to C5AD was at rates averaging 62 mm/yr, 30–24 Ma, decreasing to 38.5 mm/yr younger than 23 Ma. Spreading reorganization was common as margin segments broke up to the SW and spreading directions changed from ~N-S before 23 Ma to NW-SE after 17 Ma. Full article
Show Figures

Figure 1

19 pages, 3358 KiB  
Review
Towards a Digital Information Platform for Locating and Assessing Environmental Impacts of Submarine Groundwater Discharge: Examples from the Baltic Sea
by Klaus Hinsby, Jan Scholten, Joonas Virtasalo, Beata Szymczycha, Jørgen O. Leth, Lærke T. Andersen, Maria Ondracek, Jørgen Tulstrup, Michał Latacz and Rudolf Bannasch
J. Mar. Sci. Eng. 2025, 13(3), 614; https://doi.org/10.3390/jmse13030614 - 20 Mar 2025
Viewed by 1110
Abstract
The number of studies on submarine groundwater discharge (SGD) and the evidence of its significance in biogeochemical cycling and potential impacts on the chemical and ecological status of coastal waters is increasing globally. Here, we briefly present SGD studies from the Baltic Sea [...] Read more.
The number of studies on submarine groundwater discharge (SGD) and the evidence of its significance in biogeochemical cycling and potential impacts on the chemical and ecological status of coastal waters is increasing globally. Here, we briefly present SGD studies from the Baltic Sea identified along the coastlines of Denmark, Finland, Germany, Poland, Sweden and Russia in the southwestern, southern and north–northeastern parts of the Baltic Sea. We introduce a digital SGD map viewer and information platform enabling easy overview and access to information on identified SGD sites in the coastal areas of the Baltic Sea. SGDs potentially transport critical pollutants from urban and agricultural areas on land to the marine environment. The pollutants include nutrients, dissolved organic and inorganic carbon, metals, pharmaceuticals, and other emerging contaminants, potentially harming marine ecosystems and biodiversity and possibly contributing to the poor chemical or ecological status of coastal waters, affecting human and environmental health. We focus on case studies from Finland, Germany, Poland and Denmark that include the results and interpretations from the applied geochemical, geophysical and geological methods, as well as bionic autonomous underwater vehicles (AUVs) for locating, investigating, modelling and visualizing SGD sites in 2D and 3D. The potential Pan-European or even global SGD information platform established within the European Geological Data Infrastructure (EGDI) enables the easy combination and comparison of map layers such as seabed sediment types and coastal habitats. The EGDI map viewer provides easy access to information from SGD studies and may serve as an entry point to relevant information on SGDs, including contents of pollutants, for the scientific community and policy-makers. The information potentially includes the results of model simulations, data from near real-time sensors at permanently installed monitoring stations and surveys in time and space conducted by AUVs. The presented digital SGD information platform is particularly pertinent to the UN Sustainable Development Goal (SDG) No. 14, which focuses on the conservation and sustainable use of oceans and marine resources. Full article
Show Figures

Graphical abstract

29 pages, 10778 KiB  
Article
Potentials and Limitations of Fluviomarine Pollen Records to Reconstruct Spatiotemporal Changes in Coastal Ecosystems During the Holocene: A Case of Study from Ría de Vigo (NW Iberia)
by Alberto Castro-Parada, Nerea Cazás, Víctor Cartelle, Javier Ferreiro da Costa, Natalia Martínez-Carreño, Soledad García-Gil and Castor Muñoz Sobrino
Land 2025, 14(3), 540; https://doi.org/10.3390/land14030540 - 5 Mar 2025
Viewed by 665
Abstract
The study of marine and terrestrial palynomorphs in fluviomarine environments has been successfully used in combination with different geophysical approaches to understand high-resolution relative sea-level oscillations and to reconstruct the environmental changes affecting estuaries and adjacent inland ecosystems. However, erosion during the postglacial [...] Read more.
The study of marine and terrestrial palynomorphs in fluviomarine environments has been successfully used in combination with different geophysical approaches to understand high-resolution relative sea-level oscillations and to reconstruct the environmental changes affecting estuaries and adjacent inland ecosystems. However, erosion during the postglacial marine transgression frequently causes sedimentary discontinuities or may lead to the redeposition of ancient upland sediments, including secondary, recycled and rebedded pollen. Therefore, a robust seismic and chronological control of the sedimentary facies is essential. In addition, studies of modern pollen sedimentation and its relationship to contemporaneous vegetation are valuable for obtaining a more realistic interpretation of the sedimentary evidence. To explore the significance of the experimental evidence obtained and to support the interpretation of sedimentary records from the same basin, we analysed a large set of modern pollen data from the Ría de Vigo (NW Iberia). The pollen samples derived from different sedimentary environments were compared with the local and regional vegetation cover. Pollen evidence from the various limnetic systems studied allows the identification of major vegetation types in the basin. However, in all the cases, the reconstructed relative pollen contributions of each vegetation unit are often distorted by the overrepresentation of certain anemophilous pollen types, the underrepresentation of some entomophilous species, and the specific taphonomy of each site of sedimentation. The ability of the seabed pollen evidence to represent the modern deciduous and alluvial forests, as well as the saltmarsh vegetation onshore, increases in the shallowest points of the ria (shallower than −10 m). Conversely, pastures and crops are better represented at intermediate depths (shallower than −30 m), while scrubland vegetation is better represented in samples at more than 20 m below modern sea level. It is concluded that shallow seabed pollen can provide information on the main elements of the modern vegetation cover of the emerged basin, including the main elements of the vegetation cover. However, the selection of the most suitable subtidal sites for coring, combined with pollen data from several environmental contexts, is critical for achieving an accurate reconstruction of the changing conditions of the emerged basin over time. Full article
(This article belongs to the Special Issue Pollen-Based Reconstruction of Holocene Land-Cover)
Show Figures

Figure 1

13 pages, 6501 KiB  
Article
Recognition of Underwater Engineering Structures Using CNN Models and Data Expansion on Side-Scan Sonar Images
by Xing Du, Yongfu Sun, Yupeng Song, Lifeng Dong, Changfei Tao and Dong Wang
J. Mar. Sci. Eng. 2025, 13(3), 424; https://doi.org/10.3390/jmse13030424 - 25 Feb 2025
Viewed by 799
Abstract
Side-scan sonar (SSS) is a critical tool in marine geophysical exploration, enabling the detection of seabed structures and geological phenomena. However, the manual interpretation of SSS images is time-consuming and relies heavily on expertise, limiting its efficiency and scalability. This study addresses these [...] Read more.
Side-scan sonar (SSS) is a critical tool in marine geophysical exploration, enabling the detection of seabed structures and geological phenomena. However, the manual interpretation of SSS images is time-consuming and relies heavily on expertise, limiting its efficiency and scalability. This study addresses these challenges by employing deep learning techniques for the automatic recognition of SSS images and introducing Marine-PULSE, a specialized dataset focusing on underwater engineering structures. The dataset refines previous classifications by distinguishing four categories of objects: pipeline or cable, underwater residual mound, seabed surface, and engineering platform. A convolutional neural network (CNN) model based on GoogleNet architecture, combined with transfer learning, was applied to assess classification accuracy and the impact of data expansion. The results demonstrate a test accuracy exceeding 92%, with data expansion improving small-sample model performance by over 7%. Notably, mutual influence effects were observed between categories, with similar features enhancing classification accuracy and distinct features causing inhibitory effects. These findings highlight the importance of balanced datasets and effective data expansion strategies in overcoming data scarcity. This work establishes a robust framework for SSS image recognition, advancing applications in marine geophysical exploration and underwater object detection. Full article
(This article belongs to the Special Issue Marine Geohazards: Characterization to Prediction)
Show Figures

Figure 1

26 pages, 17105 KiB  
Article
CNN-GRU-ATT Method for Resistivity Logging Curve Reconstruction and Fluid Property Identification in Marine Carbonate Reservoirs
by Jianhong Guo, Hengyang Lv, Qing Zhao, Yuxin Yang, Zuomin Zhu and Zhansong Zhang
J. Mar. Sci. Eng. 2025, 13(2), 331; https://doi.org/10.3390/jmse13020331 - 12 Feb 2025
Cited by 2 | Viewed by 1064
Abstract
Geophysical logging curves are crucial for oil and gas field exploration and development, and curve reconstruction techniques are a key focus of research in this field. This study proposes an inversion model for deep resistivity curves in marine carbonate reservoirs, specifically the Mishrif [...] Read more.
Geophysical logging curves are crucial for oil and gas field exploration and development, and curve reconstruction techniques are a key focus of research in this field. This study proposes an inversion model for deep resistivity curves in marine carbonate reservoirs, specifically the Mishrif Formation of the Halfaya Field, by integrating a deep learning model called CNN-GRU-ATT, which combines Convolutional Neural Networks (CNN), Gated Recurrent Units (GRU), and the Attention Mechanism (ATT). Using logging data from the marine carbonate oil layers, the reconstructed deep resistivity curve is compared with actual measurements to determine reservoir fluid properties. The results demonstrate the effectiveness of the CNN-GRU-ATT model in accurately reconstructing deep resistivity curves for carbonate reservoirs within the Mishrif Formation. Notably, the model outperforms alternative methods such as CNN-GRU, GRU, Long Short-Term Memory (LSTM), Multiple Regression, and Random Forest in new wells, exhibiting high accuracy and robust generalization capabilities. In practical applications, the response of the inverted deep resistivity curve can be utilized to identify the reservoir water cut. Specifically, when the model-inverted curve exhibits a higher response compared to the measured curve, it indicates the presence of reservoir water. Additionally, a stable relative position between the two curves suggests the presence of a water layer. Utilizing this method, the oil–water transition zone can be accurately delineated, achieving a fluid property identification accuracy of 93.14%. This study not only introduces a novel curve reconstruction method but also presents a precise approach to identifying reservoir fluid properties. These findings establish a solid technical foundation for decision-making support in oilfield development. Full article
(This article belongs to the Special Issue Research on Offshore Oil and Gas Numerical Simulation)
Show Figures

Figure 1

19 pages, 32782 KiB  
Article
Artificial Fish Reef Site Evaluation Based on Multi-Source High-Resolution Acoustic Images
by Fangqi Wang, Yikai Feng, Senbo Liu, Yilan Chen and Jisheng Ding
J. Mar. Sci. Eng. 2025, 13(2), 309; https://doi.org/10.3390/jmse13020309 - 7 Feb 2025
Cited by 1 | Viewed by 825
Abstract
Marine geophysical and geological investigations are crucial for evaluating the construction suitability of artificial fish reefs (AFRs). Key factors such as seabed topography, geomorphology, sub-bottom structure, and sediment type significantly influence AFR design and site selection. Challenges such as material sinking, sediment instability, [...] Read more.
Marine geophysical and geological investigations are crucial for evaluating the construction suitability of artificial fish reefs (AFRs). Key factors such as seabed topography, geomorphology, sub-bottom structure, and sediment type significantly influence AFR design and site selection. Challenges such as material sinking, sediment instability, and scouring effects should be critically considered and addressed in the construction of AFR, particularly in areas with soft mud or dynamic environments. In this study, detailed investigations were conducted approximately seven months after the deployment of reef materials in the AFR experimental zones around Xiaoguan Island, located in the western South Yellow Sea, China. Based on morphological factors, using data from multibeam echosounders and side-scan sonar, the study area was divided into three geomorphic zones, namely, the tidal flat (TF), underwater erosion-accumulation slope (UEABS), and inclined erosion-accumulation shelf plain (IEASP) zones. The focus of this study was on the UEABS and IEASP experimental zones, where reef materials (concrete or stone blocks) were deployed seven months earlier. The comprehensive interpretation results of multi-source high-resolution acoustic images showed that the average settlement of individual reefs in the UEABS experimental zone was 0.49 m, and their surrounding seabed experienced little to no scouring. This suggested the formation of an effective range and height, making the zone suitable for AFR construction. However, in the IEASP experimental zone, the seabed sediment consisted of soft mud, causing the reef materials to sink into the seabed after deployment, preventing the formation of an effective range and height, and rendering the area unsuitable for AFR construction. These findings provided valuable scientific guidance for AFR construction in the study area and other similar coastal regions. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

17 pages, 3620 KiB  
Article
Extending Satellite Predictions of Coral Disease Outbreak Risk to Non-Seasonal Coral Reef Regions
by Momoe Yoshida and Scott F. Heron
Remote Sens. 2025, 17(2), 262; https://doi.org/10.3390/rs17020262 - 13 Jan 2025
Viewed by 727
Abstract
Coral disease outbreaks have increased in frequency and extent worldwide since the 1970s, coinciding with the rapid increase in ocean warming. Summer and winter temperature-based metrics have proven effective in predicting coral disease outbreaks in seasonal coral reef regions. However, their utility is [...] Read more.
Coral disease outbreaks have increased in frequency and extent worldwide since the 1970s, coinciding with the rapid increase in ocean warming. Summer and winter temperature-based metrics have proven effective in predicting coral disease outbreaks in seasonal coral reef regions. However, their utility is unknown in non-seasonal coral reef areas. Here, a new methodology, independent of seasonal patterns, is developed for application in both seasonal and non-seasonal coral reef regions. Percentile-based metric thresholds were defined from seasonal equivalents in the Great Barrier Reef (GBR) and tested in seasonal and non-seasonal coral reef regions of the tropical Pacific Ocean. Between new and existing methodologies, median differences of 0.00 °C (thresholds) and 0.00 °C-weeks (metrics) for Hot Snap and Cold Snap; and 0.01 °C (threshold) and −0.17 °C-weeks (metric) for Winter Condition were observed among reef pixels of the GBR. The new methodology shows strong consistency with the existing tools used for seasonal regions (e.g., R2 = 0.811–0.903; GBR case studies). Comparisons of the new metrics with disease observations were constrained by the limited availability of disease data; however, the comparisons undertaken suggest predictive capability in non-seasonal regions. To establish robust correlations, further direct comparisons of the new metrics with disease data across various non-seasonal regions and timeframes are essential. With ocean warming projected to persist in the coming decades, improving the predictive tools used to assess ecological impacts is necessary to support effective coral reef management. Full article
(This article belongs to the Section Coral Reefs Remote Sensing)
Show Figures

Graphical abstract

14 pages, 11636 KiB  
Technical Note
Establishing a Marine Gravimeter Test Site in the South China Sea to Validate the Performance of Different Marine Gravimeters
by Yuan Yuan, Zhaocai Wu, Jinyao Gao and Zhongshan Jiang
Remote Sens. 2025, 17(1), 14; https://doi.org/10.3390/rs17010014 - 25 Dec 2024
Cited by 1 | Viewed by 891
Abstract
Marine gravity anomalies play an important role in geophysics applications. To observe high-precision and high-resolution gravity anomalies, a high-performance marine gravimeter is key. At present, the marine gravimeters widely used in the world have different measurement principles, such as the two-axis stable platform [...] Read more.
Marine gravity anomalies play an important role in geophysics applications. To observe high-precision and high-resolution gravity anomalies, a high-performance marine gravimeter is key. At present, the marine gravimeters widely used in the world have different measurement principles, such as the two-axis stable platform gravimeter, gimbaled inertial navigation gravimeter, and strapdown gravimeter. However, the performances of marine gravimeters with different measurement principles show different precision levels in real applications. A synchronized comparison test on the same platform is the most direct method for evaluating their performance, which is a relative analysis method. To absolutely evaluate the performance of different kinds of marine gravimeters, a new method is presented to remove the residual noise from the measured free air gravity anomaly to establish an “air truth” free air gravity anomaly. Synchronous measurements with different gravimeters were carried out in the north area of the South China Sea, measured three times over a round trip, and the highest-precision free air gravity anomaly measured by GT-2M, SAG-2M, and ZL11-1A was chosen to establish the “air truth” free air gravity anomaly. The external consistency of the free air gravity anomaly upon the removal of residual noise of frequencies 0.03 Hz to 0.06 Hz improved, and the three separate standard free air gravity anomalies of each gravimeter were the same with no deviation. The weighted result of the three average values of GT-2M, SAG-2M, and ZL11-1A is the established “air truth” free air gravity anomaly, which can be used as a standard to estimate the performance of marine gravimeters with different kinds of principles. Full article
Show Figures

Figure 1

40 pages, 28645 KiB  
Article
Underwater Paleotopographic and Geoarchaeological Investigations at Le Castella (Crotone, Italy): New Data on the Late Holocene Coastline Changes and the Presence of Two Disappeared Islets
by Salvatore Medaglia, Daniela Basso, Valentina Alice Bracchi, Fabio Bruno, Emilio Cellini, Ercole Gaetano, Antonio Lagudi, Fabrizio Mauri, Francesco Megna, Sante Francesco Rende, Umberto Severino and Armando Taliano Grasso
Heritage 2024, 7(11), 6392-6431; https://doi.org/10.3390/heritage7110299 - 19 Nov 2024
Cited by 1 | Viewed by 2332
Abstract
A submerged elevation located off the coast of Le Castella, a small village on the Ionian Coast of Calabria (Italy) populated for thousands of years that features notable archaeological remains from the Great Greece (Magna Graecia) and the Middle Ages, was [...] Read more.
A submerged elevation located off the coast of Le Castella, a small village on the Ionian Coast of Calabria (Italy) populated for thousands of years that features notable archaeological remains from the Great Greece (Magna Graecia) and the Middle Ages, was investigated through in-depth, multidisciplinary, geoarchaeological research. This submarine elevation, once aligned with the marine terrace MIS 3 of Le Castella and still completely emerged between 10 and 8 ka years ago, slowly sank due to erosion and local tectonic-structural subsidence and was also favoured by a submerged normal fault that cuts the terrace in two. The dismantling and sinking of this part of the marine terrace has significantly changed the Late Holocene shorelines, with notable consequences on a topographic and archaeological level. In fact, one of the consequences of the sinking of this ancient promontory was the disappearance of two small islands that were reported to be right in front of Le Castella by numerous historical and cartographic sources. In the last decades, there has been a scientific debate over the existence of these islets, but no convincing evidence has been found about their actual presence up until now. This research, funded by the Marine Protected Area “Capo Rizzuto”, was conducted by means of underwater archaeological and geological surveys, geophysical seabed mapping systems, and both direct and instrumental optical surveys made with an Autonomous Surface Vehicle. The outcomes allow us to confirm the presence of these two partially emerged rock bodies up to half a millennium ago. In addition, the presence of anthropogenic extrabasinal materials in a marine area corresponding to one of the highest points of the submerged elevation allows us to define the exact position of one of the two islets. These archaeological findings have been subject, for the first time ever, to a thorough topographical and architectural analysis, then compared with other near and very similar submerged structures. On the basis of these comparisons, the findings should be attributed to the Byzantine Age or, at most, to the Middle Ages. In-depth archival research on portolan charts and navigation maps, in many cases unpublished and dating from the Middle Ages to the early 18th century, supports the results of our marine investigations from a historical point of view. Full article
Show Figures

Figure 1

19 pages, 20016 KiB  
Article
Effects of Aqueous Solubility and Geochemistry on CO2 Storage in Offshore Basins
by Yanxin Lv, Xiaoyu Fang, Guifeng Wang, Shiguo Wu, Yi Xin, Haibo Li and Weiji Liu
Processes 2024, 12(10), 2132; https://doi.org/10.3390/pr12102132 - 30 Sep 2024
Viewed by 1243
Abstract
The increasing global focus on carbon capture and storage (CCS) has highlighted the potential for offshore CO2 sequestration, particularly following recent successes in onshore projects. This research investigates the qualitative analysis of carbon trapping efficiency in offshore basins, employing a GEM simulator [...] Read more.
The increasing global focus on carbon capture and storage (CCS) has highlighted the potential for offshore CO2 sequestration, particularly following recent successes in onshore projects. This research investigates the qualitative analysis of carbon trapping efficiency in offshore basins, employing a GEM simulator to incorporate factors such as aqueous solubility and geochemistry. The findings reveal that anticlines represent ideal geological structures for carbon storage, effectively trapping a significant portion of injected CO2. For effective mineralization, it is crucial to dissolve CO2 into saline aquifers to generate H+, which facilitates the release of Ca2+ and Al3+ from anorthite. This process leads to the dissolution of anorthite and the precipitation of kaolinite, while calcite transitions from a dissolved state to a precipitated state over time. The analysis indicates that structural trapping provides the highest storage contribution during the injection phase, whereas residual gas trapping becomes dominant by the end of the simulation. Notably, it is observed that the storage contribution of structural trapping decreases from 28.39% to 19.05%, and the percentage increase in storage contributions of residual gas, solubility, ionic, and mineral trapping are 4.12%, 3.25%, 1.69%, and 0.28% for CO2 plus water injection, thereby improving the long-term security of CO2 storage in offshore basins. It is most beneficial to optimize the layout and design of the injection well to ensure a uniform distribution of carbon dioxide and to increase the injection rate. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

14 pages, 11301 KiB  
Article
Application of Multiple Geophysical Exploration Methods in the Exploration of Marine Sand Resources in the Northern Offshore Waters of the South China Sea
by Gang Yu, Xichong Hu, Jie Fang, Ying Yang, Yongcong Zhang, Jinhui Lin, Jingyi Liu and Libing Qian
J. Mar. Sci. Eng. 2024, 12(9), 1561; https://doi.org/10.3390/jmse12091561 - 5 Sep 2024
Cited by 2 | Viewed by 1199
Abstract
Marine sand, in addition to oil and gas resources, is the second-largest marine mineral resource. The rational development and utilization of marine sand resources are conducive to the growth of the marine economy. In the process of marketing marine sand in China, local [...] Read more.
Marine sand, in addition to oil and gas resources, is the second-largest marine mineral resource. The rational development and utilization of marine sand resources are conducive to the growth of the marine economy. In the process of marketing marine sand in China, local authorities are required to delineate auctioned sand mining areas after a general survey, commonly referred to as preliminary exploration. Marine sand can be categorized into surface marine sand and buried marine sand. Buried marine sand deposits are buried beneath the sea floor, making it challenging to locate them due to their thin thickness. Consequently, there exist numerous technical difficulties associated with marine sand exploration. We conducted the preliminary research work in the waters off Guangdong Province of the South China Sea, employing a reduced drilling and identifying a potentially extensive deposit of marine sand ore. In this study, various geophysical methods such as sub-bottom profile survey, single-channel seismic survey, and drilling engineering were employed in the northern offshore waters of the South China Sea. As a result, two distinct marine sand bodies were delineated within the study area. Additionally, five reflective interfaces (R1, R2, R3, R4, and R5) were identified from top to bottom. These interfaces can be divided into five seismic sequences: A1, B1, C1, D1, and E1, respectively. Three sets of strata were recognized: the Holocene Marine facies sediment layer (Q4m), the Pleistocene alluvial and pluvial facies sediment layer (Q3al+pl), as well as the Pleistocene Marine facies sedimentary layer (Q3m). In total, two placers containing marine sand have been discovered during this study. We estimated the volume of marine sand and achieved highly favorable results of the concept that we are proposing a geologic exploration approach that does not involve any previous outcropping analogue study. Full article
Show Figures

Figure 1

Back to TopTop