Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = marine centrifugal pumps

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4461 KiB  
Article
Study on the Influence of Inducer Structure Change on Pump Cavitation Characteristics
by Zhengwei Wang, Wei Song, Xuanyi Lin, Yun Zhao and Yonggang Lu
Energies 2025, 18(15), 4059; https://doi.org/10.3390/en18154059 - 31 Jul 2025
Viewed by 162
Abstract
Given that cryogenic pumps on liquefied natural gas (LNG) carriers are prone to cavitation under complex operating conditions, this paper examines the inducer of an LNG centrifugal pump to uncover how the inducer geometry affects both the cavitation behavior and internal flow-induced excitation [...] Read more.
Given that cryogenic pumps on liquefied natural gas (LNG) carriers are prone to cavitation under complex operating conditions, this paper examines the inducer of an LNG centrifugal pump to uncover how the inducer geometry affects both the cavitation behavior and internal flow-induced excitation at −163 °C. Through detailed numerical simulations, we evaluate the cavitation performance and flow excitation characteristics across a range of inducer designs, systematically varying the blade count, inlet and outlet angles, and blade wrap angle. Our results show that reducing the number of blades, together with properly optimized inlet/outlet and wrap angles, significantly enhances the cavitation resistance. These findings provide a solid theoretical basis and practical guidance for the engineering optimization of LNG ship pumps. Full article
Show Figures

Figure 1

20 pages, 10537 KiB  
Article
Research on Performance Prediction of Elbow Inline Pump Based on MSCSO-BP Neural Network
by Chao Wang, Zhenhua Shen, Yin Luo, Xin Wu, Guoyou Wen and Shijun Qiu
Water 2025, 17(8), 1213; https://doi.org/10.3390/w17081213 - 18 Apr 2025
Viewed by 315
Abstract
The vertical inline pump, a single-stage centrifugal pump with a bent elbow inlet, is widely used in marine engineering. The unique water inlet passage combined with uneven inflow at the impeller inlet tends to form an inlet vortex and secondary flow area, which [...] Read more.
The vertical inline pump, a single-stage centrifugal pump with a bent elbow inlet, is widely used in marine engineering. The unique water inlet passage combined with uneven inflow at the impeller inlet tends to form an inlet vortex and secondary flow area, which reduces performance and causes vibration. To predict the performance of the elbow inline pump, this study uses spline curve fitting for the centerline and cross-sectional shape of the elbow passage. With four elbow inlet variables from experimental design as the input layer and targeting efficiency under pump operating conditions, a pump performance prediction model based on an improved sand cat swarm optimization algorithm combined with a BP neural network (MSCSO-BP) is proposed. Six test functions are used to effectively test the improved sand cat swarm optimization algorithm. The results show that compared to the unimproved algorithm, the improved algorithm has significantly faster convergence speed, shorter parameter optimization time, and higher accuracy. For more demanding multidimensional test functions, the improved optimization algorithm can more accurately find the optimal solution, enhancing the prediction accuracy and generalization ability of inline pump performance. This provides a more effective engineering solution for the design and optimization of inline pumps. Full article
(This article belongs to the Special Issue Design and Optimization of Fluid Machinery, 3rd Edition)
Show Figures

Figure 1

28 pages, 10112 KiB  
Article
Research on Efficiency Improvement Technology of Wide Range Centrifugal Pump Based on Genetic Algorithm and Internal Flow Loss Diagnosis
by Zhenbo Liu, Leilei Ji, Wei Pu, Wei Li, Qiaoyue Yang, Xing Zhang, Yang Yang, Weidong Shi, Fei Tian, Sen Jiang and Ramesh Agarwal
Water 2024, 16(23), 3402; https://doi.org/10.3390/w16233402 - 26 Nov 2024
Cited by 1 | Viewed by 1589
Abstract
Wide-flow centrifugal pumps are widely used in marine, petrochemical, and thermal power plants because of their good hydraulic performance. To enhance the hydraulic performance of wide-flow centrifugal pumps and thereby reduce energy consumption, in this study, an automatic optimization system for rotating machinery [...] Read more.
Wide-flow centrifugal pumps are widely used in marine, petrochemical, and thermal power plants because of their good hydraulic performance. To enhance the hydraulic performance of wide-flow centrifugal pumps and thereby reduce energy consumption, in this study, an automatic optimization system for rotating machinery based on genetic algorithms was employed. Initially, a detailed description of the centrifugal pump model and the optimization system was provided. Subsequently, sensitivity analysis of key parameters was conducted through design of experiments (DOEs), identifying the primary factors influencing the pump performance. This research demonstrated that the blade wrap angle, as well as the leading and trailing vane exit angles of the front and back shrouds, are crucial factors affecting the performance of the centrifugal pump, with the blade wrap angle exerting a particularly significant impact on pump efficiency, contributing up to 83.6%. After optimization, the pump’s head increased by 1.29%, and the efficiency improved by 2.96%. The flow field of the optimized pump was significantly improved, with enhanced fluidity, achieving higher head and efficiency at a lower torque. Additionally, the pumping performance was augmented with an enhanced diffuser capacity in the pump volute, leading to increased exit pressure energy, while the turbulent kinetic energy and entropy production losses were significantly reduced. Under various operating conditions, the entropy production losses at the pump walls were all decreased, and the total mechanical energy within the impeller showed an increasing trend from the inlet to the outlet, resulting in lower energy consumption. In this paper, a reference is provided for further enhancing the hydraulic performance of centrifugal pumps in the future. Full article
(This article belongs to the Special Issue Design and Optimization of Fluid Machinery, 2nd Edition)
Show Figures

Figure 1

16 pages, 8877 KiB  
Article
Unsteady Flow Behaviors and Vortex Dynamic Characteristics of a Marine Centrifugal Pump under the Swing Motion
by Ye Yuan, Abdul Rahim Junejo, Jun Wang and Bo Chen
Machines 2024, 12(10), 687; https://doi.org/10.3390/machines12100687 - 30 Sep 2024
Cited by 1 | Viewed by 869
Abstract
Due to the effects of swing motion, the performances and internal flow characteristics of marine centrifugal pump undergo some unsteady variations in the marine environment. The hydraulic test system with six degree of freedom parallel motion platform is established to study the pump [...] Read more.
Due to the effects of swing motion, the performances and internal flow characteristics of marine centrifugal pump undergo some unsteady variations in the marine environment. The hydraulic test system with six degree of freedom parallel motion platform is established to study the pump performance characteristics at the different heel angles of steady roll position and pitch position. The pump head gradually decreases as heel angle increases. The pump head has decreased by 7% to reach the minimum at the 15° heel angle of roll position. At the same heel angle, the head at the roll position is lower than that at the pitch position under the rated flow condition. The fluid in the impeller passage is subjected to the additional inertial force of roll motion or pitch motion under unsteady swing motion, inducing some flow bias phenomena in the velocity field. The unsteady development of flow velocity induces the intense vortex motion, and the shedding and dissipation of interblade vortices are affected. The periodic flow-induced pulsation characteristics obviously appear in the impeller passage. The pulsation periodicity and pressure amplitude are influenced due to the swing motion. The pitch motion induces the greater hydraulic excitation and fluid-induced vibration amplitude. In addition to the pressure pulsation at the low frequencies, the pulsation amplitude at 20 times the shaft frequency is evident under pitch motion. Full article
(This article belongs to the Section Turbomachinery)
Show Figures

Figure 1

11 pages, 2165 KiB  
Article
Rim Driven Thruster as Innovative Propulsion Element for Dual Phase Flows in Plug Flow Reactors
by Maximilian Lackner, Alexander Löhr, Felix Schill and Martin Van Essche
Fluids 2024, 9(7), 168; https://doi.org/10.3390/fluids9070168 - 22 Jul 2024
Cited by 1 | Viewed by 1598
Abstract
The purpose of this work was to test a new setup to pump water with entrained air for application in gas fermentation. A mixed flow, where gas is contained in a liquid to be pumped, rapidly reduces the efficiency of a conventional pump, [...] Read more.
The purpose of this work was to test a new setup to pump water with entrained air for application in gas fermentation. A mixed flow, where gas is contained in a liquid to be pumped, rapidly reduces the efficiency of a conventional pump, due to the compressibility of the gas. It is not always possible to degas the fluid, for instance in gas fermentation, which is preferably carried out in tubular reactors (loop fermenters) to achieve a high conversion rate of the gaseous feedstocks. Method: In this work, a rim-driven thruster (RDT) was tested in a lab-scale, cold flow model of a loop reactor with 5–30% (by volume) of gas fraction (air) in the liquid (water) as alternative propulsion element (6 m total pipe length, ambient temperature and pressure). As a result, it was found that the RDT, in connection with a guiding vane providing swirling motion to the two-phase fluid, could pump a mixed flow with up to 25.7% of gas content (by volume) at atmospheric pressure and 25 °C and 0.5 to 2 m/s flow speed. In conclusion, an RDT is advantageous over a classic propulsion element like a centrifugal pump or axial flow pump for transporting liquids with entrained gases. This article describes the potential of rim-driven thrusters, as known from marine propulsion, in biotechnology, the chemical industry, and beyond, to handle multiphase flows. Full article
(This article belongs to the Special Issue New Perspectives in Gas–Liquid Reactors)
Show Figures

Figure 1

16 pages, 6433 KiB  
Article
Analysis of Unsteady Flow Characteristics Near the Cutwater by Cutting Impeller Hub in a High-Speed Centrifugal Pump
by Baoling Cui and Mingyu Shi
J. Mar. Sci. Eng. 2024, 12(4), 587; https://doi.org/10.3390/jmse12040587 - 29 Mar 2024
Cited by 2 | Viewed by 1483
Abstract
Centrifugal pumps are essential fluid transfer devices in marine engineering. As the two most critical components of a centrifugal pump, the dynamic–static interference between the volute and the impeller makes the flow near the cutwater highly unstable, with significant and erratic pressure pulsation, [...] Read more.
Centrifugal pumps are essential fluid transfer devices in marine engineering. As the two most critical components of a centrifugal pump, the dynamic–static interference between the volute and the impeller makes the flow near the cutwater highly unstable, with significant and erratic pressure pulsation, which seriously affects the stability of the operation. The impeller can be improved by cutting the hub, which helps stabilize the flow and reduce pressure pulsation near the cutwater, thus minimizing hydraulic loss. In this study, four different cutting angles were applied to the impeller hub. Computations are conducted using large eddy simulation to analyze the flow and pressure pulsation near the cutwater. Compared to the prototype pump, the modified impeller exhibits a significant reduction in pressure gradient near the blade outlet close to the cutwater. The modified impeller also shows a more uniform flow and lower amplitude of pressure pulsation. Furthermore, under various flow conditions, the centrifugal pump with the modified impeller exhibits lower hydraulic loss compared to the prototype pump, indicating that this method effectively suppresses hydraulic loss. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

16 pages, 6007 KiB  
Article
Status Recognition of Marine Centrifugal Pumps Based on a Stacked Sparse Auto-Encoder
by Yi He, Yunan Yao and Hongsen Ou
Appl. Sci. 2024, 14(4), 1371; https://doi.org/10.3390/app14041371 - 7 Feb 2024
Cited by 3 | Viewed by 1156
Abstract
Marine centrifugal pumps (MCPs) are widely used in ships, so it is important to identify their status accurately for their maintenance. Due to the influence of load, friction, and other non-linear factors, the vibration signal of an MCP shows non-linear and non-stationary characteristics, [...] Read more.
Marine centrifugal pumps (MCPs) are widely used in ships, so it is important to identify their status accurately for their maintenance. Due to the influence of load, friction, and other non-linear factors, the vibration signal of an MCP shows non-linear and non-stationary characteristics, and it is difficult to extract the state characteristics contained in the vibration signal. To solve the difficulty of feature extraction of non-linear non-stationary vibration signals generated by MCPs, a novel MCP frequency domain signal feature extraction method based on a stacked sparse auto-encoder (SSAE) is proposed. The characteristic parameters of MCP frequency domain signals are extracted via the SSAE model for classification training, and different statuses of MCPs are identified. The vibration signals in different MCP statuses were collected for feature extraction and classification training, and the MCP status recognition accuracy based on the time domain feature and fuzzy entropy feature was compared. According to the test data, the accuracy of MCP status recognition based on the time domain feature is 71.2%, the accuracy of MCP status recognition based on the fuzzy entropy feature is 87.7%, and the accuracy of MCP status recognition based on the proposed method is 100%. These results show that the proposed method can accurately identify each status of an MCP under test conditions. Full article
Show Figures

Figure 1

14 pages, 4566 KiB  
Article
Optimization Research on the Space-V-Type Biomimetic Surface Grooves of a Marine Centrifugal Pump
by Hua Li, Zifeng Yu, Runan Hua, Chenqi Li, Chao Guo, Houlin Liu and Liang Dong
Water 2023, 15(22), 4031; https://doi.org/10.3390/w15224031 - 20 Nov 2023
Viewed by 1650
Abstract
The biomimetic surface with Space-V grooves can effectively reduce flow resistance and noise. Our investigation was in order to further enhance the drag reduction and noise reduction performance of a marine centrifugal pump with Space-V-groove-shaped biomimetic surfaces. A regression equation was established with [...] Read more.
The biomimetic surface with Space-V grooves can effectively reduce flow resistance and noise. Our investigation was in order to further enhance the drag reduction and noise reduction performance of a marine centrifugal pump with Space-V-groove-shaped biomimetic surfaces. A regression equation was established with response surface methodology between the total sound pressure level and the height (h), width (s), and spacing (b) of the biomimetic groove structure. The interaction effects of various parameters on the total sound pressure level were analyzed, and the parameter range was determined at the lowest total sound pressure level. The hydraulic performance and interior noise of the model before and after optimization were compared. The results showed that the total sound pressure level initially decreased and then increased with increasing groove height. Similarly, with an increase in groove width, the total sound pressure level decreased at first, then increased. When the height of the bionic groove is 0.5–0.7 mm, the groove width is 0.4–0.7 mm, the groove spacing is 0.7–1.3 mm, and the total sound pressure level of the centrifugal pump is the smallest, which is 180–182 dB. On the other hand, the total sound pressure level increased as groove spacing increased. Through the use of an optimized Space-V groove model, under rated working conditions, the model head is increased by 0.27 m and the efficiency is increased by 1.21%. In addition, the optimized model has excellent drag and noise reduction performance, with the drag reduction rate of 3.73% and noise reduction rate of 1.81%, which are, respectively, increased by 0.87% and 0.45% compared with before optimization. The performance of centrifugal pumps for ships can be greatly improved. Full article
(This article belongs to the Special Issue Design and Optimization of Fluid Machinery)
Show Figures

Figure 1

18 pages, 4981 KiB  
Article
Research on Multi-Fault Identification of Marine Vertical Centrifugal Pump Based on Multi-Domain Characteristic Parameters
by Zhiming Cheng, Houlin Liu, Runan Hua, Liang Dong, Qijiang Ma and Jiancheng Zhu
J. Mar. Sci. Eng. 2023, 11(3), 551; https://doi.org/10.3390/jmse11030551 - 4 Mar 2023
Cited by 8 | Viewed by 2212
Abstract
The marine vertical centrifugal pump is an important piece of auxiliary equipment for ships. Due to the complex operating conditions of marine equipment and the frequent swaying of the hull, typical pump failures such as rotor misalignment, rotor unbalance and mechanical loosening occur [...] Read more.
The marine vertical centrifugal pump is an important piece of auxiliary equipment for ships. Due to the complex operating conditions of marine equipment and the frequent swaying of the hull, typical pump failures such as rotor misalignment, rotor unbalance and mechanical loosening occur frequently, which seriously affect the service life of the marine vertical centrifugal pump. Based on multi-domain characteristic parameters, a fault identification method combining weighted kernel principal component analysis (WKPCA) and particle swarm optimization support vector machine (PSO-SVM) is proposed in this paper. It can effectively solve the problem of multi-fault classification of the centrifugal pump and provide reference for efficient maintenance of equipment. Firstly, a vertical centrifugal pump test bench is set up to simulate typical faults. The collected original fault data are denoised by Kalman filtering. Then, a multi-domain feature set composed of 20 feature parameters was constructed. However, due to high dimension, data redundancy and calculation time were increased. After dimensionality reduction, a fault feature set with 9 feature indexes was established by combining with the WKPCA method. Finally, the PSO-SVM model is used to realize multi-fault identification, and the recognition results of the traditional support vector machine and the genetic algorithm support vector machine (GA-SVM) are compared to verify the diagnosis results and classification performance of PSO-SVM. The results show that the accuracy of WKPCA and PSO-SVM fault recognition methods based on multi-domain characteristic parameters is 1, and it has good convergence. Full article
(This article belongs to the Special Issue Marine Installations and Constructions)
Show Figures

Figure 1

11 pages, 5081 KiB  
Article
Dynamic Pressure Test and Analysis of Marine Ballasted Centrifugal Pump under Rapid Changing Conditions
by Zhipeng Zhu and Houlin Liu
J. Mar. Sci. Eng. 2021, 9(11), 1299; https://doi.org/10.3390/jmse9111299 - 19 Nov 2021
Cited by 2 | Viewed by 2586
Abstract
Ship ballast pumps have stringent requirements for their transient characteristics. Here, the pneumatic control valve and programmable logic controller (PLC) are applied to realize the rapid reduction in flow rate for ballast pumps, and the dynamic pressure of steady and transient conditions and [...] Read more.
Ship ballast pumps have stringent requirements for their transient characteristics. Here, the pneumatic control valve and programmable logic controller (PLC) are applied to realize the rapid reduction in flow rate for ballast pumps, and the dynamic pressure of steady and transient conditions and inner flow for the ballast pump are tested and analyzed. The results show that the dynamic pressure of each study scheme has cyclical increasing trends, however, the larger the amplitude of the flow rate reduction is, the greater the pressure increasing rate of the two measuring points. While the flow rate decreases to 0.4× Qd and 0.2× Qd, the rate of pressure increase is first fast and then slow. The dynamic pressure pulsation intensity is higher than the corresponding steady-state conditions after the transient conditions. With the increase in flow rate reduction, the characteristic frequencies of the dynamic pressure are 1APF (axial passing frequency) and 1BPF (blade passing frequency) and their harmonic frequency. The rapid decrease in flow rate causes the separation vortex in the impeller channel to be generated in advance, and the scale increases, which reduces the pulsation intensity of the pump outlet to prevent an increase in the level of broadband pulsation between 2APF and 1BPF. Full article
(This article belongs to the Special Issue Maritime Engineering, Industry Development Prospects)
Show Figures

Figure 1

20 pages, 7224 KiB  
Article
Study on Vibration Characteristics of Marine Centrifugal Pump Unit Excited by Different Excitation Sources
by Cui Dai, Yuhang Zhang, Qi Pan, Liang Dong and Houlin Liu
J. Mar. Sci. Eng. 2021, 9(3), 274; https://doi.org/10.3390/jmse9030274 - 3 Mar 2021
Cited by 24 | Viewed by 3490
Abstract
In order to study the vibration mechanism of a marine centrifugal pump unit and explore the contribution of vibration caused by different vibration excitation sources, a marine centrifugal pump with a specific speed of 66.7 was used for research. A numerical calculation model [...] Read more.
In order to study the vibration mechanism of a marine centrifugal pump unit and explore the contribution of vibration caused by different vibration excitation sources, a marine centrifugal pump with a specific speed of 66.7 was used for research. A numerical calculation model of the flow field and electromagnetic field of the pump unit was established to analyze the frequency spectrum characteristics and contribution of pump unit vibration caused by different excitation sources. Using the modal superposition method, the vibration characteristics of the pump unit caused by fluid excitation and electromagnetic excitation were analyzed. The results show that the main frequency of pump unit vibration caused by fluid excitation was at the 1× blade passing frequency. The main frequency of pump unit vibration caused by electromagnetic excitation was at the 2× utility frequency. The contribution of different excitation sources to the vibration of marine centrifugal pump unit was in the following order: fluid excitation on the inner surface of the pump > electromagnetic excitation > fluid excitation in the impeller. Full article
(This article belongs to the Special Issue Fluid/Structure Interactions)
Show Figures

Figure 1

17 pages, 31876 KiB  
Article
Optimal Design of Slit Impeller for Low Specific Speed Centrifugal Pump Based on Orthogonal Test
by Yang Yang, Ling Zhou, Hongtao Zhou, Wanning Lv, Jian Wang, Weidong Shi and Zhaoming He
J. Mar. Sci. Eng. 2021, 9(2), 121; https://doi.org/10.3390/jmse9020121 - 26 Jan 2021
Cited by 36 | Viewed by 4289
Abstract
Marine centrifugal pumps are mostly used on board ship, for transferring liquid from one point to another. Based on the combination of orthogonal testing and numerical simulation, this paper optimizes the structure of a drainage trough for a typical low-specific speed centrifugal pump, [...] Read more.
Marine centrifugal pumps are mostly used on board ship, for transferring liquid from one point to another. Based on the combination of orthogonal testing and numerical simulation, this paper optimizes the structure of a drainage trough for a typical low-specific speed centrifugal pump, determines the priority of the various geometric factors of the drainage trough on the pump performance, and obtains the optimal impeller drainage trough scheme. The influence of drainage tank structure on the internal flow of a low-specific speed centrifugal pump is also analyzed. First, based on the experimental validation of the initial model, it is determined that the numerical simulation method used in this paper is highly accurate in predicting the performance of low-specific speed centrifugal pumps. Secondly, based on the three factors and four levels of the impeller drainage trough in the orthogonal test, the orthogonal test plan is determined and the orthogonal test results are analyzed. This work found that slit diameter and slit width have a large impact on the performance of low-specific speed centrifugal pumps, while long and short vane lap lengths have less impact. Finally, we compared the internal flow distribution between the initial model and the optimized model, and found that the slit structure could effectively reduce the pressure difference between the suction side and the pressure side of the blade. By weakening the large-scale vortex in the flow path and reducing the hydraulic losses, the drainage trough impellers obtained based on orthogonal tests can significantly improve the hydraulic efficiency of low-specific speed centrifugal pumps. Full article
(This article belongs to the Special Issue Experiments and Numerical Analysis of Flow)
Show Figures

Figure 1

20 pages, 6396 KiB  
Article
Development and Numerical Performance Analysis of a Pump Directly Driven by a Hydrokinetic Turbine
by Daqing Zhou, Huixiang Chen, Yuan Zheng, Kan Kan, An Yu and Maxime Binama
Energies 2019, 12(22), 4264; https://doi.org/10.3390/en12224264 - 8 Nov 2019
Cited by 10 | Viewed by 4199
Abstract
Marine and hydrokinetics (MHK) represent an emerging industry with hundreds of potentially viable technologies, such as potential extractable energy from plain area rivers where the water level differences are very small and the traditional water turbine pump (WTP) cannot be used. A suitable [...] Read more.
Marine and hydrokinetics (MHK) represent an emerging industry with hundreds of potentially viable technologies, such as potential extractable energy from plain area rivers where the water level differences are very small and the traditional water turbine pump (WTP) cannot be used. A suitable WTP, composed of a tubular turbine directly driving a centrifugal pump, was designed and developed based on computational fluid dynamics (CFD) and model tests. Two general design schemes of such river-current (RC)-driven WTP are presented here, obtaining the desired operating parameters of discharge and pump head. A CFD analysis of Scheme B, which employs a radial outlet, allowing additional degrees of freedom for the dimensions of the centrifugal pump, was carried out and verified experimentally by model tests. The minimum deviation of pump head is within ±5%, and the trend of other working conditions is consistent, so the results of the numerical simulation and model tests show good agreement, demonstrating the feasibility of the CFD method for practical applications. Then, using the CFD method, the optimum rotational speed for the turbine was determined, and the turbine draft tube was improved further. With a turbine runner diameter of 0.5 m, the results show best performance at n = 350 r/min. The straight conical draft tube was changed to an elbow draft tube with multiple exits. Additionally, four different cross-sectional shapes were designed for the pump volute, and their effects on the performance of the WTP were analyzed. Finally, the round shape was selected, because of its best performance. The turbine unit has the highest efficiency of 81.2%, at an inlet velocity v = 2.4 m/s, while the pump exhibits the best efficiency of 90.2% at the design discharge and head of 30 l/s and 4.45 m respectively. Overall, the RC-driven WTP makes good use of the kinetic energy of the river current as a power source, solving the inapplicability of traditional WTP in plain areas. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Graphical abstract

Back to TopTop